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Abstract 19 

The spatial variability of the wind in the Montesnegros Irrigation District 20 

(MID), in Spain, has been analysed. From a wind series (2004-2007) registered 21 

by the reference weather station, a windspeed > 2 m s-1 was observed about 22 

50% of the time. During these periods about 70% of the time it blew from the 23 

northwest (known as the Cierzo). 24 

Wind was monitored at the reference site and at 17 sites throughout the 25 

MID. Using regression a series of the local wind velocities for the irrigation 26 

seasons 2004 to 2007 were estimated from the reference station data. Wind 27 

exposure for 39% of the MID area was found to be similar to that of the 28 

reference site; 25% were less exposed and 36% considerably more exposed. 29 

The spatial variability of the wind was used to calculate the suitable time 30 

for irrigation (STI, %) using Ador-Sprinkler software. STI was simulated for 31 

different irrigation systems and strategies: standard - Christiansen's uniformity 32 

coefficient (CUC) > 84% and wind drift and evaporation losses (WDEL) ≤ 20%), 33 

restrictive - CUC ≥ 90% and WDEL ≤ 15% and relaxed - CUC > 80% and 34 

WDEL ≤ 25%. At the reference site, STI varied from 50 to 56% of the total time 35 

during the irrigation season time for standard strategy, from 68 to 77% for the 36 

relaxed strategy and 8 to 30% for the restrictive strategy. Excluding the 37 

restrictive strategy, the least exposed sites averaged 14% greater STI than the 38 

most exposed sites. 39 
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Nomenclature 42 

a.g.l.: Above the ground level. 43 

CUC: Christiansen's uniformity coefficient (%). 44 

GMT: Greenwich meridian time (h). 45 

INM: Spanish Meteorology State Agency. 46 

MCP: Measure-correlate-predict. 47 

MID: Montesnegros irrigation district. 48 

R2: Coefficient of determination.  49 

RH: Relative humidity of the air (%). 50 

SIAR: Agro-climatic information service for irrigation. 51 

STI: Suitable time for irrigation (%). 52 

WDz: Wind direction (°) at height z (m) where used. 53 

WDEL: Wind drift and evaporation losses (%). 54 

WVz: Windspeed (m s-1) at height z (m) where used. 55 



Introduction 56 

The distribution uniformity and application efficiency of sprinkler irrigation 57 

systems are potentially high, but these parameters are highly dependent on the 58 

weather conditions, especially on wind (Cuenca, 1989; Keller & Bliesner, 1990). 59 

Wind strongly affects the sprinkler irrigation performance since it lowers the 60 

uniformity and the efficiency of the water distribution (Seginer, Nir, von Bernuth, 61 

1991; Seginer, Kantz, Nir, 1991; Tarjuelo, Carrión, Valiente, 1994; Kincaid, 62 

1996; Dechmi, Playán, Cavero, Faci, Martínez-Cob, 2003; Dechmi, Playán, 63 

Cavero, Martínez-Cob, Faci, 2004; Playán et al., 2005; Zapata et al., 2007). 64 

Consequently, it is necessary to increase technical knowledge and develop 65 

tools that can improve sprinkler irrigation performance in windy conditions. 66 

Wind monitoring is essential to manage sprinkler irrigation districts where 67 

moderate or high winds are frequent and extensive. Usually one reference 68 

weather station, located close to the irrigation district, is used to assess the 69 

water needs of crops for the whole of the area. The information provided by 70 

these stations is useful to assess the water needs of crops and to schedule 71 

irrigation. However, both can be improved by accounting for the spatial 72 

variability of the wind within the irrigation district, a topic commonly disregarded. 73 

The estimation of the wind conditions at sites with no or few records can 74 

be performed by linking a location to a nearby place for which a wind series is 75 

available. This is based on the idea that within a certain distance, given by the 76 

local meso-scale conditions, overall wind conditions are the same (Landberg & 77 

Mortensen, 1994). The suitability of the data provided by a meteorological 78 

station may vary since its representativeness depends on the complexity of the 79 

terrain and nearby obstacles (Troen & Petersen, 1989). Wind close to the 80 



Earth's surface is strongly influenced by the nature of the terrain surface 81 

(Petersen, Mortensen, Landberg, Hojstrup, Frank, 1998). The components that 82 

cause variation are changes in the land surface and hills (Kaimal & Finnigan, 83 

1994). Wind exposure can vary within an irrigation district, and specific irrigation 84 

management may be advisable depending on the degree of exposure. 85 

Nevertheless, the problem is complex and scale-dependent (Achberger, 86 

Ekström, Bärring, 2002). 87 

Among the methods used to predict the wind resources at target sites, 88 

empirical methods are based on statistical correlations between the time series 89 

from different sites. However, these methods are usually applied to describe 90 

general and average conditions rather than to find relationships for short 91 

periods such as irrigation events. The Measure–Correlate–Predict (MCP) 92 

technique is an empirical method often used to estimate the wind parameters at 93 

a site (Landberg et al., 2003). It relates the wind measurements at two different 94 

sites by means of a regression analysis. Over the last fifteen years, a number of 95 

the MCP techniques have been proposed. MCP algorithms differ in terms of 96 

overall approach, model definition, use of direction sectors, data used for the 97 

validation and their length, criteria to evaluate the length of concurrent data 98 

required and criteria to evaluate the effectiveness of the approach (Rogers, 99 

Rogers, Manwell, 1994). 100 

Knowledge of the local wind conditions is an important topic in many 101 

applications such as sitting of wind turbines and estimating the environmental 102 

