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Abstract 14 

The Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-15 

hydrologic model. However, using the study case of an agricultural intensive irrigated 16 

watershed, it was shown that all the model versions are not able to appropriately reproduce the 17 

total streamflow in such system when the irrigation source is outside the watershed. The 18 

objective of this study was to modify the SWAT2005 version for correctly simulating the 19 

main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) 20 

losses and phosphorus load calibration and validation were performed using field survey 21 

information and water quantity and quality data recorded during 2008 and 2009 years in Del 22 

Reguero irrigated watershed in Spain. The goodness of the calibration and validation results 23 

was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). 24 

Results indicated that the average annual crop yield and actual evapotranspiration estimations 25 



 2

were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 1 

0.80 (validation) indicating that the modified model could reproduce accurately the observed 2 

streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the 3 

calibration and validation steps). The monthly temporal patterns and all the statistical 4 

parameters indicated that the modified SWAT-IRRIG model adequately predicted the total 5 

phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of 6 

different best management practices on non-point phosphorus losses in irrigated systems. 7 
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 18 

1. Introduction  19 

Excess land application of nutrients can result in the impairment of nearby water resources 20 

(Green and Griensven, 2008). In irrigated agricultural systems, the irrigation returns flows 21 

(IRF) are the major nonpoint source pollution of surface and groundwater bodies (Aragües 22 

and Tanji, 2003). For that reason, a widespread control of contaminant inputs is an effective 23 

solution to prevent further deterioration and to enhance the status of water resources. Hence, 24 

the Water Framework Directive (EU, 2000) establishes a framework for the protection of 25 
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groundwater, surface, estuarine, and coastal waters. For that reason, this European  Directive 1 

requires Member States to assess the ecological quality status of water bodies setting as a final 2 

objective the achievement of a “good water status” for all waters by 2015 (Borja, 2005). 3 

The evaluation of the ecological status of water requires the establishment of a control 4 

network in the receiving bodies. In the case of agricultural watersheds, a continuous 5 

monitoring of drainage waters (quantity and quality) is indispensable to better understand the 6 

pollutants dynamics. Monitoring studies permit the identification of the actual trophic status 7 

of waters and the assessment of the effectiveness of post-implementation of best management 8 

practices (BMPs). However, conducting field experiments and collection of long-term data is 9 

very expensive (cost of instrumentation and operation) and time consuming (Santhi et al., 10 

2006). There are uncertainties/errors associated with the measured data and also difficulty in 11 

repeating the monitoring process without additional resources and time when corrections are 12 

necessary (Santhi et al., 2006). In addition, with nonpoint source pollution emerging from 13 

large watersheds, such as the Ebro River watershed with mixed land uses and soils, it is quite 14 

difficult to associate water improvements to specific BMPs using monitoring data (Santhi et 15 

al., 2006). 16 

The application of watershed simulation models is indispensable when pollution is generated 17 

by a non-point source. These models should be able to simulate large complex watersheds 18 

with varying soils, land use and management conditions over long periods of time. A wide 19 

range of watershed models are available to predict the impact of land management practices 20 

on water, sediment and agricultural chemical yields. Examples of these models are: the 21 

physically based event model ANSWERS (Beasley, 1991), the empirically based 22 

SWATCATCH model (Holman et al., 2001), the physically based DWSM model (Borah and 23 

Bera, 2003) and the semi-empirical SWAT model (Arnold et al., 1998; Arnold and Fohrer, 24 
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2005; Gassman et al., 2007). One common characteristic between all these models is the 1 

reproduction of the water and nutrients movement at the watershed scale. 2 

Of all the models mentioned previously, the Soil and Water Assessment Tool (SWAT) is the 3 

most capable model for long-term simulations in watersheds dominated by agricultural land 4 

uses. This model is designed to assess the impact of land use and management practices on 5 

water, sediments and agricultural chemicals in IRF. The model has proven to be an effective 6 

tool for assessing nonpoint source pollution for a wide range of scales and environmental 7 

conditions (Gassman et al., 2007). SWAT has been widely applied across the United States 8 

