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Vector-borne diseases are among those most sensitive to climate because the ecology of vec-
tors and the development rate of pathogens within them are highly dependent on
environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of rumi-
nants in Europe, is often cited as an illustration of climate’s impact on disease emergence,
although no study has yet tested this association. Here, we develop a framework to quanti-
tatively evaluate the effects of climate on BT’s emergence in Europe by integrating
high-resolution climate observations and model simulations within a mechanistic model of
BT transmission risk. We demonstrate that a climate-driven model explains, in both space
and time, many aspects of BT’s recent emergence and spread, including the 2006 BT out-
break in northwest Europe which occurred in the year of highest projected risk since at
least 1960. Furthermore, the model provides mechanistic insight into BT’s emergence,
suggesting that the drivers of emergence across Europe differ between the South and the
North. Driven by simulated future climate from an ensemble of 11 regional climate models,
the model projects increase in the future risk of BT emergence across most of Europe with
uncertainty in rate but not in trend. The framework described here is adaptable and appli-
cable to other diseases, where the link between climate and disease transmission risk can
be quantified, permitting the evaluation of scale and uncertainty in climate change’s

impact on the future of such diseases.
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1. INTRODUCTION

Climate change may cause vector-borne diseases to shift
in distribution because the vectors’ ecology and the
pathogen development rate within them strongly
depend on environmental conditions. In some cases,
shifts to previously unexposed populations of humans
and animals could have severe or even devastating con-
sequences. Modelled projections of how vector-borne
diseases will respond to climate change are needed so
that measures of mitigation or adaptation can be taken.

Bluetongue (BT), a viral disease of ruminants trans-
mitted by biting midges (Culicoides spp.), is considered
by many to represent one of the most plausible examples
of climate change driving the emergence of a
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vector-borne disease [1]. BT is widely distributed in
Africa, Asia, Australia, South America and North Amer-
ica. In Europe, although a few sporadic outbreaks
occurred in the last century, BT had never established
itself in the long term. A dramatic change occurred in
1998 when an unprecedented series of outbreaks began
[2], involving nine different serotypes of the virus, causing
the deaths of millions of ruminants, and major economic
consequences for the region. In Europe, over 110 000 out-
breaks were declared to the World Animal Health
Organization (OIE) between 1998 and 2010; over
80 000 of these were owing to BT virus serotype 8. The
emergence of the disease in southern Europe has been
attributed, in part, to the northwards spread of the
afro-tropical vector, Culicoides imicola, across the Med-
iterranean basin [3]. This species is currently absent from
northern Europe. However, BT occurred for the first time
in northwest (NW) Europe in 2006, transmitted by
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indigenous species of Culicoides, most importantly mem-
bers of the Obsoletus complex [4,5].

Possible causes of BT’s emergence in Europe have
been discussed by Purse et al. [3] (see the electronic sup-
plementary material for detailed discussion on possible
non-climatic drivers). They conclude that it seems
improbable that biotic or non-climatic abiotic factors
could have been responsible for this emergence.
On the contrary, evidence is presented that the emer-
gence of BT in southern Europe occurred in the same
place and at the same time as regional warming
between the 1980s and 1990s, thereby providing sup-
port for a role of climate change [3]. However, this
correlation does not quantify precisely the link between
climate and disease transmission parameters to explain
the observed emergence. Thus, although it suggests
possible mechanisms by which warming could have
affected the disease, it does not identify which mechan-
isms are the most important. Additionally, it does not
account for the emergence of BT in northern Europe
in 2006. Nevertheless, this link with climate change,
and the recent spread of disease in Europe, makes BT
an excellent example for developing models of how cli-
mate change will influence diseases in the future, with
the opportunity to validate models against the observed
past outbreak occurrence.

In this paper, we present a framework for the evalu-
ation of the effects of past and future climate on the risk
of emergence of BT. The approach is based on an epide-
miological model of disease transmission, the basic
reproduction ratio, Ry, adapted for a two-host and
two-vector disease. Four parameters of the model are
known to be climate-driven. For three parameters, the
equations linking the parameter to temperature have
been described in the literature. To estimate the link
of the fourth parameter with climate, new vector abun-
dance models were developed. By integrating the
observed high spatial resolution (25km) climate data
in the disease transmission model, the disease trans-
mission risk can be evaluated for past periods of time.
This allows us to evaluate whether the integrated cli-
mate-driven model successfully reproduces aspects of
BT’s past observed occurrence, including the distri-
bution of its vectors and the emergence of the disease
in NW Europe in 2006. Examining whether past epi-
demiological events have been driven by climate is
essential before projecting models in the future [6]. In
order to drive the model into the future, simulations
of future climate are then integrated into the Ry
model. Two steps are necessary for this. First, the
model projections for past climate, obtained by inte-
grating an ensemble of 11 regional climate models
(RCMs), are compared with the Ry model driven by
the observed climate data to make sure that the ensem-
ble of climate models is able to reproduce past patterns
of BT. In a second step, the Ry model is then driven by
the simulations of the ensemble of 11 RCMs under
a climate change scenario to evaluate the transmission
risk for a future time period up to 2050. Using an
ensemble of models instead of a single model, it is
important to take into account the uncertainties
related to the climate simulations which affect the
transmission simulations.
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2. MATERIAL AND METHODS