impact of air pollution from a point source (Achberger et al. 2002). Important 103 

advances have been achieved in the description and modelling of the spatial 104 

and temporal variation of the wind within an area. They present a great 105 



opportunity to improve the quantification of the crop water needs and 106 

scheduling of sprinkler irrigation towards a more efficient use of water. 107 

When farmers are forced to irrigate under unfavourable and prolonged 108 

windy conditions, and when the period with low wind is not sufficient to irrigate 109 

the whole irrigation district, then average irrigation performance of the district 110 

can be improved by including the wind exposure of each zone as a 111 

management factor. In addition, the crop rotation schedule needs to be 112 

improved by observing the sensitivity of the crops to the irrigation uniformity 113 

together with the local wind exposure. The spatial variability of the wind is also a 114 

criterion to be included in designing the sprinkler spacings and arrangements 115 

adopted in new sprinkler installations. Nevertheless, despite the close 116 

relationship between the spatial variability of the wind and sprinkler irrigation 117 

performance and scheduling, it is a subject that has not been deeply studied. 118 

During the last two decades, national and regional policies in Spain have 119 

encouraged the modernisation of irrigation districts. Recent projects have 120 

installed pressurised sprinkler irrigation systems incorporating, in many cases, 121 

automation and monitoring systems (MAPA, 2001; Forteza del Rey, 2002; 122 

Carrión, Tarjuelo, Montero, 2001). From 2003 onwards, a network of weather 123 

stations designated SIAR has been deployed in representative Spanish 124 

irrigation districts to specifically provide the water needs data for each irrigated 125 

zone. These stations provide, amongst other meteorological variables, wind 126 

conditions. 127 

Sprinkler irrigation models have been developed in the last decades in 128 

Spain (Dechmi et al. 2004; Carrión et al. 2001; Montero, Tarjuelo, Carrión, 129 

2001; Playán et al., 2006). The family of programs Ador provides tools for multi-130 



criteria decision making in irrigation management including economic, 131 

agronomical, technical, environmental and social criteria (Dechmi et al. 2004; 132 

Carrión et al. 2001; Montero et al. 2001; Playán et al., 2006; Shkiri, 2007; 133 

Playán et al., 2007). These models are valuable tools to simulate the irrigation 134 

performance according to meteorological conditions. 135 

The present work was performed in the Montesnegros irrigation district 136 

(MID), located in the central part of the Ebro river valley (Fig. 1). The MID 137 

represents an average irrigation district in this windy region. The windspeed at 2 138 

m above the ground level (a.g.l.) (WV2) in the MID is, on average, 2.8 m s-1 139 

(Zapata et al., 2007). Several studies have analysed the implications of wind for 140 

sprinkler irrigation management in different irrigation districts of the Ebro river 141 

valley (Faci & Bercero, 1991; Dechmi et al. 2003; Playán et al. 2005; Playán et 142 

al., 2006; Zapata et al., 2007) 143 

The Ebro basin, in the northeast corner of the Iberian Peninsula (Fig. 1), 144 

includes 347 rivers, 12000 km in total length, and comprising an area of 85362 145 

km2, almost 99% of which are in Spain; the remainder being in Andorra and 146 

France. It is the largest river basin in Spain (17.3% of the Spanish territory in 147 

the Iberian Peninsula). In many irrigation districts throughout the Ebro Valley it 148 

is difficult to achieve uniform and efficient sprinkler irrigation because the wind 149 

is strong and persistent along the valley. The connection between the regional 150 

wind conditions and the Ebro Valley orography have been thoroughly described 151 

(Masson & Bougeault, 1996; Frangi & Richard, 2000; Gomes et al., 2003). 152 

Common winds in the region are named the Cierzo and the Bochorno. They 153 

are, respectively, winds from the northwest and the southeast. The Cierzo is the 154 

most frequent and strongest wind in the Ebro Valley. In this area, in terms of 155 



daily averages, WV2 exceeds 2 m s-1 (Puicercús et al., 1994; Hernández 156 

Navarro, 2002; Martínez-Cob & Tejero-Juste, 2004). At 50 m a.g.l. (i.e. WV50), 157 

the Cierzo exceeds 6.5 m s-1 over open plains; even more over a high 158 

proportion of the territory along the axis of the valley (Troen & Petersen, 1989). 159 

In this work, the spatial variability of the wind in the MID will be analysed. 160 

The windspeed measured at several locations in the MID is correlated with that 161 

simultaneously recorded at the reference meteorological station. The 162 

implications of the spatial variability of wind in the sprinkler irrigation 163 

performance and management will be analysed by calculating the suitable time 164 

for irrigation (STI) at these locations and at the reference site over several 165 

years. 166 

1. Material and methods 167 

The MID is an illustrative example of a current sprinkler irrigation district 168 

in the windy Ebro Valley. It is located along the limits of Zaragoza and Huesca 169 

provinces in the Northeast of Spain and has an area of 7352 ha, 3456 ha of 170 

which are sprinkler irrigated. This study is based on the irrigated area (Fig. 1). 171 