(FitzHugh and Mackay, 2000; Arabi et al., 2006); Europe (Conan et al., 2003a, b; Plus et al., 9 

2006; Nasr et al., 2007; Galván et al., 2009; Panagopoulos et al., 2011a, b) and other parts of 10 

the world (Bouraoui et al., 2005; Watson et al., 2005; Cheng et al., 2006).  11 

SWAT has been modified and adapted to provide improved simulations of specific processes 12 

for specific watersheds (Gassman et al., 2007). Lenhart et al. (2002; 2003; 2005) modified 13 

SWAT99.2 to provide improved flow predictions (percolation, hydraulic conductivity, and 14 

interflow) for typical conditions in low mountain ranges in Germany. This SWAT-G modified 15 

version was also used to simulate sediments and phosphorus in the Dill catchment (Hessen, 16 

Germany) (Lenhart et al., 2003). The Extended SWAT (ESWAT) incorporated several 17 

modifications relative to the original SWAT model to simulate runoff and in stream processes 18 

at hourly time steps (van Griensven and Bauwens, 2003, 2005). Van Liew (2009) modified 19 

SWAT2005 to consider losses of organic nitrogen and phosphorus from bank erosion from 20 

top soil layers in three drainage areas located in the Bitterroot watershed. The Soil and Water 21 

Integrated Model (SWIM) based on the hydrological components of SWAT was designed to 22 

simulate “mesoscale” watersheds (Krysanova et al., 1998, 2005). A recent groundwater 23 

dynamics sub-model has been integrated to SWIM (Hatterman et al., 2004) to improve its 24 

simulating capability in forest systems (Wattenbach et al., 2005). Baffaut and Benson (2009) 25 
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modified the SWAT code (SWAT-B&B) to simulate faster percolation in karst basins. They 1 

used transmission losses from tributary channels to represent sinking streams and ponds to 2 

depict sinkholes. Other SWAT studies described irrigations applications using an optimum 3 

irrigation management where the irrigation supply was specified by the water requirements of 4 

crops, so that IRF were not important (Cau and Paniconi, 2007; Jie et al., 2010; Kannan et al., 5 

2011). In contrast, the application of SWAT to intensive irrigation systems where IRF are the 6 

major component of the hydrologic balance could not satisfactorily reproduce the total 7 

streamflow because of its limitations in applying maximum irrigation doses in an irrigation 8 

event when the irrigation source is outside the watershed. In this case, both SWAT versions 9 

(SWAT2005 and 2009) used irrigation doses that filled the soil layers up to field capacity. If 10 

the input irrigation doses exceeded field capacity, the excess water between soil saturation and 11 

field capacity limits returned to the source and was not considered in the daily soil water 12 

balance calculation. Thus, for the application of SWAT in such intensive irrigated systems, 13 

the irrigation subroutine source code should be modified to consider the excess irrigation 14 

water in the daily soil water balance.   15 

The objectives of this work were to modify SWAT for its improved performance in intensive 16 

irrigated systems and to evaluate its prediction capabilities in modelling water flow and 17 

sediment and phosphorus loads. The SWAT2005 modification, calibration and validation 18 

using the Del Reguero stream watershed (NE, Spain) 2008 and 2009 data are presented in this 19 

paper.  20 

 21 

2. Materials and methods   22 

2.1. Study area   23 

The Del Reguero watershed (DRW) belongs to the Alto Aragon Irrigation Scheme area 24 

located in the left bank of the middle Ebro River Basin in Spain (Fig. 1). It has a total 25 
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drainage area of 18.65 km2 with elevations ranging from 208 to 502 m and an average land 1 

surface slope of 4.4‰. The irrigation water supply is conveyed by the Pertusa Canal, itself a 2 

diversion of the Cinca Canal, the latter originating in El Grado reservoir located on the Cinca 3 