2.1. Evaluating the basic reproduction number
Ry for bluetongue

The basic reproduction ratio (R, the number of second-
ary cases arising from the introduction of one infected
host in a susceptible population) is a powerful tool to
assess the risk of disease transmission in the event of
viral introduction [7] (at the onset of the epidemic).
Gubbins et al. [8] and Hartemink et al. [9] have mod-
elled BT’s Ry, as a two-host disease, as cattle and
sheep play different epidemiological roles [8,9]. Indeed,
cattle, as opposed to sheep, are usually not clinically
affected [10,11] and harbour a longer viraemia [12].
Ry for BT was adapted from Gubbins et al. [§]

e (59 () (222

where b is the probability of transmission from vector to
host, B the probability of transmission from host to
vector, a the biting rate, w the vector mortality rate,
1/v the mean extrinsic incubation period, m the
vector-to-host ratio, ¢ the proportion of bites on
cattle, 1/r the duration of viraemia (in cattle 7. and
in sheep 1) and 1/d the disease-induced mortality
rate (in cattle d. and in sheep dy).

The formula developed by Gubbins et al. [8] is very
similar to the one derived separately by Hartemink et al.
[9] and used to model Ry for BT across The Netherlands.
Gubbins et al. [8] distinguished a vector-to-cattle ratio
from a vector-to-sheep ratio in their formulae. Here, we
propose a method that inherently estimates these two par-
ameters together. However, we considered that this ratio
had to be computed distinctively for C. imicola and for
the Obsoletus complex because of the dissimilar distri-
butions of these species (see the estimation of m).

We chose to only consider sheep and cattle as BT
hosts. We did not consider other domestic hosts such
as goats because of their small population sizes in
Europe. We did not consider wild hosts because very
little information is available to include them as a
third host (no parameter estimates are available for
wildlife) and because their role seems to be more
important in the persistence of the disease than at the
onset of the disease (see electronic supplementary
material).

Although transplacental transmission in hosts has
been shown to occur in cattle with BT serotype 8
virus [13], and probably represents an important over-
wintering mechanism, it has been considered to be
insignificant at the onset of the epidemic [9].

Four parameters were considered to be constant in
space and time: the probabilities of transmission from
vector to host (b) and from host to vector (8), the dur-
ation of viraemia (1/r) and the disease-induced
mortality rates (1/d) (estimates of all parameters
are given in table 1). As host preferences of the two
European vectors are not well described, in our model,
the proportion of bites on cattle, ¢, and on sheep,
(1—¢), is defined as the proportion of cattle and
sheep available, respectively. The availability of cattle
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Table 1. Ry parameters for the two-host bluetongue transmission model. 7T, temperature.

parameter  definition estimation or range (value chosen) reference

b probability of transmission from 0.8-1.0 (0.9) [14]
vector to host

B probability of transmission from 0.001-0.15 (0.075) [15-17]
host to vector

a biting rate (d ') a(T) = 0.000171 x T x (T — 3.6966) x (41.8699 — T)"/*7¢  [18,19]

W vector mortality rate; (d*) u(T) = 0.008941 exp(0.1547 x T') [20]

1/v mean extrinsic incubation period (day) v(T) = 0.0003 x T x (T — 10.4057) (18]

m vector-to-host ratio see main text

1) proportion of bites on cattle number of cattle/number of sheep and cattle

1/r (1o, 17s)  duration of viraemia (cattle, cattle: 20.6; sheep: 16.4 [21-23]
sheep) (day)

1/d (d., ds;) disease-induced mortality rate cattle: 0 sheep: 0.001-0.01 (0.005) [11,24]

(cattle, sheep); d™)

and sheep was based on gridded estimates of livestock
density in 2005 [25].

Four parameters—a, the vector biting rate (the daily
probability of a midge feeding on a susceptible host); u,
the vector mortality rate; v, the reciprocal of viral extrin-
sic incubation period (the time taken for a midge to
become infectious after taking an infected blood meal);
and m, the vector-to-host ratio—are known to exhibit
strong climatic dependence [8,26] and therefore vary in
space and time (table 1). Equations linking the first
three parameters to temperature for North American
midges were obtained from published literature (table
1 and electronic supplementary material for more details
on how the parameters were estimated). The relation-
ships with temperature are shown in electronic
supplementary material, figure S1.

