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Abstract 

The Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein 

with viral and tumor antigens, but its effect when administered with bacteria has not been 

assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against 

Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since 

lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is 

the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-

PS (rough mutants) represent an interesting approach for developing new vaccines and 

diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic 

preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella 

Enteritidis rough mutants, carrying either intact (SEΔwaaL) or deep-defective (SEΔgal) LPS-

Core, were used in combination with EDA. Biotinylated bacterins, in particular SEΔwaaL 

bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the 

protection conferred by hot-saline or bacterins alone and prevented significantly the virulent 

infection at least to the levels of live attenuated rough mutants. These findings demonstrate 

the adjuvant effect of EDAvidin when administered with biotinylated bacterins from 

Salmonella Enteritidis lacking O-polysaccharide and the usefulness of BEDA-SEΔwaaL as 

non-live vaccine in the mouse model. 

Introduction 

Fibronectin is a dimer, with monomers comprising three types (I, II and III) of homologous 

repeat units [1]. Three of its alternatively spliced exons (IIIA, IIIB and IIIC, also referred to 

as EDA -Extra domain A-, EDB -Extra domain B- and III-CS) correspond to the type III 

repeat unit [2]. EDA and EDB are produced in vivo in response to tissue injury or other 

warning signals. Particularly, EDA is produced during embryonic development and in 

rheumatoid arthritis, wound healing, epithelial fibrosis, vascular intimae proliferation or 

inflammation in adults [3,4]. EDA induces NF-κB factor activation, proteoglycan release, and 

1, 2 and 9 metalloproteinase production, involved in connective tissue destruction following 

lesion development, as well as in monocyte and dendritic cell migration through the basal 

membrane. Such events are triggered in response to the interaction between EDA and its 

specific Toll Like Receptor 4 (TLR-4), which also binds to lipopolysaccharide (LPS) of 

Gram negative bacteria [5,6]. Hence, EDA has been proposed to induce maturation of 

dendritic cells through TLR-4 activation, favouring antigen uptake, expression of co-

stimulatory signals, antigen presentation and induction of anti-viral or anti-tumoral T cell 

responses [6-8]. Recombinant EDA has been expressed in E. coli and tobacco chloroplasts, 

maintaining its proinflammatory properties [8]. Easy scale-up, high safety standards and an 

enormous capacity to synthesize and accumulate foreign proteins in plant chloroplasts [9] 

may be advantages of using plants as production platforms for biopharmaceuticals [10]. 
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Several Salmonella live attenuated strains, including auxotrophic, metabolic and structural 

(semi-rough) attenuated mutants [11-15] have been proposed as effective vaccines for 

animals. However, these vaccines are often not safe enough in animals, may release 

genetically modified microorganisms to the environment and human food-chain, and may 

interfere in serological diagnostic tests based on the detection of antibodies against the LPS 

O-Polysaccharide (O-PS) [16] and/or flagellin [17], limiting their practical use in sanitary 

control campaigns. Therefore, most of the currently recommended vaccines against animal 

salmonellosis include bacterins from smooth attenuated Salmonella spp. [18]. Also, bacterial 

hot-saline (HS) extracts have been proposed as safe vaccines [19,20]. Since LPS is a major 

virulence factor and the LPS O-PS is the immunodominant antigen in serological diagnostic 

tests, Salmonella mutants lacking LPS O-PS (rough mutants) represent an interesting 

approach for developing new live attenuated vaccines [13]. In line with this, some rough 

mutants such as Salmonella Typhimurium ΔrfaH have been proposed as live vaccine 

candidates [21,22] but others have been considered either too virulent (such as Salmonella 

Typhimurium ΔwaaL) to be safe or too attenuated (Salmonella Typhimurium ΔgalE or 

ΔwaaG mutants) to confer protection against virulent infections, being discarded as vaccine 

candidates [20]. 

This work aims to investigate the adjuvant value of EDA, using HS or bacterins obtained 

from Salmonella Enteritidis rough mutants differing in LPS-Core composition (SEΔwaaL 

and SEΔgal) as antigenic preparations, in a sublethal challenge mouse model. 

Materials and Methods 

Bacterial wild-type and mutant strains 

Parental wild-type (SE-wt) strain Salmonella Enteritidis 3934 [23] was used as parental strain 

to produce rough mutants, as smooth control strain and as virulent strain for challenge. 

Mutant strain SEΔwaaL was obtained by replacing the waaL gene with a chloramphenicol 

resistance cassette using a one-step inactivation technique [24] with some modifications [25]. 

The chloramphenicol resistance cassette was amplified by PCR from the MudQ transposon, 

using the waal-Clo Fw and waal-Clo Rv primers described in Table 1. Mutant strain SEΔgal 

was constructed by 4378 bp galETKM operon deletion using the plasmid pKO3blue [26] and 

the gal-A/gal-B and gal-C/gal-D pairs of primers (Table 1). 