River, to the North East of the irrigation scheme. The main cultivated crops in the two studied 4 

years (2008 and 2009) were corn (41%), barley (19%), alfalfa (15%), and sunflower (9%) and 5 

represent more than 84% of the watershed irrigated area. 6 

The climate is semiarid with an average annual precipitation and reference evapotranspiration 7 

of 391 mm and 1,294 mm, respectively. The mean annual temperature is 13.1 ºC, with a large 8 

temperature difference between winter and summer. Irrigation practices began in 1982 using 9 

sprinkler irrigation systems (mainly solid-set sprinklers). Two geomorphologic units are 10 

distinguished in the study area. The first unit corresponds to platform soils (locally called 11 

“sasos”) that cover 38% of the total area. These soils are shallow, present calcareous horizons, 12 

and a high content of stones. The second unit covers the remaining of the watershed and 13 

corresponds to alluvial soils that are mostly stone-free and with soil depths varying from 0.6 14 

m to more than 1.20 m. The soil P-Olsen concentrations were very heterogeneous ranging 15 

from 5 to 137 mg kg-1 in the surface layer (0 – 30 cm) with an average of 28 mg kg-1 and an 16 

standard deviation of 19.32 mg kg-1. The drainage waters were characterized by an annual 17 

average total phosphorus concentration of 0.112 mg L-1.  18 

The seasonal average irrigation depths were 830 mm (corn), 898 mm (alfalfa), 473 mm 19 

(sunflower) and 202 mm (barley). The differences in irrigation depths between soil types and 20 

plot sizes were not significant (P < 0.1), indicating that farmers did not take into account these 21 

variables when irrigating. The average irrigation depth was 13 mm for all types of soils, lower 22 

than the total available water of the platform soils. The irrigation interval ranged between 1 23 

and 3 days with an average value of 2 days in corn and alfalfa. These intervals increased at the 24 

beginning of the irrigation season and decreased during the summer to meet its high water 25 
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demand during these months. Some farmers irrigated corn at night to reduce the wind drift 1 

and evaporation losses. The same behavior was observed in sunflower, with high irrigation 2 

intervals at the beginning of the irrigation season that were further reduced during the summer 3 

months. The irrigation intervals in barley ranged between 15 and 20 days with a mean value 4 

of 18 days. A more detailed study area characterisation can be found in Skhiri and Dechmi 5 

(2012).  6 

 7 

2.2. Model Description 8 

SWAT is a continuous time, spatially semi-distributed, physically based model (Arnold et al., 9 

1998). The watershed is divided into multiple sub-watersheds, which are then further 10 

subdivided into specific soil/land use characteristic units that are called hydrologic response 11 

units (HRUs). The water balance of each HRU is represented by four storage volumes: snow, 12 

soil profile (0-2 m), shallow aquifer (typically 2-20 m), and deep aquifer (> 20 m). Flow 13 

generation, sediment yield, and chemical loadings from each HRU in a subwatershed are 14 

summed, and the resulting loads are routed through channels, ponds, and/or reservoirs to the 15 

watershed outlet. The soil profile is subdivided into multiple layers that consider several soil 16 

water processes including infiltration, evaporation, plant uptake, lateral flow, and percolation.  17 

The soil percolation component of SWAT uses a storage routing technique to simulate flow 18 

through each soil layer in the root zone. Crop evapotranspiration is simulated as a linear 19 

function of potential evapotranspiration, leaf area index and root depth. Sediment yield is 20 

estimated for each HRU with the Modified Universal Soil Loss Equation (Williams et al., 21 

1984). The Phosphorus processes are handled using a similar approach to that in the Erosion 22 

Productivity Impact Calculator (EPIC) model (Williams, 1990, 1995).   23 

In this work, the surface runoff from daily rainfall was estimated using the modified SCS 24 

curve number (USDA-SCS, 1972) and the potential evapotranspiration (PET) was determined 25 
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using the modified Penman-Monteith approach. The default values provided by the SWAT 1 

crop database were used for the crop phosphorus uptake and the optimal plant concentrations 2 