Estimation of the vector-to-host ratio (m) is com-
plex. Indeed, Culicoides are usually sampled in the
field using light traps; however, there is no established
method of converting trap catch data to population
size. Here, we assume that a trap acts like a host and
attracts a number of midges proportional to what a
host would attract. Under this assumption, a catch
does not directly estimate the vector population size
but, instead, is an estimate of the vector-to-host ratio.
In other words, the number of vectors caught in a
trap depends on both the population size of the vectors,
and the number of hosts (and traps) to which they are
attracted. This assumption seems more realistic as R is
then proportional to trap catches, whereas under the
assumption that trap catches reflect a given percentage
of the vector population size, Ry may be very high in
areas where there are a few vectors but very low host
densities (such as cities for example).

Furthermore, the vector-to-host ratio has to be
estimated separately for the two vectors, C. imicola
and the Obsoletus complex, as they have dissimilar
ecologies and distributions [27,28]. Statistical models of
trap catches for C. imicola and Obsoletus complex have
been published in recent years [26,29—32], but all include
variables that cannot be projected under future climate
change scenarios, such as the normalized difference veg-
etation index. We therefore developed new vector
distribution models restricting explanatory variables to
ones which could be projected in the future.
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Using data provided by the Spanish BT national sur-
veillance programme on Culicoides trap catches set in
livestock holdings from 2004 to 2006, presence—absence
and abundance models were developed following the
methods of Calvete et al. [26]. At each farm, the maxi-
mum catch per year was considered to be the best
estimate of midge abundance. Indeed, trap catches
can be extremely variable throughout the year and
even between two consecutive nights, and highly depen-
dent on local meteorological conditions [33]. Maximum
catches are classically considered to be the best approxi-
mation of the midge abundance as any smaller catches
could be underestimations owing to meteorological
conditions being temporarily not favourable [33]. The
dataset was divided into a training (n=330) and an
independent validation (n=255) dataset. Using
an information-theoretic paradigm based on Akaike’s
criterion, the best logistic regression models of the
probability of occurrence of each vector were selected
(electronic supplementary material, table S1). Five bio-
climatic variables were included in the models: mean
annual temperature, annual precipitation, their vari-
ation coefficients (all extracted from a 1950—2000
monthly climatic series) and a sun index, derived from
a digital elevation model. Both occurrence models
have a fairly good discriminatory capacity in internal
(the area under the receiver-operating characteris-
tic curve is 0.811 for C. imicola and 0.736 for the
Obsoletus complex) and external (0.779 for C. imicola
and 0.710 for the Obsoletus complex) validation.
Midge abundance was obtained by fitting a regression
equation to the predicted probability of detection
(electronic supplementary material, table S2). The
vector-to-host ratio was obtained by calibrating the
abundance of each vector on a 0—5000 scale [8] (figure
1b,e) with areas of maximal abundance (obtained for
a probability of occurrence equal to 1) having a ratio
of 5000. The ratios calculated for the two vectors were
then summed to compute m for all vectors.

Contrary to others [9], we considered that R, for BT
could not be quantified exactly because of the lack of
knowledge on specific estimates of some of the R, par-
ameters for the European species of vectors (such as a, u
and v). Therefore, we conservatively present Ry anomalies,
the change in R, in one time period relative to a baseline.
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Figure 1. Mean probability of presence, vector-to-host ratio, and anomalies for C. imicola and the Obsoletus complex. (a) Mean
probability of presence for C. imicola (August—September—October (ASO) 1961-1999). (b) Vector-to-host ratio for C. imicola.
(¢) Vector-to-host ratio anomaly for C. imicola for 2000—2008 (relative to the 1961-1999 mean). (d) Mean probability of pres-
ence for the Obsoletus complex (ASO 1961-1999). (e) Vector-to-host ratio for the Obsoletus complex. (f) Vector-to-host ratio
anomaly for the Obsoletus complex for 20002008 (relative to the 19611999 mean).

2.2. Climate data

Temporal variation in Ry was derived from three
sources of climate data: a high-resolution, observed
climate dataset for 1961—-2008; and two ensembles of
climate model simulations provided by the ENSEM-
BLES research theme 3 (available at http://
ensemblesrt3.dmi.dk/). Observed temperature and
rainfall are estimated from the E-OBS gridded data-
set (25 km resolution) which is derived through the
interpolation of station measurements [34].

Regional scenarios for climate change impacts assess-
ment require finer spatial scales than those provided by
general circulation models (GCMs), which have a coarse
resolution (about 300 km). The ENSEMBLES European
project (http://ensembles-eu.metoffice.com/) provides
improved RCMs, at spatial scales of 25 km, for both
recent past (1961-2000) and future climate scenarios
(1950—2050). Models covering the European domain
with a regular 0.25° step consistent with the observation
grid were retained. Two ensembles of simulations are
considered, the control experiments (SimCTL) and the
scenario experiment (SimA1B).