Characterization of rough mutants 

The absence of LPS O-PS and the differences in size (i.e. in core structure) of the LPS-Core 

in SEΔwaaL and SEΔgal rough mutants were verified by SDS-PAGE silver staining, 

modified for LPS identification as described previously [27]. Surface topology was analyzed 

by susceptibility to 17 Salmonella Enteritidis Typing Phages (SETPs; named from SETP 1 to 

17) and Felix O1 (FO; which specifically recognizes the outer LPS-Core of most Salmonella 

spp.), according to standard protocols [28,29] of the Salmonella National Reference 

Laboratory (Instituto de Salud Carlos III, Madrid, Spain). The presence of flagellum antigens 

was determined by direct anti-H slide agglutination tests [18] and motility was analyzed by 

the halo generated in swimming and swarming assays [30]. The outer membrane permeability 

of the mutants was assessed by both the Minimal Bactericidal Concentration to Polymyxin B 

using a standard microdilution test [31,32] and the bactericidal effect of non-immune human 

serum [33]. Finally, virulence studies were performed in BALB/c mice, by determining 
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lethality and splenic infections in surviving mice. For this, mice (n = 5) were inoculated 

intraperitoneally with 2 × 10
3
, 2 × 10

5
 or 2 × 10

7
 CFU/animal of SEΔwaaL or SEΔgal mutants. 

A group of mice (n = 5) inoculated with 2 × 10
3
 CFU/mouse of smooth parental SE-wt strain 

was used as reference. Deaths were recorded for 2 weeks after infection. Then, the percentage 

of cumulative survival in mice was calculated by the Kaplan-Meier analysis, and statistically 

compared by the LogRank test (see below). Moreover, the number of viable bacteria was 

determined in spleens of surviving mice and expressed as the mean ± SD of log10 CFU/spleen, 

as described previously [19]. 

Production and characterization of antigenic preparations 

Recombinant protein EDA was obtained either in E. coli BL21(DE3) cells (Amersham 

Pharmacia Biotech) or tobacco plant chloroplasts (named MEDA) as described previously 

[6,8]. After filter-sterilization in a 0.2-μm membrane (Millipore), the absence of bacterial 

contaminants in both EDA preparations was assessed by plating onto agar. 

Bacterial antigens were obtained by HS extraction or formalin-inactivation (bacterins) from 

SEΔgal (HS-SEΔgal and B-SEΔgal), SEΔwaaL (HS-SEΔwaaL and B-SEΔwaaL) and SE-wt 

(HS-SEwt and B-SEwt) strains, as described previously [19,34]. 

To improve binding of EDA to the bacterial cell surface, a recombinant fusion protein of 

EDA and streptavidin (named EDAvidin) was obtained and mixed with bacterins previously 

biotinylated to obtain the antigenic preparations named BEDA. EDAvidin was produced from 

the expression plasmid pET21a-EDA-Streptavidin constructed with the pET21a-Streptavidin-

Alive [35] expressing wild-type subunit of streptavidin with a 6His-tag. The DNA sequence 

encoding EDA was amplified by PCR, using primers 

CATATGAACATTGATCGCCCTAAAGGACT (Upper EDA-NdeI) and 

CATATGTGTGGACTGGATTCCAATCAGGGG (Lower EDA-NdeI) and the plasmid 

pET20b1-2 as a probe. The resulting PCR product was cloned in pCR2.1-TOPO using the 

TOPO TA Cloning® kit (Invitrogen LifeTechnologies). All constructs were verified by DNA 

sequencing. The resulting plasmid expressing EDA in the C-terminus of streptavidin was 

employed for transformation and expression of EDAvidin in E. coli BL21(DE3) cells, and the 

fusion protein was purified by affinity chromatography (HisTrap
TM

 HP columns, GE 

Healthcare Life Sciences). The Sulfo-NHS-SS-Biotin system (ThermoScientific) was used 

for bacterin biotinylation, and the non-reacting Sulfo-NHS-SS-Biotin molecules were 

removed by dialysis using a Slide-a-Lyzer Dialysis cassette (3500-MWCO, 

ThermoScientific). To determine the level of free amines, bacterins B-SEΔgal, B-SEΔwaaL 

and B-SEwt were labeled with carboxyfluorescein succinimidyl ester (CFSE) 0.125 μM 

(Invitrogen), washed twice and analysed by flow cytometry. Unlabeled SE-wt bacterins were 

used as negative control. 

LPS was quantified by detecting 2-keto-3-deoxyoctonate (Kdo) corrected for 2-deoxyaldoses, 

as described previously [36]. Protein and antigenic profiles of bacterial and recombinant 

protein preparations were analysed by Coomassie (Bio-Rad) and immunoblotting methods, 

respectively. Where indicated, samples were also loaded without boiling onto the SDS-

polyacrylamide gels in order to visualize the presence of tetramers of the EDAvidin fusion 

protein. Immunoblotting was performed using sera from mice experimentally infected with 

smooth SE-wt or from EDA hyperimmunized rabbits as primary antibodies and horseradish 

anti-mouse IgG or goat anti-rabbit IgG (ThermoFisher) as secondary antibodies, and the 
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reaction was developed with diaminobenzidine. Proteins were quantified by the Bradford 

method (Bio-Rad). 

Finally, the ability of EDAvidin to bind biotinylated and non-biotinylated bacterins was 

assessed by ELISA in plates coated with 0.1 μg/well of biotinylated bacterins or conventional 

bacterins as control. After incubation with 10% foetal calf serum (Invitrogen 

LifeTechnologies), 3 μg/mL of EDA or EDAvidin proteins were added, incubated with anti-

EDA rabbit polyclonal antibody and anti-rabbit whole IgG horseradish peroxidase conjugated 

antibody (Sigma). The final reactions were developed with tetra-methyl-benzidine substrate 

(BD Biosciences), stopped with 2 N H2SO4, and read at 450 nm in a Multiskan Ascent 

apparatus (ThermoElectron). 