The MID was set up in 1995 and at present, 247 farmers have joined the 172 

district. 173 

In the MID, farmers irrigate using an on-demand scheme. This procedure 174 

offers the greatest potential and provides farmers with great flexibility, allowing 175 

them to adjust water application to crop water requirements (Lamaddalena & 176 

Sagardoy, 2000). Water is pumped from a local reservoir using electric pumps 177 

powered by diesel generators. Consequently, water use in the district is 178 

expensive (0.048 € m-3 in 2004) and the cost is not varied whether the pumps 179 

work during day or night (Skhiri, 2007). The maximum network capacity is 180 



241920 m3 d-1 and the average theoretical continuous flowrate is 0.8 l s-1 ha-1 181 

(Zapata et al., 2007). Also, many hydrants are shared among various plots. 182 

Thus, the flexibility in the irrigation scheduling is restricted because limitations in 183 

the irrigation network. 184 

The manager of the MID must place an order for the farmers' water 185 

needs to the Ebro River Basin Agency two days before the water is released in 186 

the district system. The reservoir capacity of the MID is limited, hence if farmers 187 

fail to irrigate because of strong winds or rain, the water previously requested 188 

has to be returned through the spillways to the basin system. The authorities of 189 

the Ebro River Basin punish this practice with a financial penalty. This is 190 

particularly important in the MID since windy conditions are common. 191 

The average wind conditions in the MID were first characterised 192 

according to the wind series recorded over eleven years by a meteorological 193 

station which is the property of the Spanish Meteorology State Agency (INM) 194 

located in Bujaraloz (Fig. 1 and Table 1). This is the longest time series 195 

available for this area. The INM station recorded WV10 and WD10 every 10 min. 196 

These variables were averaged every 30 min. WV10 was transformed into WV2 197 

using the conversion factor reported in Table 2.9 of Annex 2 published by 198 

(Allen, Pereira, Raes, Smith, 1998), i.e., [WV2 = 0.748 * WV10]. After these 199 

transformations, the format of the data matched those registered by the SIAR 200 

reference station. The INM station used 3-cuprotoranemometer model SV.5 and 201 

wind direction sensor model SD.5 (Seac S.A., Madrid, Spain), connected to a 202 

data-logger from the same manufacturer. 203 

Despite the INM weather station providing the longest data series in the 204 

area, the reference weather station of the SIAR network located at Valfarta ( 205 



Table 1, Fig. 1) is the reference agro-meteorological station for irrigation 206 

scheduling purposes in the MID. The wind series from the SIAR reference 207 

station between 2004 and 2007 was used. The distance between the SIAR 208 

reference and the INM weather stations is 2455 m. 209 

The SIAR reference station monitors WV2 and WD2 using a propeller-210 

type anemometer (Young's wind monitor Model 05103, Campbell Scientific, 211 

Inc., Shepshed, Leicestershire, UK). According to the manufacturer’s 212 

specifications, the starting windspeed threshold and accuracy were 1.0 m s-1 213 

and ± 0.3 m s-1, respectively. For wind direction, its accuracy was ± 3º and the 214 

starting threshold at 10° displacement is 1.1 m s-1. Data were averaged every 215 

30 min. 216 

Sixteen sectors of wind direction were defined and analysed, clockwise: 217 

North (N), from 348.75 to 11.24º, North-North-East (NNE) from 11.25 to 33.75º, 218 

and so on up to North-North-West (NNW) from 325.25 to 348.74 º. Winds from 219 

direction between 236.25º and 326.24º were considered as Cierzo and winds 220 

between 56.25º and 146.24º were considered as Bochorno winds. 221 

1.1.1. Characterisation of the spatial variability of the wind 222 

To analyse the spatial variability of the wind, the windspeed was 223 

measured in situ at seventeen sites uniformly distributed throughout the (Table 224 

1, Fig. 1) between February and March in 2005, resulting in approximately one 225 

monitoring point every 200 ha. Four set of measurements were carried out. 226 

During each set, the SIAR reference site and four of these points (five during 227 

the third set) were monitored simultaneously. Cierzo wind conditions prevailed 228 

during the monitoring period. The monitoring period for each set of 229 



measurements lasted enough to register an ample range of windspeeds, 230 

approximately one day; the fourth period was extended to about three days. 231 

Local WV2 was monitored using A100R 3-cup-rotors anemometers 232 

(Vector InstrumentsTM, Rhyl, UK) and recorded every minute using a CR10X 233 

data logger (Campbell Scientific Ltd, UK). The records were later averaged 234 

every 30 min to match the format of the SIAR reference station records. The 235 

devices were powered by solar panels. 236 

The local measurements were carried out during the period when fields 237 

were without crops because during this period the differences in the roughness 238 

conditions amongst sites were reduced. The advection term was considered 239 

small enough because the monitoring period was very cold (average 240 

temperature of the air was 0.4 ºC) and differences in soil moisture amongst 241 

locations were reduced because of the regular rainfalls during autumn and 242 

winter. Thus, we could expect most of the spatial variability of the wind to occur 243 

because of terrain features. 244 

Simultaneous records of local and reference windspeeds were related 245 

using linear regressions. Afterwards the local windspeeds were assessed 246 

during the irrigation seasons (i.e. from April to September) between 2004 and 247 

2007 for each of the seventeen sites. When the WD was a Cierzo and WV2 at 248 

the reference weather site was > 2 m s-1, local WV2 was calculated from the 249 

reference WV2 through the regression models. When the WV2 at the reference 250 

site was < 2 m s-1 or the WD was not a Cierzo, the WV2 was considered to be 251 

the same at the local and reference sites. This is because at MID we focus on 252 