In the SimCTL experiment (1961-2000), all RCMs
are forced at their boundaries by the ERA40 reanalysis
(the ‘best guess’ of the observations that uses both mod-
elling and different sources of observations through
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data assimilation) [35]. Observed external forcing
(greenhouse gases, solar, volcanic, aerosols) is applied
to all RCMs.

In the SimA 1B experiment (1961-2050), the RCMs are
forced at their boundaries by a GCM with a coarser
resolution (about 300 km) forced by the A1B emission
scenario (median scenario in terms of CO, emissions)
[36]. Different GCMs are used to drive the RCMs. This
explains, in part, the large spread in the different scenarios
with respect to the control run (in which all RCMs have
the same boundary conditions, namely they are all
driven by the ERA40 reanalysis). As each RCM realization
is based on a different model (with different physical para-
metrization), and as the GCM which provides the RCM
boundary conditions vary from one RCM to another, we
can assume that the various RCM projections are
independent of one another.

The 11 selected RCMs (and operational centre which
developed them) are: C4IRCA3 (Met Eireann, Ireland),
CNRM-RM4.5 (CNRM, Météo-France), DMI-HIRAMS5
(DMI, Denmark), ETHZ-CLM (ETHZ, Switzerland),
ICTP-RegCM3  (ICTP, Italy), KNMI-RACMO?2
(KNMI, Netherlands), METO-HC (Met Office, UK),
MPI-M-REMO (MPI, Germany), OURANOSMRCC
(OURANOS, Canada), SMHIRCA (SMHI, Sweden)
and UCLM-PROMES (UCLM, Spain).
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Figure 2. Long-term mean and modelled R, decadal variability. (a) Long-term mean Ry for the ASO season (the average is com-
puted for the 19611999 period). The magnitude has been scaled to vary between an arbitrary range between 0 and 100%. (b—f)
Ry relative anomalies (%) with respect to the reference mean (1961-1999) for different decades. Ry is estimated from the observed
climate dataset.
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Figure 3. Sensitivity of R, parameters to climate change. Ry relative anomalies (%) for the period 2000—2008 with respect to
the 1961-1999 climatology (ASO) based on the climate observations. All parameters are assumed to be constant except one
in each panel: in (a) the biting rate; in (b) 1/mean extrinsic incubation period; in (¢) the vector mortality rate; and in (d) the
vector-to-host ratio (m).
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RCM-simulated precipitation and temperature were
bias-corrected on a monthly mean basis with respect
to the E-OBS observed dataset over the 1961-1999
reference period (see the electronic supplementary
material ).

2.3. Integration of climate data in the
transmission model

We acknowledge that the entomological data used to
build the models covered only a restricted geographical
area (Iberia). Thus, model projections were limited to
Western Europe and results of midge distribution
were carefully examined (see §3) before computing Ry
anomaly maps. For some outputs, a distinction was
made between southwest (SW) Europe (below the
northern border of Spain, i.e. the area where C. imicola
is abundant) and NW FEurope (above Switzerland,
where C. imicola is absent).

In Europe, BT is highly seasonal and occurs mostly in
late summer to autumn. For each climate dataset, the
temperature-dependent parameters (a, w, v) included in
the Ry model are computed for August, September and
October (ASO) and then averaged to build a seasonal
mean for each year. The vector-to-host ratio (m) is com-
puted on an annual basis, and then integrated with the
seasonal mean of the other parameters to compute R,
for ASO. For each of the two ensembles (SimCTL and
SimA1B), the ensemble mean is then estimated by aver-
aging the Ry values for each individual RCM simulation.
These estimates were averaged to give long-term and
decadal means. To evaluate the specific effect of each par-
ameter on Ry anomalies (figure 3), all parameters but one
were held constant. To investigate the relative influences of
change in temperature versus rainfall from the SimA1B
ensemble on future change in R, anomaly, each was held
constant (temperatures at 20°C and 25°C, rainfall at 250
and 500 mm) in turn, while the other was allowed to
vary (figure 6). Changes in temperature and rainfall
over the 1960—2050 period are shown in the electronic sup-
plementary material, figure S3. For a given ensemble, the
spread of simulated R (figure 7) is defined as 1 s.d. of all
RCM projections with respect to the ensemble mean. The
multi-model sign consistency is computed assigning +1
(—1) to each RCM projection if an increase (decrease) in
Ry is simulated. This is averaged and multiplied by 100
to display percentages.