(Arnold et al., 1998).  3 

Phosphorus can be lost in both particulate and dissolved forms (Arnold et al., 1998). The loss 4 

of dissolved phosphorus in surface runoff is estimated based on the concept of partitioning 5 

phosphorus into the solution and sediment phases as described by Leonard and Wauchope 6 

(1980) for pesticides. The amount of soluble P removed in runoff is predicted using solution P 7 

concentration in the soil top 10 mm, the runoff volume and a partitioning factor. Sediment 8 

transport of phosphorus (particulate phosphorus) is calculated with a loading function 9 

developed by McElroy et al. (1976) and modified by Williams and Hann (1978). The loading 10 

function estimates the daily organic P runoff loss based on the concentration of organic P in 11 

the top soil layer, the sediment yield, and the enrichment ratio.  12 

 13 

2.3. SWAT input data  14 

Three basic files were required for delineating the basin into subbasins and HRUs: a digital 15 

elevation model (DEM), a soil map, and a land use/land cover (LULC) map. The topographic 16 

parameters (slope, slope length, drainage network, watershed delimitation and number of sub-17 

basins) were obtained from the digital elevation model (DEM) of the Ebro River Basin (20 x 18 

20 m grid size). The land use and soil data were obtained from the special crop and soil 19 

distribution maps prepared during the study years. A total of 9 subbasins and 239 HRUs were 20 

delineated in the study area. The unique source of irrigation is from outside the watershed. 21 

The weather input data, including maximum and minimum daily air temperature, solar 22 

radiation, wind speed and relative humidity, were obtained from the Huerto meteorological 23 

station, located at a North latitude of 41º56´59´´, a West longitude of 00º08´09´´and an 24 
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altitude of 390 m. Parameters of farmers’ current management operations as tillage, planting 1 

dates, fertilization, irrigation and harvesting were provided as inputs to the model. 2 

The amounts of organic and inorganic fertilizers applied to each crop grown in DRW were 3 

determined through farmer’s interviews performed during the 2008 and 2009 agricultural 4 

seasons. For each crop, the dates of application and the type of fertilizers were determined. 5 

Regarding irrigation management, dates and amounts of water applied to each crop during 6 

each irrigation event were obtained from the databases facilitated by the Alconadre Irrigation 7 

District.  8 

The crop parameter values for corn used in this study were the same as those used by Cavero 9 

et al. (2000) under meteorological conditions similar to DRW. For barley and sunflower, the 10 

crop parameter values were set according to those proposed by Cabelguenne et al. (1999) for 11 

southwestern France. In regard to alfalfa, parameter values were set according to Confalonieri 12 

and Bechini (2004).  13 

 14 

2.4. Model modification 15 

The application of the original SWAT2005 version in semiarid irrigated DRW using actual 16 

farmer’s irrigation practices was not possible because as previously indicated the excess 17 

irrigation depths are returned to the irrigation source instead of taking them into account in the 18 

daily soil water balance calculations (Neitsch et al., 2005). Therefore the following 19 

modifications in the source code were performed in the new SWAT-IRRIG version to include 20 

the above mentioned excess water in the soil water balance calculations:  21 

 22 

1- The maximum amount of water to be applied corresponds to the depth of irrigation water 23 

applied to each HRU as specified by the user in the irrigation operation instead of the amount 24 
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of water held in the soil profile at field capacity. This modification is included in the “irrsub” 1 

subroutine as following:  2 

Original version:  sumfcsolvmm _=                                                                                                                   3 

Modified version: amtirrvmm _=                                                                                                                        4 

where vmm is the maximum amount of water to be applied (mm H2O), sol_sumfc is the 5 

amount of water held in the soil profile at field capacity (mm H2O) and irr_amt is the depth of 6 

irrigation water applied to each HRU (mm H2O) as specified by the user.  7 

 8 

2- As the original percolation calculation subroutine (percmain subroutine) included only the 9 

excess precipitation, the water excess arising from irrigation practices when the amount of 10 

irrigation exceeds field capacity was added in the percolation subroutine as follows:.  11 