Cierzo and because windspeeds < 2 m s-1 are not considered to be detrimental 253 

for sprinkler irrigation (Faci & Bercero, 1991). 254 



From the local windspeed series from 2004 to 2007, the ratio of the local 255 

to the reference windspeeds was computed for reference windspeeds greater 256 

than 2 m s-1 and Cierzo conditions. The average ratios for each of the 257 

seventeen sites were interpolated throughout the irrigated area of the MID using 258 

kriging in order to produce a contour map that illustrates the spatial variability. 259 

The quality of the measurements has been reported as one of the most 260 

likely sources of uncertainty comparing wind records among sites (Schaudt, 261 

1998). To analyse the differences between sensors, local and reference 262 

windspeeds were measured simultaneously at the reference site by installing a 263 

3-cuprotor anemometer with its logger at the SIAR site from February 16th to 264 

March 4th, 2005. 265 

1.1.2. Implications of the spatial variability of the wind in the sprinkler irrigation 266 

performance 267 

The ballistic model in the Ador-sprinkler software (Dechmi et al. 2004; 268 

Playán et al., 2006) was used to analyse the variation in irrigation performance 269 

with weather conditions. The model requires a combination of meteorological 270 

and operational inputs. The operational parameters include the solid-set 271 

arrangement, sprinkler height and model, the number and diameter of the 272 

nozzles, the operating pressure and the sprinkler-bearing lines azimuth. The 273 

meteorological parameters windspeed, wind direction and relative humidity of 274 

the air (RH ) must be defined. 275 

Two triangular sprinkler arrangements were simulated: 18 m between 276 

sprinklers along the lateral; 18 and 15 m between the laterals; they were 277 

designated T18x18 and T18x15, respectively. An azimuth angle of 105° 278 

between North and the sprinkler-bearing line was fixed. The performance of two 279 



calibrated sprinklers, VYR-70 (VYRSA, Burgos, Spain) and RC-130H (Riegos 280 

Costa, Lleida, Spain) with principal and auxiliary nozzles of 4.4 and 2.4 mm in 281 

diameter mounted at 2 m a.g.l. was examined. An operating pressure of 300 282 

kPa was set for the sprinkler nozzle. These combinations are widely used in the 283 

area. 284 

From these data, the Ador-sprinkler software yielded the Christiansen's 285 

Uniformity Coefficient (CUC, %) (Christiansen, 1942) and the Wind Drift and 286 

Evaporation Losses (WDEL, %). One value of CUC and one value of WDEL 287 

were computed for each 30 min interval for the series of local windspeeds found 288 

between 2004 and 2007. The wind direction and RH monitored by the SIAR 289 

reference station were considered the same throughout the MID. 290 

WDEL was computed according to the equation proposed for day and 291 

night operation conditions by Playán et al. (2005): 292 

 RHWVWDEL 216.041.11.24 −+=     (1) 293 

where WV will be WV2 in m s-1 and RH in %. 294 

The suitable time for irrigation (STI, %) was defined as the percentage of 295 

the time for which irrigation can be performed above a specific CUC threshold 296 

and below a specific WDEL threshold. STI was calculated as the percentage of 297 

records observing this condition with respect to the total 30 min records for the 298 

2004-2007 irrigation seasons. Thus, STI depended on the distribution of the 299 

windspeed and on the spatial variability of the wind. 300 

Four different management strategies were established (Zapata et al., 301 

2007):  302 

Standard strategy: CUC > 84% and WDEL ≤ 20%. 303 

Restrictive strategy: CUC ≥ 90% and WDEL ≤ 15%. 304 



Relaxed strategy: CUC > 80% and WDEL ≤ 25%. 305 

WV < 3 m s-1.  306 

STI was calculated for the SIAR reference station and local sites for each 307 

sprinkler combination and strategy. 308 

2. Results and discussion 309 

2.1. General wind conditions in the MID 310 

Fig. 2 shows that, in terms of daily averages, WV2, i.e., at the level of the 311 

sprinklers nozzles, was > 2 m s-1 for almost all of the year. Windspeed varies 312 

both during the day and during the year. It is strongest for February, March and 313 

April. For these months, WV2 was > 3 m s-1 during most of the daytime. The 314 

irrigation season for alfalfa and maize, two crops extensively cultivated in the 315 

MID, is from April to September, with the greatest water demand occurring 316 

during July and August. During these months, the daily variation of the 317 

windspeed differs from the rest of the year, both in profile and the time at which 318 

the maximum windspeed occurs (Fig. 2). 319 

Sprinkler irrigation can be improved in terms of uniformity and efficiency 320 

by irrigating during the night since windspeed decreases considerably during 321 

the night (Martínez-Cob, Zapata, Sanchez, Playán, 2005). However, farmers' 322 

water demands in the MID cannot be met completely during the night since the 323 

water conveying system is limited in section and water demands are high and 324 

concentrated (Zapata et al., 2007). For this reason, farmers are forced to 325 

irrigate during the day, facing windy conditions.  326 

General wind conditions in the area were also analysed using the wind 327 

series monitored between 2004 and 2007 by the SIAR reference station.  328 



Wind direction mostly follows the contours of the Ebro Valley, particularly 329 

during the Cierzo (Fig. 3). In the MID, the Cierzo slightly veered from WNW to 330 