3. RESULTS
3.1. Modelled vector-to-host ratios

Modelled vector-to-host ratios for C. imicola for the
1961-1999 period (figure 1b), driven by the observed
climate data, reproduce the past situation in Spain
and southern Portugal, the only parts of SW Europe
in which this species was known to occur before 1998.
The anomaly for the period 2000-2008 (i.e. the
change in modelled ratio during this time period com-
pared with that of 1961-1999) reproduces remarkably
well the recent spread of C. imicola to areas of northern
Spain and southeast France (figure 1¢). The precise
time of introduction is not known, but C. imicola was
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detected for the first time in 2000 in Corsica [37], in
southeast France in 2003 [38] and in northern Spain
in 2007 [39]. The species is known to be spreading in
these areas. However, the model does not reproduce
its first detection in Catalonia in 2002 [40]. In Italy,
the situation is not as clear: C. imicola was first
detected in 2000 [41] but entomological surveillance
was unable to detect a range of expansion between
2002 and 2007 [42]. The model over-predicts the pre-
sence of C. imicola in north Italy, where it has not yet
been detected.

Regional data on the distribution of the indigenous
Obsoletus complex do not yet exist. Nevertheless, mod-
elled vector-to-host ratios for the Obsoletus complex for
the 1961-1999 period confirm its known, very wide-
spread distribution (figure le). Negative anomalies of
the Obsoletus complex for 2000—2008 occur across
almost the entire region suggesting that, recently, cli-
mate has caused the density of this complex to
decrease (figure 1f).

3.2. Past Ry anomalies

The simulated mean R, (figure 2a), again based on
observed climate data, depicts an increasing North—
South gradient and correctly identifies southern Spain
and Portugal as key areas at risk of BT for the
1961-1999 period. Although no BT occurred in north
Italy during that period (see OIE Handistatus II Annual
animal disease status Europe/2002/Bluetongue Animal
health status at http://www.oie.int/hs2/sit_mald_cont.
asp?c_mald=10&c_cont=4&annee=2002), the model
projects high risk of disease transmission in the event of
viral introduction. In the 1960s and 1970s (figure 2b,c),
most areas had negative R, anomalies and hence low risk
of disease transmission (in the event of viral introduction)
relative to the 1961-1999 mean. In the 1980s (figure 2d),
areas of Spain, southern France and NW Italy displayed
positive R, anomalies, suggesting an increase in the risk
of disease transmission in the event of viral introduction.
In the 1990s and early 2000s, strong positive Rj anomalies
in NW Europe including the UK are highlighted (figure
2e,f). The climate conditions over NW Europe could
thus have been favourable to BT transmission for 15
years before the virus was introduced in 2006.

In NW Europe, these positive R, anomalies are
linked to changes in the biting rate (a) (figure 3a),
and particularly the extrinsic incubation period (v)
(figure 3b). By contrast, changes in the vector mortality
rate and Culicoides density do not explain this increase
(figure 3¢,d). In SW Europe, the influence of changing
biting rate and extrinsic incubation period on the Ry
anomaly is reduced compared with the NW, but there
is a substantial contribution from changes in the
vector-to-host ratio in parts of Spain, France and
Ttaly, related to spread in the distribution of C. imicola
(figure 3d).

The first ever occurrence of BT in NW Europe [43]
occurred in the year for which the model has the largest
positive anomaly since 1961 (figure 4a, histogram). The
origin of the viral introduction in 2006 is still not
known; however, our model shows that climate rendered
that year in northern Europe at higher risk of a BT
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Figure 4. Ry recent evolution. (a) R, standardized anomalies
(histogram) over northwest and (b) southwest Europe. The
standardized anomalies are computed retrieving the long-
term mean and then weighting by the standard deviation
(ASO 1961-1999). The area to compute the indices is dis-
played in the lower left corner. The observed BT and AHS
outbreaks are represented for different areas by the associated
markers. Ry is estimated from the observed climate dataset.
The line represents anomalies of R} owing to the variations
of the three virus transmission parameters (a, u and v) with
the vector-to-host ratio, m, held constant.

outbreak (in the event of viral introduction) than any of
the previous 45 years. The fact that anomalies are nega-
tive for 2007 and 2008 in the NW, while the epizootic
continued to spread, is not necessarily a discrepancy
as Ry estimates only the initial spread of a disease, and
in 2007 (and 2008), there were already significant numbers
of infected holdings from which the disease disseminated.
Other years of relatively high risk were 1963 and the
mid-1990s. In SW Europe (figure 4b), there is a higher pro-
portion of years with positive anomalies than in NW
FEurope, although they are generally of smaller magnitude.
No BT was detected in SW Europe between 1961 and
1999. Nevertheless, there were outbreaks of a closely
related viral disease of equids, African horse sickness
(AHS), also transmitted by C. imicola, in Iberia in 1966
and in 1987—-1991, both periods of positive anomaly for
BT risk. The only decade without any recorded activity
of either BT or AHS was the 1970s, a decade of consistently
high negative Ry anomaly. Finally, considering BT in
SW Europe in the last decade, the year with the strongest
negative anomaly, 2002, stands out as the only year with-
out new serotype introduction, and an unusually low
reported BT incidence (see OIE Handistatus II Annual
animal disease status Europe/2002/Bluetongue Animal
health status at http://www.oie.int/hs2/sit_mald_cont.
asp?c_mald=10&c_cont=4&annee=2002).