Original version: sepdaysepbtmsepbtm +=  12 

                                  inflpcpsepday =  13 

Modified version: inflirrinflpcpsepday +=  14 

where sepbtm is the water percolating from the bottom of the soil profile (mm H2O), sepday is 15 

the micropore percolation from soil layer (mm H2O), inflpcp is the amount of precipitation 16 

that infiltrates the soil (mm H2O) and inflirr is the amount of irrigation that infiltrates the soil 17 

(mm H2O). 18 

 19 

3- In the SWAT2005 source code, the subroutine “subbasin” that controls the simulation of 20 

the land phase of the hydrologic cycle performs the soil water balance before considering the 21 

irrigation operations from sources outside the watershed. This order doesn’t impair a change 22 

in the soil water balance since there is no excess water generated by irrigation. After making 23 

the changes in the subroutines “irrsub” and “percmain”, an excess water will be generated 24 

each time the depth of irrigation water applied is higher than field capacity. So, the simulation 25 
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order of the land phase of the hydrologic cycle was changed so that the “subbasin” subroutine 1 

will perform the irrigation operations before the soil water balance calculations. 2 

 3 

2.5. SWAT-IRRIG calibration and validation 4 

Simulations were carried out from January 1st, 2007 to December 31st, 2009 using the 5 

standard split sample calibration-validation procedure (Klemeš, 1986). The period from 6 

January 1st, 2007 to January 14th, 2008 served as the warm up period for the model in order to 7 

take for granted realistic initial values for the calibration period. Data from January 15th, 2008 8 

to December 31st, 2008 were used for the calibration and the remaining data for validation.  9 

For every SWAT simulation, the summary input file (input.std), the summary output file 10 

(output.std), the HRU output file (output.hru), the subbasin output file (output.sub), and the 11 

main channel or reach output file (output.rch) (Neitsch et al., 2005) were generated. The 12 

output.rch file contains the summary for each routing reach in the watershed and its data were 13 

used for the calibration and validation processes.  14 

For the hydrological model calibration and validation, the observed streamflow values were 15 

compared with the FLOW_OUT values. The simulated sediments yields (SED_OUT) were 16 

compared with the total suspended sediments measured at the DRW outlet. The simulated 17 

mineral phosphorus (MIN_P) was compared with the measured total dissolved phosphorus 18 

(TDP), while the simulated organic phosphorus (ORG_P) was compared with the measured 19 

particulate phosphorus (PP). Nevertheless particulate P does not necessarily coincide with the 20 

total organic P. However, for the P calibration process, the model parameters that give the 21 

best adjustment between total simulated (MIN_P + ORG_P) and observed phosphorus were 22 

considered.  23 

The standard output file (.std) provides information about the average crop yields represented 24 

by the parameter YLD (Mg ha-1). Therefore, the observed crop yields (Mg ha-1) were 25 
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compared with the YLD values. The .std file also gives the actual simulated 1 

evapotranspiration (ETa) for each crop (represented by the parameter ET). These estimates 2 

were compared with the ETa values calculated using the Irrigation Land Environmental 3 

Evaluation Tool daily soil water balance (Causapé and Pérez, 2008). These values were used 4 

for a simple comparison with those calculated by SWAT-IRRIG.  5 

The model was run first to calibrate and validate SWAT-IRRIG crop model. In this case, only 6 

the crop parameters were adjusted. For the rest of model parameters, default values were 7 

considered. In total, seven crop parameters were adjusted to get crop yields similar to those 8 

measured in the study area (biomass energy ratio, harvest index, maximum leaf area index, 9 

optimum air temperature, base temperature, maximum root depth and light extinction factor). 10 

The observed crop yields were gathered from field surveys performed in 2008 (model 11 

calibration) and 2009 (model validation).  12 

The separation of the measured streamflow at the DWR outlet between direct runoff and 13 

baseflow was performed because SWAT simulates separately these streamflow components.  14 