W. Considering the whole series, Cierzo winds blew half of the time, almost 331 

twice as much as Bochorno. During the irrigation season, Bochorno increased 332 

moderately (5 units in %) at the expense of Cierzo. Light winds (WV2 < 2 m s-1) 333 

occurred around half of the time (Table 2). The frequency of Cierzo greatly 334 

increased when WV2 > 2 m s-1 only were considered (Fig. 3). 335 

Winds other than Cierzo or Bochorno were less than 30% (Fig. 3) and 336 

were mostly light winds (Table 2). Consequently, they were not especially 337 

detrimental for the sprinkler irrigation performance in the MID. Bochorno 338 

involves a high frequency of light winds (about 60%), more than twice as much 339 

as the Cierzo (Table 2). Considering WV2 > 2 m s-1, Bochorno and Cierzo winds 340 

noticeable differed too: under Bochorno conditions, WV ranges mostly between 341 

2 and 4 m s-1 whereas under Cierzo conditions, winds > 5 m s-1 were as 342 

frequent as light winds. 343 

2.2. Analysis of the spatial variability of the wind 344 

2.2.1. Comparison between sensors in wind measurements 345 

Fig. 4 illustrates the differences in the windspeed monitoring data 346 

between the sensors gauging local WV (3-cuprotor anemometers) and the SIAR 347 

reference weather station (propeller type anemometer). The distribution of the 348 

records was bimodal, with one peak between 0.5 and 2 m s-1 (30% of the 349 

records) and other between 4.5 and 6 m s-1 (25% of the records). According to 350 

a linear regression, the slope and intercept coefficients were statistically 351 

significant. The 3-cuprotor anemometers measured greater windspeeds than 352 

the propeller-type. The deviation was greater for low winds and decreased with 353 



windspeed. The mismatch was probably related to the differences in the starting 354 

threshold windspeed which was  0.25 m s-1 for the 3-cuprotor anemometer and 355 

1 m s-1 for the propeller-type (according to the manufacturer's specifications). 356 

The scattering of the data around the line 1:1 in Fig. 4 is appreciable. The 357 

standard error was 0.68 m s-1 and it was particularly greater between 3 and 4 m 358 

s-1 (0.96 m s-1). Bias was not observed in the distribution of the residuals but 359 

they increased (in absolute terms) for WV > 3 m s-1. According to these results, 360 

differences among sites < 0.3 m s-1 were carefully considered. 361 

2.2.2. Linear Regression Models 362 

Local windspeed was related to the reference SIAR windspeed using 363 

regression analysis on data from the seventeen sites (Fig. 1, Table 1). Local 364 

windspeed was recorded from February 16th  to March 4th , 2005 (Fig. 1, Table 365 

1). During this time, the wind was strong and mainly classified as Cierzo. 366 

Between February 16th   and 17th, the average windspeed at SIAR reference 367 

site was 5.2 m s-1 and 93% of the time the wind direction was Cierzo. Between 368 

February 17th and 18th , between February 28th  and March 1st, and between 369 

March 1st and 4th,  these figures were 4.9 m s-1 and 95%, 3.2 m s-1 and 87%, 370 

and 2.7 m s-1 and 54%, respectively.  371 

The linear regression models between local and reference windspeeds 372 

under Cierzo conditions differed among sites illustrating the spatial variability of 373 

the wind (Fig. 5). Local windspeeds were greater than the reference SIAR 374 

windspeed for the sites 14, 19, 13 and 52 (where the data was almost parallel to 375 

the line 1:1) and for the sites 35 and 43 (where the differences decreased with 376 

windspeed). At the sites 25, 6 and 33, the local windspeed was greater than the 377 

reference windspeed up to the limit beyond which the trend was reversed. Local 378 



windspeed was lower than the SIAR reference windspeed for the sites 45, 30 379 

and 49 (the differences increased with windspeed). Site 49 [local WV = 0.50 + 380 

0.7156 x SIAR WV (R2 = 0.90)], monitored during the third period, is not 381 

presented in Fig. 5 in the interests of clarity. At the sites 7 and 36, local 382 

windspeed was lower than the SIAR windspeed up to a limit beyond which the 383 

opposite was true. Both local and reference windspeeds were similar for the 384 

sites 9, 23 and 21 (site 21 was the closest to the SIAR reference site). Several 385 

regressions differed despite their close proximity revealing that the spatial 386 

variability of the wind was important even for distances of about 1 km (Figs. 1 387 

and 5).  388 

From the analysis of the local windspeed series under Cierzo conditions 389 

for the irrigation seasons between 2004 and 2007 (light winds excluded), 390 

important differences were found among sites (Fig. 6). The cumulative 391 

frequency for windspeeds < 4 m s-1 was less than 50% for the most of the sites 392 

except for sites 33, 45, 30 and 49. Windspeeds  > 5 m s-1 had a cumulative 393 

frequency greater than 60% at sites 19, 35, 43 and 7, but about 30% or less at 394 

the sites 23, 33, 45, 30 and 49.  395 

Figure 7 illustrates the average windspeed throughout the irrigated area 396 

of the MID expressed relative to that at the SIAR reference site. The spatial 397 

variability of the wind was quantified in terms of % area in four categories (Table 398 

3). For 39% of the MID territory, the wind was similar to that for the SIAR 399 

reference site, 25% of the area was less exposed and 36% was more exposed. 400 

The results show that wind monitored at the SIAR reference station could 401 

underestimate the windspeed found in more than one third of the MID area. 402 



2.3. Implications of the spatial variability of the wind on the sprinkler irrigation 403 

performance 404 

The spatial variability of the wind within an irrigation district affects 405 

irrigation performance in terms of uniformity and water losses since both 406 

depend on the wind velocity at the irrigated site, i.e., the local windspeed. 407 