In figure 4a,b, the line represents the anomalies of Ry,
owing to the variations of the three virus transmission
parameters (i.e. a, u and v) with the vector-to-host
ratio, m, held constant. It shows that in NW Europe,
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over the last 10 years, 2006 stands out as the year
when both m and the other transmission parameters
were favourable for transmission. Conversely, between
2000 and 2005, all the transmission parameters but m
were favourable. In SW Europe, the anomalies of R
are more concordant than those of Ry with the epizoo-
tics of AHS which occurred between 1987 and 1990 on
the Iberian peninsula, and with the epizootics of BT in
2004 and 2006 in southern Europe. This suggests that
the climate in those years may have favoured disease
transmission because of effects on the ability of the vec-
tors to transmit the causative virus, rather than effects
on the vector population size.

3.3. Future R, anomalies

The outputs from SimCTL (the ensemble of simu-
lations fitted to past and present climatic conditions)
integrated within the BT model reproduce very well
the variability in Ry for the past period (1960—2000),
in both NW (figure 5a) and SW (figure 5b) Europe.
This confirms that simulated climate data can success-
fully drive the integrated BT model. Integrating
SimA1B (the ensemble of simulations run under the cli-
mate change special report on emission scenario A1B),
the mean R, across the 11 RCMs is simulated to
increase gradually between the present and 2050, but
more rapidly in NW than in SW Europe (4.3% versus
1.7% per decade). Model outputs also exhibit greater
spread across the different RCM projections in the
NW. Given susceptible ruminant host populations,
our models suggest that by 2050, R, will have increased
by 30 per cent in NW and 10 per cent in SW Europe,
with respect to 1961-1999 mean modelled risk levels
in each of the two regions. Nevertheless, even in 2050,
the absolute risk of BT transmission remains twice as
high in SW than in NW Europe.

3.4. Influences of temperature and rainfall on
Ry anomalies

For NW Europe (figure 6a—d), Ry anomalies are mainly
driven by changes in temperature, particularly via its
influence on extrinsic incubation period, and, to a
lesser extent, the biting rate. By contrast, with temp-
erature set constant, there is very little trend in future
Ry anomaly (less than 0.5% change per decade).

For SW Europe, the results are less robust (figure 6e—h).
When temperature is set constant and only rainfall varies
(figure 6fh), the increase in Ry anomaly is 2 or 1.3 per
cent per decade (20°C and 25°C, respectively), mainly via
the effect of rainfall on vector-to-host ratio (m). However,
the relation is complex, leading to opposite trends in R
anomaly when rainfall is set constant (figure 6e,g). When
rainfall is set at low values (p = 250 mm), the increase in
temperature causes decrease in Ry anomaly while, at
higher rainfall levels, increasing temperature leads to a
slight increase in Ry anomaly. In other words, if SW
FEurope is dry, the vector-to-host ratio is simulated to
decrease as temperatures increase, leading to the decrease
in BT transmission risk. Conversely, if SW FEurope
is wetter, the increase in temperature then leads to a
moderate increase in R.
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Figure 5. Simulated Ry future evolution. Ry relative anomalies
(%) with respect to 1961-1999 time period in ASO for (a)
northwest and (b) southwest Europe (see figure 4 for the
domain definition). R, estimated from the climate obser-
vations (OBS) is displayed in black, the R, ensemble mean
based on the SImCTL (SimA1B) RCM ensemble is displayed
in blue (red). The blue (orange) envelope highlights the spread
(defined as 1 s.d. of each RCM realization to the ensemble
mean) within the SImCTL (SimA1B) ensemble.

3.5. Evaluation of the uncertainty of future
Ry anomalies

Focusing on the effects of future regional changes of
climate (figure 7), Ry is simulated to increase by the
SimA1B RCM ensemble over most of Western Europe.
For the 20112030 period, climatic changes are projected
to induce a significant increase in Ry in Ireland, Wales,
southeast France and NW Iberia (figure 7a) consistent
between the different climate models in terms of direction
(figure 7¢), and with a moderate spread in the projected
magnitude (figure 7b). For the 2031-2050 period, Ireland,
a larger part of Britain and NW Iberia show similar
patterns (figure 7d—f). Over that period, changes in cli-
mate also induce a significant increase in BT risk in
southeast France, but with a large spread in magnitude
(figure 7e). By contrast, a limited area of southern Spain
exhibits a small decrease in Ry which is consistent between
models and in both time periods.