Efficacy of immunization and antibody responses assessment 

Eight to ten-week old female BALB/c mice (Charles River International) were 

accommodated (Public University of Navarre registration code ES/31-2016-000002-CR-SU-

US) and handled in compliance with the current European, national and local (RD 

1201/2005) regulations, following the FELASA and ARRIVE guidelines and with the 

approval of the UPNA Animal Experimentation Committee and Navarre’s Government. For 

immunization, mice were inoculated intraperitoneally (IP) with a volume of 0.1 mL of live 

bacteria or antigenic preparations in PBS. Bacterial suspensions were adjusted by 

spectrophotometry in PBS (O.D. at 600 nm = 0.150 contains approximately 2 × 10
8
 CFU/mL) 

and the exact number of CFU in each suspension was retrospectively assessed, by serial 

dilutions and plating on agar. Efficacy was determined from at least two independent 

experiments with statistically equivalent controls. 

In a first set of experiments, a total of 30 mice (6 groups; 5 mice/group) were IP immunized 

with HS or bacterin preparations (20 μg protein/mouse), alone or in physical mix with EDA 

or MEDA (40 μg/mouse). A total of 45 control mice (9 groups; 5 mice/group) were 

inoculated with: (i) HS-SEwt or B-SEwt (20 μg protein); (ii) PBS; or (iii) EDA or MEDA 

(40, 100 or 200 μg/mouse). Four weeks later, all mice were challenged IP with the optimal 

sub-lethal dose of around 2.5 × 10
2
 CFU SE-wt and, 4 days later, the mean (n = 5) number of 

log10 CFU/spleen challenging strain was determined [37]. The optimal sub-lethal dose (i.e., 

the minimal dose able to induce moderate and homogeneous levels of splenic infection in all 

mice) was estimated in a previous dose-response experiment, where mice (n = 5) were IP 

inoculated with 50, 100, 250, 500 or 1000 CFU/mouse, and log10 CFU/spleen determined 4 

days later. 

A similar immunization-challenge murine model (but using 4 mice/group) was applied in a 

second set of experiments, to determine the efficacy of biotinylated bacterins (20 μg/mouse) 

bound to EDAvidin (75 μg/mouse) (i.e. BEDA-SEΔwaaL and BEDA-SEΔgal, respectively). 

Besides the above-mentioned controls, live SEΔwaaL or SEΔgal live mutants (1 × 10
4
 

CFU/animal, IP) were included. Persistence of SEΔwaaL at the end of the experimental 

period was distinguished from that of SE-wt challenging strain by double plating in agar and 

agar supplemented with chloramphenicol (20 mg/L). Persistence of SEΔgal was not 

determined since this mutant was cleared from spleens within 2 weeks post-inoculation, as 

verified in the virulence assay (Additional file 1: Table S1). 

Just before challenge, mice sera were analysed for Salmonella specific immunoglobulin 

(IgG + IgM and IgG2a/IgG1) quantification by indirect ELISA, using HS extracts (HS-SEwt 
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for IgG + IgM or homologous HS extract for IgG2a/IgG1 isotype determination) as coating 

antigens and horseradish anti-mouse IgG and IgM (H + L) (InmunoPure, Pierce) or anti-

mouse IgG1 or IgG2a (Nordic Immunological) as conjugates. Positive control sera from mice 

experimentally infected with SE-wt, and negative control sera from animals inoculated with 

PBS were included in each ELISA plate. Serum titre was defined as the reciprocal of the 

highest serum dilution showing a mean O.D. value equal to or higher than that of the negative 

control sera (n = 4) obtained from mice inoculated with PBS, plus 3 times the SD. Titers of 

IgG + IgM were expressed as the mean and SD of individual log10 titre obtained; and the 

Th1/Th2 balance, as the mean and SD of individual log10 IgG2a/log10 IgG1 ratio [38]. 

Statistical analysis 

Kolmogorov-Smirnov test was first applied to assess the normal distribution of data. Then, 

means were statistically compared by a one-way ANOVA test, followed by the Fisher’s 

Protected Least Significant Difference (PLSD) test (when four or less groups were compared) 

or Bonferroni’s test (when more than four groups were compared). Efficacy was determined, 

from at least two independent experiments with statistically equivalent controls, by statistical 

comparison of the mean (n = 5) log10 SE-wt CFU/spleen obtained in immunized vs. control 

mice. In mice survival assays, the percentage of cumulative survival was calculated by the 

Kaplan-Meier analysis, and statistically compared by the LogRank (Mantel-Cox) test. 