Simulations with Ador-sprinkler software revealed that STI greatly varies 408 

depending on the irrigation strategy, the sprinkler system and the wind 409 

exposure (Table 4). 410 

The restrictive strategy can be hardly followed in the MID as it implies 411 

extremely low STI irrespective of the sprinkler system and site (Table 4). It 412 

requires very low windspeeds combined with high RH, conditions which are 413 

infrequent in the MID. The choice of the sprinkler model is significant for this 414 

strategy. Playán et al. (2006) showed that VYR-70 sprinklers yielded higher 415 

values of the CUC than RC-130H sprinklers for windspeeds < 2 m s-1, while the 416 

RC-130H sprinklers had greater CUC than VYR-70 for windspeeds in the range 417 

of 2 to 5 m s-1. Since this strategy requires very low windspeed, the VYR-70 418 

sprinklers gave noticeably greater STI than the RC-130H sprinklers. For the 419 

restrictive strategy, the choice of the irrigation layout (T18x15 or T18x18) was 420 

less important than the selection of the sprinkler model in terms of the STI 421 

(Table 4). 422 

The relaxed strategy was found to be more suitable in the MID as STI 423 

greatly increases with respect to the restrictive strategy. For the relaxed 424 

strategy, the STI increases when the narrowest layout was selected: the 425 

increase is 8 units in the case of the RC-130H model and 4 units in the case of 426 

the VYR-70 sprinklers (results for the SIAR reference site). Similar trends are 427 



found for the relaxed and standard strategies, although the STI is lower for the 428 

latter. 429 

Predicted STI noticeably increased for the least exposed areas (sites 30, 430 

45 and 49) when compared to the most exposed areas (sites 43 and 35) (Table 431 

4, Fig. 7). For the standard and relaxed strategies, farmers with plots at the 432 

least exposed sites (90th percentile) have between 10 and 20% greater STI than 433 

the farmers at the most exposed sites (10th percentile), between 5 and 10 units 434 

(%) calculated as differences (penultimate and last rows in Table 4, 435 

respectively). The differences increased with sprinkler spacing. For the 436 

restrictive strategy, the STI was too low even for the least exposed sites and it 437 

was concluded that this strategy is unaffordable in the MID. 438 

The average water needs for a maize crop (crop evapotranspiration, ETc) 439 

in the area during the most demanding month (July) are 215 mm (Martínez-440 

Cob, Faci, Bercero, 1998). The irrigation network of the MID was designed with 441 

an average theoretical continuous flow rate of 0.8 l s-1 ha-1 (Zapata et al., 2007) 442 

which is equivalent to 214 mm month-1. Accordingly, farmers in the MID can 443 

hardly meet the water requirements for maize during July. The network 444 

investment cost is inversely proportional to the operating time and this is 445 

connected with the local wind conditions. STI values lower than 55-60% result 446 

in important increases on the investment cost (Zapata et al., 2007). 447 

Consequently, irrigation districts located in semiarid and windy areas, subject to 448 

high evapotranspiration and with low values of the STI, must devote significant 449 

investments in water conveyancing systems in order to provide the volume of 450 

water required for a short period of time.  The assessment of the STI, together 451 



with the following analysis of the investment cost, illustrates the unusual 452 

characteristics of irrigation network designs for windy areas. 453 

Zapata et al. (2007) related the network construction cost, including both 454 

the collective and the on-farm irrigation structures, to the STI (considered as a 455 

% of the hydrant operating time). The function presented next was assessed 456 

from those values and considering the results obtained during the year 2007 in 457 

the Callén Irrigation District, a new irrigation network similar to the MID but 458 

about 70 km to the north. The function provides the network construction cost (€ 459 

ha-1) as a function of the STI (%). The function is valid for the combinations of 460 

solid-set arrangement and sprinkler model included in the present study. The 461 

equation is: 462 

Cost = 1.1116 STI2 - 181.43 STI + 15390  (R2 = 0.98) (2) 463 

Construction costs vary significantly depending on the irrigation 464 

management regime adopted (Fig. 8). Also, the cost associated with each 465 

irrigation management depends on the solid-set arrangement, the sprinkler 466 

model and exposure to the wind.  467 

Figure 8 shows that the restrictive strategy implies construction costs 468 

between 11000 and 14000 € ha-1 and, as previously stated, it is unaffordable at 469 

MID (the form of Eq. 2 stresses the differences in the STI between sprinkler 470 

models). The differences in the cost between the standard and the relaxed 471 

strategies is about 500 € ha-1; in all, for a district such as the MID, to shift from 472 

the relaxed to the standard strategy would involve more than 1700000 € in 473 

terms of the construction cost. It is noteworthy the effect of the spatial variability 474 

of the wind, especially for the standard strategy. For this strategy, the 475 



differences in the network construction cost associated with the wind exposure 476 

exceed the differences due to the arrangement and model of the sprinklers. 477 

The characterisation of the spatial variability of the wind in windy areas is 478 

a valuable tool for sprinkler irrigation. Irrigating the least exposed zones to the 479 

wind during the most unfavourable periods may improve the management of 480 

sprinkler irrigation. Furthermore, accounting for the differences in wind exposure 481 

improves the estimation of the crop water requirements. 482 

Since the wind conditions depends on the roughness conditions, the 483 

resulting relationships (Fig.5) may vary from the non-vegetative period to the 484 