4. DISCUSSION

The dramatic emergence of BT in Europe—a disease
with a known strong dependence on climate [44]—has
enabled testing of our novel and generic framework to
assess the effects of climate on the transmission of a dis-
ease. Applied to BT, the framework gives the best
evidence to date that BT’s emergence across Europe is
related, at least partly, to climate change. It enabled
the assessment of the changing risk of BT transmission
(in the event of an introduction of the pathogen) in
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space and time, and also in which climate-sensitive bio-
logical mechanisms were involved. It further allowed us
to investigate the change in risk of disease transmission
in the future, given climate change, and to assess the
relative influences of temperature and rainfall on this
change in disease risk. This type of framework can be
applied to other diseases for which the epidemiology
is well described and where the links between the R,
parameters and climatic variables have been quantified.

The main limitations of the application of this frame-
work to BT are owing to paucity of species-specific
entomological knowledge on the parameters that deter-
mine vectorial capacity of European vectors. The
complete list and relative importance (including compe-
tence) of the Culicoides species involved as well as their
distribution and fine estimates of their biological par-
ameters (such as the biting rate, extrinsic incubation
period (EIP), mortality rate) and of the vector-to-host
ratio would enable more robust modelling.

For example, the fact that the densities of C. imicola
are overestimated in northern Italy could show that we
omitted a factor influencing the establishment of this
species. Conte et al. [27,28] have shown that soil type
and vegetation cover impacted on its distribution in
Ttaly. This information could be used to refine the distri-
bution models. This can be done quite easily for
variables which do not vary in time such as the soil type
(supposing the data were available for the whole study
area), but remains more difficult for other environmental
variables that may be important, such as forest cover,
which has varied over the last 50 years in Europe.

Modelling of the vector-to-host ratio component of
the R, disease model is problematic. First, the Culicoides
population caught in light traps may not be fully represen-
tative of those that transmit BT virus. In one study,
CDC (Center for Disease Control) traps baited with UV
light tended to overestimate the numbers of C. imicola
vacuumed off a sheep while underestimating those of
C. obsoletus (although only 11 C. imicola were caught
during the 8 days of the study [45]). Biteau-Coroller [46]
captured once 23 per cent more and once 26 per cent less
C. imicola in an Onderstepoort Veterinary Institute
(OVI) trap than in a drop trap. Carpenter et al. [47] suggest
that OVTI light traps underestimate the role of some poten-
tial vector species such as Culicoides chiopterus. On the
whole, while it is likely that light trap catches do not
fully represent the population that feed on hosts, there is
still no consensual method to correct for the bias. A
second problem is that it remains unclear whether the
number of midges caught in a trap should be treated as
an estimate of the vector population size (as did Gubbins
et al. [8] and Hartemink et al. [9]) or the vector-to-host
ratio (as assumed here). We consider there to be problems
with the former approach. First, there is no information on
how to relate the number of midges caught in a trap to the
number in the region being modelled: [9], for example, mul-
tiplied by an arbitrarily chosen constant (100) to convert a
trap catch to the midge population per square-kilometre.
Secondly, and as described earlier, it leads to problemati-
cally extreme estimates of R, at extreme host densities
(high or low). We consider that our novel approach,
which uses trap catch as an estimate of the vector-to-host
ratio, has the advantage of bypassing the problems
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Figure 6. Sensitivity of Ry to changes in rainfall and precipitation. R relative anomalies (%) with respect to 19611999 time period in
ASO for (a—d) northwest and (e—h) southwest Europe (see figure 4 for the domain definition). The anomalies are computed fixing
(a,e) either precipitation constant to 500 mm or (¢,g) to 250 mm or (b,f ) temperature constant to 25°C or (d,h) to 20°C.

outlined above and ensures that R, is proportional to trap
catch. Nevertheless, formal testing of the two hypotheses
has not yet been undertaken.

The observation that in southern Europe annual
anomalies of R (i.e. Ry modelled with varying viral
transmission parameters but constant vector-to-host
ratio) tended to be more concordant with epizootics
than anomalies of Ry itself (with vector-to-host ratio
also varying) is interesting. While there are insufficient
data to draw robust conclusions, one possibility relates
to the absence of lags in our model. Our model pre-
sumes near-instantaneous effects of climate variation
on Ry (at least within the same three month period).
In reality, the viral transmission parameters (a,
and v) may be expected to respond quite rapidly to
changes in climate, but there are likely to be significant
lags in the response of the vector-to-host ratio, while the
population size builds up and/or spreads over the years.
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If correct, this effect would probably affect the utility of
annual anomalies in Ry (but not Ry), but should affect
decadal anomalies in Ry less.