Results 

Characterization of SEΔwaaL and SEΔgal LPS O-PS deficient mutants 

LPS SDS-PAGE silver stain showed that both rough mutants had an O-PS free LPS, but 

SEΔgal had a LPS-Core smaller than that of SEΔwaaL (Figure 1a), as expected from the 

mutant design. This difference in LPS-Core size was in agreement with the results obtained 

in the phage susceptibility assay (Figure 1b), where in contrast to SE-wt, both mutants were 

resistant to phages that recognize specifically O-PS epitopes (i.e. SETPs 1, 3, 5, 7, 8, and 10–

16) belonging to Podoviridae and Siphoviridae morphotypes [29], but only SEΔwaaL 

retained susceptibility to the Myoviridae (i.e. SETPs 2, 4, 9), SETP17 and FO phages that 

recognize specifically the external LPS-Core epitopes, indicating that this mutant had an 

intact LPS-Core whereas SEΔgal had a more pronounced defect. Anti-H agglutination 

indicated that both rough mutants had flagellum antigens. Phenotypic differences in motility 

and biofilm formation were observed between both rough mutants and with respect to the 

parental strain SE-wt (Figure 1c). Specifically, the SEΔgal mutant retained partially the 

flagellum motility, as indicated by the swimming and swarming halos observed, but showed a 

cellulose production deficiency in the calcofluor binding assay, and also a diminished biofilm 

formation either in rich LB or in nutrient deficient ATM media (Figure 1c). In contrast, the 

SEΔwaaL mutant lacked motility, but maintained the capability of its parental strain to retain 

the cellulose on the cell surface and, consequently, to form biofilm in the ATM stirring assay 

(Figure 1c). Susceptibility to Polymyxin B (Additional file 2: Figure S1-a) showed that the 

SEΔgal mutant was more susceptible (0.125 μg/mL) to cationic peptides than both SEΔwaaL 

(0.250 μg/mL) and SE-wt (4 μg/mL) strains. Moreover, susceptibility to non-immune serum 

revealed a drastic reduction in the number of surviving bacteria in both rough mutants 

compared to strain SE-wt, more marked in SEΔgal (Additional file 2: Figure S1-b). In fact, 

few colonies of SEΔgal (83 CFU) or SEΔwaaL (325 CFU) per million of bacteria resisted the 

bactericidal effect of serum complement, whereas around 5 × 10
4
 CFU SE-wt were resistant. 
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Finally, virulence was measured by the ability of bacteria to induce lethality in the infected 

mice (Additional file 1: Table S1). As expected, all mice inoculated with 2 × 10
3
 CFU of the 

strain SE-wt died (at day four) after inoculation. However, none (SEΔgal) or only one 

(SEΔwaaL) of the mice inoculated with this dose succumbed at the end of the experiment (2 

weeks post-inoculation), indicating that both rough mutants were less (p = 0.0027 in LogRank 

test) virulent than the smooth parental strain SE-wt. Virulence differences were also observed 

between both rough mutants, since all mice infected with SEΔgal, at any dose, survived to 

the end of the experimental period without signs of pain or illness, while those inoculated 

with SEΔwaaL showed increased (p = 0.035) lethality in cumulative survival analysis when 

infected at the highest dose, either at day 5 (all the mice inoculated with 2 × 10
7
 CFU/mouse 

died) or at day 12 (50% of cumulative survival in animals inoculated with 2 × 10
5
 

CFU/mouse) (Additional file 1: Table S1). Similarly, highly significant (p < 0.005) 

differences between both rough mutants were observed in the levels of splenic infections 

found in surviving mice (Additional file 1: Table S1), irrespectively of the infection dose 

used. Mice inoculated with 2 × 10
3
 or 2 × 10

5
 CFU of SEΔgal were practically (1.3 and 1.6 

mean log CFU/spleen, respectively) cleared from infection at week 2, and those infected at a 

high dose (2 × 10
7
 CFU) were only moderately infected (3.6 mean log CFU). Finally, all 

surviving mice infected with 2 × 10
3
 or 2 × 10

5
 CFU of SEΔwaaL retained more than 4.4 

mean log CFU in spleen. 

Characterization of antigen preparations and enhancement of EDA binding to 

antigen 

The results on protein quantification revealed that HS from rough strains showed an enriched 

content (20–22% approximately) in comparison with HS-SEwt (around 12%), whereas 

bacterins from both wild-type and rough strains had a similar protein content (1.1–1.2 

mg/mL). The LPS Kdo content was 0.8%, 1.1% and 1.6% in HS-SEΔwaaL, HS-SEΔgal and 

HS-SEwt, respectively. Coomassie and Western-Blot electrophoretic profiles of proteins 

indicated that HS extracts from rough and wild-type strains displayed similar profiles, 

including bands of 17 and 21 KDa fimbrial antigens, different porins, and 35–40 KDa outer 

membrane proteins (Figure 2a). However, bacterins showed a protein spectrum wider than 

that of HS extracts, including those of high (above 40 KDa, such as 55 KDa flagellin) and 

low (below 20 KDa) molecular weights, likely eliminated from HS extracts by boiling, 

autoclaving and/or dialysis (Figure 2a). 

According to SDS-PAGE and Western-Blot with anti-His or anti-EDA antibodies, purified 

EDA and MEDA recombinant proteins had the expected molecular weights (13 and 16 KDa, 

respectively) [8,39]. Regarding EDAvidin, a 24 KDa band was observed in SDS-PAGE gels 

(Figure 2b). However, native (unboiled) EDAvidin formed one band likely corresponding to 

a multimeric form (between 100 and 150 KDa). 