irrigation season, and among irrigation seasons, depending on the farmers' 485 

decisions about cropping. This is inherent in the nature of the wind in the 486 

surface layer. When economically viable, the implementation of real-time 487 

irrigation programmers by wind velocity monitored locally is advisable. 488 

3. Conclusions 489 

Wind monitoring is essential for the management of sprinkler irrigation 490 

districts. In windy irrigation districts, the spatial variability of the wind can be 491 

important and it can be a rough simplification to assume the wind velocity (WV) 492 

monitored at only one point (the SIAR reference weather station in this study) 493 

represents the whole irrigation district. The characterisation of the wind 494 

exposure can improve the design and management of sprinkler irrigation 495 

systems where moderate or high winds are frequently found such as in the MID. 496 

The analysis of the SIAR wind data series for the 2004-2007 irrigation 497 

seasons reveals that Cierzo blows 45% of the time during the irrigation season. 498 

Considering the winds that jeopardize sprinkler irrigation exclusively (WV > 2 m 499 

s-1 at 2 m above the ground) this rises to 69%. Under Cierzo wind conditions, 500 



because of the spatial variability of the wind, 25% of the MID territory was less 501 

exposed to the wind than the SIAR site, 39% was equally exposed, and 36% 502 

more exposed. 503 

The Ador-Sprinkler simulation model can convert the differences in the 504 

wind exposure into predicted differences for the suitable time for irrigation (STI, 505 

%). Depending on the local exposure and the sprinkler system, STI ranges in 506 

the MID between 42 and 58% for a standard strategy (CUC > 84% and WDEL ≤ 507 

20%) and between 57 and 79% for a relaxed strategy (CUC > 80% and WDEL 508 

≤ 25%). For these strategies, the ratio of STI for the least exposed sites (90th 509 

percentile) to STI for the most exposed sites (10th percentile) ranges between 510 

108% and 118%. This means a between 6 and 10 units greater STI for the least 511 

exposed sites. For a restrictive strategy (CUC ≥ 90% and WDEL ≤ 15%) the 512 

differences between sites and sprinkler systems increase but STI was too low 513 

for any system to be affordable in the MID (STI between 6 and 32%). For the 514 

standard strategy, the differences in the network construction costs associated 515 

with the wind exposure exceed the differences due to the arrangement and 516 

model of the sprinklers. 517 

Because of the strong and frequent winds in the region and the limited 518 

water conveying system in the MID, the time needed to supply the irrigation 519 

water needs exceeds the hours of the day with low winds. Consequently, 520 

farmers have important limitations for their irrigation schedule. Characterisation 521 

according to the wind exposure provides new tools to improve the sprinkler 522 

irrigation management and provide new criteria to design irrigation systems. 523 

The methodology presented in this study is valid for windy irrigation districts that 524 

present significant spatial variability of the wind. This methodology could be 525 



very useful to improve sprinkler irrigation management using data from 526 

meteorological stations in the area. 527 

This study is a simplification of the characterisation of spatial variability of 528 

the wind since it is restricted to a specific wind conditions (i.e. Cierzo). Further 529 

studies extending the periods of simultaneous measurements are required to 530 

assess the relationships between the local and reference meteorological sites. 531 
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List of Tables 647 

Table 1. Location (UTM coordinates) and monitoring periods for each selected site for 648 
wind measurement in the Montesnegros Irrigation District in Northeast of Spain. 649 

a Greenwich Mean Time (GMT) indicated within brackets. 650 

Site X Y Z Period 
SIAR 738048 4601902 354 January 1, 2004 to December 31, 2007 
INM 735850 4600809 357 July 6, 1992 to July 5, 2003 
14 737056 4601995 358
19 738056 4599995 327
35 741056 4597995 310
43 743056 4595995 320

February 16 (12:35a) to February 17, 2005 
(9:05) 

7 736056 4599995 360
9 736056 4601995 360
25 739056 4600995 361
36 741056 4598995 316

February 17 (12:35) to February 18, 2005 
(7:05) 

6 736056 4598995 340
23 739056 4598995 320
33 740056 4596995 320
45 743056 4597995 300
49 744056 4596995 320

February 28 (14:39) to March 1, 2005 (9:38) 

13 737056 4599995 339
21 738056 4601995 355
30 740056 4599995 320
52 745056 4595995 320

March 1 (19:16) to March 4, 2005 (10:08) 



Table 2. Distribution of the windspeed frequencies (%) according to the wind direction 651 

(Bochorno, Cierzo winds and Others) and calculated from the wind series monitored at 652 

the SIAR reference meteorological station between 2004 and 2007 (data registered 653 

every 30 min). Values are shown for the whole year (Year) and for the irrigation season 654 

(IS). 655 

Wind direction 
Bochorno Cierzo Others Total (m s-1) 

Year IS Year IS Year IS Year IS 
< 2 58.9 57.2 26.3 24.2 87.8 84.9 50.7 50.0 

2 - 3 22.0 24.3 16.9 18.5 8.9 10.3 15.7 17.8 
3 – 4 11.8 12.2 15.7 18.9 2.0 2.9 11.0 12.6 
4 – 5 4.9 4.5 13.1 15.0 0.7 1.2 7.9 8.3 
> 5 2.3 1.7 28.0 23.4 0.6 0.7 14.8 11.3 