Despite these weaknesses, our novel framework success-
fully describes many aspects of BT’s emergence, as
demonstrated by the good concordance between model
outputs and the observed distribution of the vectors and
the disease. This shows that these potential biases have
only had a moderate impact on the analysis. Nevertheless,
given these approximations, we recommend not to com-
pute absolute values of Ry but, until further data are
available, to focus analysis on trends and anomalies.

Another limit of the application is that we explored
only the effects of changing climate over time on BT’s
Ry, holding constant other factors which may also
vary in time such as host densities. The fact that vari-
ation in climate alone successfully reproduces many
aspects of this past emergence does not mean that
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climate is the only driver, but it provides strong evi-
dence that climate has played an important role.
Indeed, ignoring a major driver would most likely
result in substantial spatial and temporal discrepancies
between predictions and the observed situation.

Further, this framework provides mechanistic insight
into the drivers of the emergence, highlighting for the
first time the role of climate-drivers of virus trans-
mission, particularly the extrinsic incubation period,
in NW Europe and a relatively larger role of climate-dri-
vers of vector densities in SW Europe. It also confirms
the role of temperature as a major driver of change in
NW Europe (through the changes in EIP it produces),
and a more complex situation in SW FEurope where
temperature influences differently the vector-to-host
ratio and therefore Ry depending on whether the area
is drier or wetter. When rainfall is low, the increase in
temperature will lead to a decrease in risk, whereas
when it is high, the increase of temperature will lead
to an increase in risk. Finally, it has also permitted
quantification of the effects of future changes of climate
on BT risk of transmission in the event of viral introduc-
tion, projecting the Ry for BT to increase still further
across much of Western Europe over the next
40 years, indicating an increasing threat to susceptible
livestock from this disease.

Future simulations of the effects of climate on the
disease must be interpreted with caution as there are
still uncertainties related to the actual state-of-the-art
climate model biases and associated with the selected
emission scenario (A1B). Such approaches can be
updated on a continuous-flow basis when climate data
emanating from new models and/or forced by new emis-
sion scenarios are made available. Further research
should also focus on testing the effects of a wider
range of climatic variables on transmission parameters,
including other variable statistics which could be more
pertinent than mean values such as cumulative (e.g.
degree days) or fluctuation [48] functions and evaluat-
ing the uncertainty of these relations. In parallel,
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climatic models and simulations need to be developed
for these variables.

We have assessed only the effects of climate (mainly
temperature and precipitation) on future Rq via direct
effects on vectors and viral transmission parameters.
This approach, namely holding constant non-climatic dri-
vers, corresponds to the first of three contexts in which the
effects of climate change on health can be evaluated [49)].
The other contexts require the inclusion of non-climatic
disease drivers in models. For BT, substantial knowledge
gaps would need to be filled in order to take into account
both the indirect knock-on effects of climate change [49]
(on social, economic, political and land-use [50] changes),
and non-climatic disease drivers. Although other possible
non-climatic drivers of past BT occurrence have been dis-
counted (see electronic supplementary material) [3]; for
future periods, non-climatic drivers such as changes in live-
stock densities (or composition), and the development of
novel control tools which reduce the exposure of naive
hosts to vectors should not be ruled out as they could
have major impacts on the future occurrence of BT.
Indeed, we cannot be sure that other disease drivers
will not arise and counteract or supplant these effects in
the future.

The real future of BT in Europe will result from the
combination of both climatic and non-climatic future
changes. Further development of our approach would be
the inclusion of additional, non-climatic drivers of BT
spread; this implies that spatio-temporal estimates of the
drivers, and their future trends, are available, and that
their link to disease transmission is quantified. The ulti-
mate aim would be to disentangle the interactions
between drivers in order to then apply this approach for
all drivers combined. Much more knowledge is needed
about the different BT episystems (vectors, hosts, patho-
gens, biological controlling mechanisms and all the
environmental factors), and on their future trends,
before one can hope to reach this point.

Finally, simulating the effects of future climate on the
risk of transmission of a disease in the event of viral
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introduction is very different from predicting where and
when a disease will occur. The consequence of this is that
the validation of this type of model is complex. Indeed, a
year with no epizootic does not mean that the conditions
were not favourable for an epizootic; it might just be
that no pathogen was introduced or that animals had
been vaccinated. Thus, we can only verify the sensitivity
of the model by comparing the first year of emergence of
a new epizootic with the model’s projections. Predicting
where and when a disease will occur is out of the scope of
the framework proposed here and, perhaps, remains a pro-
blem too complex to be addressed [51] as there may be
changes over time in hosts, vectors, pathogens and the
environment (including climate) and, most importantly,
as this also depends on the probability of introduction of
the pathogen.
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