In order to enhance the binding of EDA to the bacterial antigens, we determined if the 

capacity of EDA to bind the bacterial cell surface was increased when using EDAvidin and 

biotinylated bacteria (Figure 3). The results of the ELISA (performed with wells coated with 

biotinylated or non-biotinylated bacterins) indicated that EDAvidin but not free EDA bound 

biotinylated bacterins, with increased affinity for biotinylated BEDA-SEΔgal compared to 

BEDA-SEΔwaaL (Figure 3). 

Since the biotinylation process involves the binding of Sulfo-NHS-LC biotin to free amines 

on the bacterial wall, the decreased binding of bacterin SEΔwaaL mutant to EDAvidin with 
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respect to SEΔgal or SE-wt could be related to a decreased level of biotinylation of this 

mutant. The flow cytometry results after CFSE labelling (Additional file 3: Figure S2) 

revealed that bacterin SEΔwaaL had a significantly weaker labeling compared to SEΔgal or 

SE-wt, in agreement with the results of Figure 3 and the hypothesis proposed. 

EDA/MEDA increases the efficacy of bacterins obtained from LPS O-PS 

deficient antigens 

Mice (n = 5) inoculated with increasing doses (40, 100 or 200 μg/mouse) of EDA or MEDA 

alone did not show either pain signs after inoculation of these compounds or unspecific 

protection after challenge with SE-wt strain infection, reaching then infection levels of 

around 7 log CFU/spleen, similar to those reached in unvaccinated controls (Figure 4). 

Moreover, none of the animals submitted to vaccination in this work presented signs of pain 

or discomfort and all of them survived up to the end of the experimental period, including 

those immunized with live mutants. 

In the dose-response assay with the virulent strain SE-wt, mice inoculated with 50 or 100 

CFU showed inconsistent infections and those inoculated with 500 or 1000 CFU showed 

saturating infections (Additional file 4: Table S2) with signs of septic shock close to death. In 

consequence, 2.5 × 10
2
 CFU/mouse was chosen as the optimal sub-lethal dose of challenge in 

the efficacy experiments. 

The effect of EDA on protection was studied in mice (n = 5) immunized with HS or bacterins 

from isogenic rough mutants administered in a simple physical mix with EDA (HS and 

bacterins) or MEDA (only bacterins) and challenged 4 weeks later with a sublethal dose of 

SE-wt. In the absence of EDA/ MEDA, vaccination with HS-SEwt or B-SEwt (positive 

controls of protection) prevented virulent infection, whereas mice unvaccinated (PBS control 

group) reached around 7 log CFU/spleen (Figure 4). Immunization with HS-SEΔwaaL, HS-

SEΔgal or B-SEΔgal did not prevent the virulent infection, reaching a mean log CFU of SE-

wt in spleen statistically equivalent to that of the PBS control group (Figure 4). In contrast, B-

SEΔwaaL alone conferred significant protection (P = 0.001 vs. PBS control), superior to that 

conferred by B-SEΔgal (P < 0.0001 between both mutants). The combined administration of 

EDA in preparations with rough HS extracts did not improve protection significantly 

compared to administration of these antigens alone. Finally, when using bacterins, EDA and 

MEDA improved significantly (P < 0.001) the protection conferred by B-SEΔgal (Figure 4b) 

but not or only moderately that conferred by B-SEΔwaaL (Figure 4a). 

Increased binding of EDA to the antigen enhances protection and antibody 

production 

In order to determine whether a strong binding of EDA to the surface of bacterins might 

improve immunogenicity, biotinylated bacterins mixed with the EDAvidin (giving rise to the 

BEDA bacterins) were used for immunization, using live rough mutants as reference. All 

mice were challenged with the SE-wt strain at week 4 after immunization and the number of 

SE-wt and SEΔwaaL determined in spleen 4 days later. Mice vaccinated with the rough 

mutants were found less (P < 0.05) protected than those immunized with B-SEwt (positive 

controls). Mice immunized with SEΔwaaL mutant retained 3.85 ± 0.21 log10 CFU of the 

mutant in their spleens, revealing the persistence of this mutant throughout the experimental 

period, with infection levels similar to those observed by this mutant at week 2 (Additional 
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file 1: Table S1). As shown in Figure 4, both BEDA-SEΔwaaL and BEDA-SEΔgal 

preparations improved significantly the levels of protection compared to the bacterin 

administered either alone (P < 0.001) or mixed just with EDA (P ≤ 0.03). Strikingly, the 

efficacy of BEDA-SEΔwaaL and BEDA-SEΔgal was, respectively, similar to (P > 0.05) and 

higher than (P ≤ 0.01) that conferred by the isogenic live rough mutants. Finally, live rough 

mutants were less (P < 0.05) effective than B-SEwt, whereas BEDA-SEΔwaaL conferred a 

protection statistically equivalent to this positive control (B-SEwt), 2 out 4 mice being free 

from virulent infection. Therefore, the increased binding of EDA to antigens favoured by 

streptavidin-biotin interactions resulted in enhanced protection. 