Total 100 100 100 100 100 100 100 100 
 656 



Table 3. Spatial variability of the windspeed within the Montesnegros Irrigation District 657 

(MID) calculated from the Fig. 7 and expressed as the percentage of the area 658 

corresponding to each range of ratios. 659 

Ratio 0.7- 0.9 0.9 – 1.1 1.1 - 1.3 > 1.3 
Area (%) 25 39 30 6 



Table 4. Suitable Time for Irrigation (STI) calculated as percentage of the irrigation 660 

season for two sprinkler models, two irrigation layouts and four management 661 

strategies. Values calculated from the wind series between 2004 and 2007. The bottom 662 

two lines of the table show the ratio (%) and the differences between the 90th and 10th 663 

STI percentiles for the sites in the table. 664 

Strategy Standard Restrictive Relaxed 
Spacing T18x18 T18x15 T18x18 T18x15 T18x18 T18x15 
Sprinkler RC VYR RC VYR RC VYR RC VYR RC VYR RC VYR 

< 3    
m s-1 

Site  
43 42 44 51 49 9 25 6 27 57 65 71 73 57 
35 42 45 51 49 9 25 6 27 58 65 70 72 57 
19 45 47 52 51 9 25 8 27 61 68 72 73 60 
7 47 49 53 52 11 26 8 28 63 68 72 73 63 

52 47 49 54 53 11 26 8 28 64 70 73 75 63 
6 47 50 55 54 10 25 9 27 65 72 76 77 62 

13 48 50 54 53 12 26 8 29 65 70 74 75 64 
25 48 50 55 54 11 26 9 28 65 71 75 76 64 
14 48 50 54 54 12 27 8 29 65 71 74 75 65 
9 49 51 55 54 12 27 8 29 66 72 75 76 68 

21 50 52 55 55 12 28 7 30 67 72 75 76 67 
SIAR 50 52 56 55 12 28 8 30 68 73 76 77 68 

36 50 52 55 55 11 28 8 30 67 72 75 76 69 
23 50 53 57 56 13 28 8 30 68 74 77 78 68 
33 50 53 57 56 13 27 9 30 68 75 77 78 68 
45 52 54 58 57 13 28 8 31 70 76 78 79 70 
30 52 54 58 57 12 29 8 32 70 76 78 79 71 
49 52 55 58 58 13 28 9 31 71 77 79 79 63 

100
1.0

9.0 ×
k
k

 118 116 112 113 144 112 134 115 116 113 109 108 117 

1.09.0 kk −  8 8 6 7 4 3 2 4 10 9 6 6 10 
 665 



List of Figures 666 

Fig. 1. Situation of the Montesnegros Irrigation District (MID) within the Ebro basin in 667 

the Iberian Peninsula (in the upper row). Detailed map of the MID irrigated area (axes 668 

show UTM units) including the SIAR reference station, the INM meteorological station 669 

and seventeen sites at which windspeed was measured (in the bottom row). 670 
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Fig. 2. Average windspeed at 2 m above the ground level from the 1992 – 2003 series 672 

at the Bujaraloz INM weather station. Results calculated in terms of the average day 673 

from records every 30 min. Wind directions are not noted. The time is expressed as 674 

Greenwich Mean Time (GMT). 675 
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Fig. 3. Distribution of the frequencies (%) of the wind direction at the SIAR reference 677 

site between 2004 and 2007 (records every 30 min). In the upper row, all data are 678 

included; in the bottom row only data for windspeeds > 2 m s-1 are plotted; in the left 679 

column data for the whole year are plotted; in the right column data for the irrigation 680 

season (April to October) are plotted. The Bochorno wind directions are ENE, E, ESE 681 

and SE. The Cierzo wind directions are WSW, W, WNW and NW. 682 
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Fig. 4. Comparison between the measurements of the windspeed made with 3-cup-684 

rotor and propeller-type anemometers. The measurements were recorded 685 

simultaneously every 30 minutes at the same site (the SIAR reference station) from 686 

February 16 to March 4, 2005. Dashed line illustrates the 1:1 ratio. 687 
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Fig. 5. Linear regression models between the local windspeeds and the windspeeds at 689 

the SIAR reference site. Values measured under Cierzo wind conditions. Each row 690 

shows sites monitored simultaneously. 691 
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Fig. 6. Cumulative frequency (%) of the windspeed under Cierzo wind conditions 693 

ranked by levels. The values at the seventeen sites are estimated from the values 694 

measured at the SIAR reference site during the irrigation seasons between 2004 and 695 

2007 according to the equations in the Fig. 5. Values at the SIAR reference site < 2 m 696 

s-1 are excluded. 697 
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Fig. 7. Contour map of the average ratio of the local windspeed (estimated) to the 699 

windspeed at the SIAR reference site (measured) calculated for the irrigation seasons 700 

between 2004 and 2007 under Cierzo wind conditions. Values at the SIAR reference 701 

site < 2 m s-1 are excluded. 702 
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Fig. 8. Relationship between the irrigation network construction cost and the suitable 703 

time for irrigation (STI) according to three irrigation management strategies, two 704 

triangular sprinkler spacings (T18x18 and T18x15) and two sprinkler models (RC 130 705 

and VYR 70). Symbols correspond to the values calculated at the SIAR site. Bars 706 

illustrate the influence of the spatial variability of the windspeed: the upper limit 707 

corresponds to the most exposed site and the lower limit to the least exposed site 708 

(according to the Eq. 2 and to the values in the Table 4). 709 
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