In an attempt to initiate a search for an immune correlate with protection, IgG + IgM mean 

titers and IgG2a/IgG1 ratios were determined in sera obtained just before challenge from 

mice immunized with bacterins, either physically mixed just with EDA or bound to EDA by 

streptavidin-biotin (BEDA) interaction. Mice immunized with BEDA-SEΔwaaL or B-

SEΔwaaL + EDA had lower (P < 0.01) levels of IgG + IgM than those immunized with the 

live SEΔwaaL mutant (Table 2). In contrast, BEDA-SEΔgal and B-SEΔgal + EDA 

preparations induced IgG + IgM levels higher (P < 0.05) than those induced by the live 

SEΔgal mutant. The humoral responses to BEDA-SEΔwaaL or B-SEΔwaaL + EDA were 

accompanied by an enhanced Th1 response (IgG2a/IgG1 balance between 1.45 ± 0.20 and 

1.05 ± 0.20), but this enhancement was not observed in the case of SEΔgal preparations, 

which induced a response slightly biased towards a Th2 profile (0.74 ± 0.09 and 0.85 ± 0.12 

with BEDA-SEΔgal and B-SEΔgal + EDA, respectively). 

Discussion 

Many live attenuated or inactivated vaccines against a variety of pathogens such as 

Salmonella require booster immunizations to attain the expected protection. Since vaccine 

efficacy may increase with the use of adjuvants, research on adjuvant performance is 

necessary. In this context, the positive effect of EDA, when administered with non-live 

Salmonella antigenic preparations, was studied in a vaccination-challenge mouse model 

involving two Salmonella Enteritidis rough mutants (SEΔwaaL and SEΔgal) differing in the 

LPS-Core composition. None of these mutants produced LPS O-PS antigen, which may help 

to distinguish animals vaccinated with these mutants from those infected by field strains. The 

absence of either (O-PS)-to-LPS assembly enzymes (SEΔwaaL) or LPS-Core galactose 

synthesis enzymes (SEΔgal) led to an intact (in SEΔwaaL) or a defective (in SEΔgal) LPS-

Core, according to results on SDS-PAGE and susceptibility to SEPTs bacteriophages, as 

expected from the genetic design of these mutants and previous findings on similar mutants 

[20,22,40,41]. Functional mutants in the gal operon, which includes galE, galT, galK and 

galM genes, all involved in the synthesis of the LPS-Core galactose [42], have been obtained 

by inactivation of the galE gene [41], but these single-gene mutants may revert to a smooth-

LPS by incorporating exogenous precursors of galactose into the biosynthetic pathway, both 

in vitro [41] and in vivo [21,43,44]. Thus, the mutant production strategy applied in this 

work, based on the use of a complete deletion of gal operon to produce the SEΔgal mutant, 

ensured the rough phenotype of this mutant through the blockage of galactose synthesis from 

endogenous or exogenous sources [44]. 

When attempting the design of non-live vaccines, HS extracts (enriched in outer membrane 

components) and formalin-inactivated bacteria (bacterins that retain all the external and 

internal bacterial antigens) were used as antigens [19,37]. Differences in vaccine efficacy 
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between studies using Salmonella Enteritidis HS extracts in mice [19,45] could be explained 

by differences in bacterial genetic makeup, extract preparation and enrichment methods or 

immunization vehicles. The HS preparations obtained from the Salmonella Enteritidis rough 

mutants reported here did not protect mice against a virulent challenge, whereas mice 

immunized with HS-SEwt were protected (100% mouse survival and 80% uninfected 

spleens), demonstrating the essential role of the LPS O-PS in HS-driven protection. The 

physicochemical characterization of antigenic preparations confirmed that bacterins had a 

broader protein spectrum compared to HS extracts. This difference could be related to 

differences in preparation methods (boiling, ultracentrifugation and dialysis for HS extracts 

and not bacterins). Bacterins lacking LPS O-PS may be useful vaccines against heterologous 

Salmonella species and serovars, since the rough phenotype has an enhanced immunogenicity 

of minor antigens, mainly porins and lipoproteins conserved in Salmonella serotypes [20]. 

Interestingly, B-SEΔwaaL induced partial protection in mice whereas B-SEΔgal did not 

confer protection, indicating that a complete LPS-Core could play an essential role. 

Once verified that the protection obtained with HS or bacterins from both rough mutants was 

below that of the B-SEwt, the potential of EDA as immunopotentiator in non-live bacterial 

vaccines was assessed. Adjuvants such as Freund’s complete or aluminium hydroxide do not 

appear to improve the immune response against Salmonella [46,47], in contrast with 

polymeric carriers used to adsorb or encapsulate bacterial extracts [19,48]. Alternatively, 

adjuvants interacting directly with TLRs have successfully immunopotentiated Salmonella 

Enteritidis sub-cellular fractions. Examples are polyinosinic:polycytidylic acid [poly(I:C)] 

with TLR-3 [49], CpG sequences with TLR-9 [45] and bacterial LPS with TLR-4 [46,50]. 

Since EDA activates TLR4 favouring viral antigen presentation [6-8,51], mice were 

immunized in the presence of recombinant EDA (produced in E. coli) or MEDA (in 

transformed plant chloroplast), initially as a simple physical mix with HS extracts (EDA) or 

bacterins (EDA and MEDA) from Salmonella rough mutants. 

The effect of EDA in the efficacy of immunizations depended on the type of antigenic 

preparation (found in bacterins and not HS extracts) and the mutant from which the bacterins 

were prepared (B-SEΔwaaL or B-SEΔgal). No significant adjuvant effects were observed 

with EDA or MEDA treatments when B-SEΔwaaL was administered alone (which already 

conferred partial protection), but both EDA or MEDA significantly enhanced protection 

when using B-SEΔgal. This suggests that the size and/or composition of LPS-Core may have 

affected the affinity for TLR-4 and/or may have regulated the intracellular fate of the antigen 

in dendritic cells, as demonstrated for LPS O-PS antigen [52]. Possibly, the complete (but not 

the incomplete) LPS-Core antigen competes with EDA for TLR-4 recognition, so that EDA is 

not free to interact with this receptor. Alternatively, EDA and MEDA may have a higher 

affinity for their surface receptors when exposed in absence of the external LPS-Core (i.e. B-

SEΔgal). 

In search of strategies that would help to enhance the binding of EDA to the antigen, the 

novel recombinant EDA fused to streptavidin molecule (EDAvidin) allowed a significant 

binding to biotinylated bacterins. Most likely, biotinylated bacterins decorated with 

EDAvidin enhanced the targeting of LPS defective bacterins to TLR4 expressing cells, 

modulating the entry of the antigen and/or its intracellular fate and/or the persistence in 

dendritic cells [52] to favour the enhancement of the efficacy of these antigenic preparations. 

This is in line with the significantly improved protection conferred by BEDA-SEΔwaaL and 

BEDA-SEΔgal complexes compared to bacterins alone, reaching levels similar to those 

obtained with the live rough mutants and, in the case of BEDA-SEΔwaaL, the levels 
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conferred by the bacterin B-SEwt positive control. Irrespective of the decreased binding of 

SEΔwaaL to EDAvidin (apparently related to a lower level of biotinylation according to flow 

cytometry results using CFSE), the protection conferred by each individual bacterin including 

SEΔwaaL increased significantly in the presence vs. absence of EDAvidin. Altogether, these 

findings demonstrate that EDA in the form of EDAvidin-biotin complexes improves the 

efficacy of non-live vaccines. Like in previous work [13], increased IgG + IgM levels or a 

Th1 biased response (according to the IgG2a/IgG1 balance) could not be correlated with the 

protection conferred by both BEDA preparations (BEDA-SEΔwaaL and BEDA-SEΔgal), 

even though the immune response must have been in both cases sufficiently enhanced to 

confer significant protection. 

Most studies in mice designed to assess Salmonella vaccine efficacy use a lethal challenge 

model. Here, we have used a sub-lethal dose challenge model [19] to preserve animal 

welfare, yielding information in line with that obtained with the lethal challenge model, since 

e.g. here live SEΔwaaL performed better than SEΔgal, like in previous lethal challenge 

reports with similar mutants [20]. At the same time, this model allowed the detection of 

increased protection in mice when EDA or MEDA were administered mixed with B-SEΔgal, 

and also allowed both the selection of bacterins and not HS from both mutants as Salmonella 

antigen candidates and the detection of enhanced protection with EDAvidin bound to 

biotinylated B-SEΔwaaL. 

Although additional work should be done in different natural hosts to determine the true 

innocuousness and efficacy of BEDA preparations, it is clear that EDA (as EDAvidin) 

improves the efficacy of rough Salmonella bacterins (as biotinylated bacterins) in the mouse 

model. The association between EDAvidin and B-SEΔwaaL bacterin may be considered safe 

and effective for use as a non-live vaccine, conferring a high protection against virulent 

infection. Employing this BEDA immunization strategy with O-PS deficient mutants may 

also help to distinguish (by conventional anti-O-PS or new anti-EDA serological tests) 

between vaccinated animals and asymptomatically infected carriers, reservoirs of zoonotic 

infections. Moreover, the use of non-live vaccines avoids the presence of genetically 

modified microorganisms in farm animals and their subsequent release to environment or 

food-chain, having an added value for consumers and veterinary use. 
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Figure 1 LPS electrophoretic profiles and bacteriophage susceptibility of Salmonella 

Enteritidis parental and mutant strains. (A) SDS-PAGE with alkaline silver staining of 

LPS; and (B) phage susceptibility to the 17 Salmonella Enteritidis Typing Phage collection 

(named from 1 to 17) and FO bacteriophages, with SE-wt (left), SEΔwaaL (middle) and 

SEΔgal (right). 

Figure 2 SDS-PAGE electrophoretic profiles of bacterial proteins from HS and 

bacterins (Panel A) and EDA based recombinant proteins (Panel B). (A) Coomassie blue 

(lanes 1–7) and Western-Blot of bacterins using anti-Salmonella mouse serum (lanes 8–10). 

Lane 1: molecular weight marker; lanes 2–4: HS extracts from SE-wt, SEΔwaaL and SEΔgal, 

respectively; lanes 5–7: bacterins from SE-wt, SEΔwaaL and SEΔgal, respectively; lanes 8–

10: bacterins from SE-wt, SEΔwaaL and SEΔgal, respectively; and (B) Coomassie blue of 

EDAvidin denatured by boiling (lane 2) or native (lane 3). Lane 1: molecular weight marker. 

Figure 3 EDAvidin binding to biotinylated bacterins in ELISA. ELISA plates coated with 

biotinylated (Biot) or not biotinylated control (B-SEΔwaaL, B-SEΔgal and B-SEwt) 

bacterins were incubated with EDAvidin or EDA alone (control). Binding was monitored 

using a rabbit anti-EDA polyclonal antibody and an anti-rabbit whole IgG horseradish-

peroxidase-conjugated second antibody. The O.D. values at 405 nm (mean ± SD) are 

represented. 

Figure 4 Protection conferred by antigenic preparations from Salmonella Enteritidis 

rough mutants in BALB/c mice. Immunizations. (A) SEΔwaaL immunizations; and (B) 

SEΔgal immunizations. Mice were immunized IP with hot saline (HS) extracts (HS-

SEΔwaaL and HS-SEΔgal; grey boxes), formalin inactivated bacterins (B-SEΔwaaL and B-

SEΔgal; grey line boxes), alone, in combination with EDA (+EDA) or MEDA (+MEDA), or 

as biotinylated bacterins bound to EDAvidin (BEDA-SEΔwaaL and BEDA-SEΔgal; white 

boxes). Control groups of mice (n = 4) received live rough mutants (SEΔwaaL or SEΔgal, 

vertical line boxes), either HS or bacterin obtained from Salmonella Enteritidis parental strain 

(represented as B-SEwt; black boxes) or PBS (black boxes). Four weeks after vaccination, all 

mice were challenged IP with 2.3 × 10
2
 CFU of Salmonella Enteritidis strain 3934 (SE-wt) 

per animal and the degree of protection expressed as the mean log10 CFU/spleen of SE-wt, at 

day 4 after challenge. Statistical comparisons were performed by ANOVA and Fisher’s 

PLSD test. * P < 0.01 for differences with the corresponding bacterin administered alone, i.e. 

BEDA-SEΔwaaL vs. B-SEΔwaaL; and BEDA-SEΔgal or B-SEΔgal plus EDA/MEDA vs. 

B-SEΔgal. 
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Additional file 1: Table S1 Virulence of SEΔgal and SEΔwaaL in BALB/c mice.  

 

Additional_file_2 as PDF 
Additional file 2: Figure S1 Susceptibility of Salmonella Enteritidis parental and mutant 

strains to cationic peptides and non-immune human serum. (A) Minimal Bactericidal 

Concentration (MBC) to Polymyxin B; and (B) Susceptibility to conventional human serum, 

with respect to heat-inactivated serum. Results are expressed as the mean and SD (n = 6) of 

Polymyxin B concentration (μg/mL) at which bacteria were not recovered (A); and log10 CFU 

of viable bacteria in fresh serum per million of viable bacteria surviving in heat-inactivated 
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serum (B). Statistical differences (P < 0.01) were found by Fisher’s PLSD test between SE-wt 

and each rough mutant.  

 

Additional_file_3 as PDF 
Additional file 3: Figure S2 Flow cytometry of bacterins B-SEΔgal, B-SEΔwaaL and B-

SEwt labeled with carboxyfluorescein succinimidyl ester (CFSE). Unlabeled SE-wt 

bacterins (B-SEwt) were used as negative control.  

 

Additional_file_4 as DOC 
Additional file 4: Table S2 Dose-response assay with Salmonella Enteritidis 3934 (SE-

wt) strain in mice.  
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Table 1 Oligonucleotides designed and used in this study. 

Oligonucleotide Sequence (5′to 3′) 

waal-Clo Fw TCACCAGAACAGAACCTGGCGAATTTAGATGCCACAAGCGTAT 

TTGGAAAGATTCATTAAGTGTAGGCTGGAGCTGCTTC
a
 

waal-Clo Rv AGTTGGGAAAATGTAGCGCAGCGTTTCGAGGAACAAATGAAAA 

ACTGGTTTGATAAGTGACATATGAATATCCTCCTTAG
A
 

galA GCGGCCGCATTCAGCCCCTGCAACG 

galB CTCGAGGCCGCTACATGCCCGA 

galC CTCGAGCTCCGTTAAGCCTATGGT 

galD AGATCTAATCTGGTGACCGACAGA 

a
The primer sequence for the chloramphenicol resistance cassette is underlined. 
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Table 2 Immunoglobulin titres (IgG plus IgM mean log titers and IgG2a/IgG1 log 

ratios) in mice, measured at week 4 after immunization with bacterins, either physically 

mixed just with EDA or bound to EDA (EDAvidin) by streptavidin-biotin (BEDA) 

interaction. 

Inoculation group Log10 IgM + IgG 

(mean ± SD) 
a
 

Log10 IgG2a/IgG1 ratio 

(mean ± SD) 
a
 

SE-wt live 3.45 ± 0.17 1.18 ± 0.26 

SEΔwaaL live 3.60 ± 0.73 1.21 ± 0.10 

SEΔgal live 2.02 ± 0.45 1.05 ± 0.07 

B-SEΔwaaL + EDA 2.54 ± 0.38 1.05 ± 0.20 

B-SEΔgal + EDA 2.69 ± 0.42 0.85 ± 0.12 

BEDA-SEΔwaaL 2.77 ± 0.51 1.45 ± 0.20 

BEDA-SEΔgal 3.07 ± 0.51 0.74 ± 0.09 

a
 Serum titre was defined as the reciprocal of the highest serum dilution showing a mean O.D. 

value equal to or higher than that of the negative control sera (n = 4) obtained from mice 

inoculated with PBS, plus 3 times the SD. Mean and SD (n = 4) represent the data obtained in 

triplicate. 
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