The baseflow separation technique detailed in Arnold and Allen (1999) was used to separate 15 

the simulated baseflow values from the total simulated streamflow values. This technique has 16 

been also used to estimate baseflows in several SWAT studies (Kalin and Hantush, 2006; Jha 17 

et al., 2007). In this study, the electrical conductivity (EC) of the drainage waters measured at 18 

the DWR outlet was used to separate the total streamflow into its components (Matsubayashi 19 

et al., 1993), based on the principle of water dilution during periods of high discharge. 20 

As SWAT includes several parameters related to the site and management characteristic, a 21 

sensitivity analysis was carried out to detect the most relevant parameters in the hydrology 22 

calibration process. A parameter sensitivity analysis provides insights on which parameters 23 

contribute most to the output variance due to input variability. The sensitivity analysis method 24 

used in this study was the Latin Hypercube One-factor-At-a-Time (LH-OAT) (van Griensven 25 
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et al., 2003) that combines the precision of the One-factor-At-a-Time (OAT) design (Morris, 1 

1991) and the robustness of the Latin Hypercube (LH) sampling (McKay, 1988). A total of 27 2 

parameters (10 intervals of LH samplings and 280 iterations) that may influence the DWR 3 

streamflow were considered (data not shown). The ranges of variation of these parameters are 4 

based on a listing provided in the SWAT manual (Neitsch et al., 2005). The analysis was 5 

performed on the daily average streamflow, for the period between January 2007 and 6 

December 2009. Sensitivity analysis was first performed without the use of observed data and 7 

next using observed data. The most sensitive ranking corresponds to the parameter that 8 

individually produced the highest average percentage of change in the objective function 9 

value of the model. The Global effect (S) produced by each parameter is classified in one of 10 

four previously defined classes according to Koskiaho et al. (2007): S ≥ 1.0 “very high 11 

sensitivity”; 1.0 < S ≥ 0.2 “high sensitivity”; 0.2 < S ≥ 0.06 “medium sensitivity”; S < 0.06 12 

“low sensitivity”. 13 

 14 

2.6. Model performance  15 

Time series plots and five statistical methods were used to evaluate the SWAT-IRRIG 16 

performance based on the measured data. The five statistical criteria to evaluate the goodness 17 

of the calibration and validation results were: (i) the coefficient of determination (R2), (ii) the 18 

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), (iii) the root mean square error 19 

(RMSE), (iv) the percent bias (PBIAS) (Gupta et al., 1999), and (v) the RMSE-observation 20 

standard deviation ratio (RSR) (Moriasi et al., 2007). The R2 represents the percentage of the 21 

variance in the measured data explained by the simulated data. The NSE indicates how close 22 

are the plots of the observed versus the simulated data to the 1:1 line. The RMSE is equal to 23 

the sum of the variance of the modelled values and the square of the bias, and the smaller the 24 

RMSE the better the performance of the model. Thus, a RMSE value of 0.0 represents a 25 
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perfect simulation of the observed sediments and phosphorus loadings. The PBIAS measures 1 

the average tendency of the simulated data to be larger or smaller than their observed 2 

counterparts. The RSR is defined as the ratio of the RMSE to the standard deviation of the 3 

measured data (Moriasi et al., 2007). The optimal value of RSR is 0.0, which indicates zero 4 

RMSE or residual variation and therefore perfect model simulation.  5 

 The calibration objectives for streamflows and sediments and phosphorus loads were to 6 

maximize NSE and R2, and to minimize the absolute value of PBIAS, RMSE, and RSR. 7 

Based on the guidelines proposed by Moriasi et al. (2007), the model performance can be 8 

evaluated as satisfactory if NSE > 0.5, RSR ≤ 0.70, and PBIAS < ± 25% for streamflow, < ± 9 

55% for sediments and < ± 70% for phosphorus loads. 10 

 11 

3. Results and discussion 12 

3.1. Crop model calibration and validation  13 

Table 1 shows the final values of the parameters used to calibrate the yields of corn, alfalfa, 14 

barley and sunflower. The optimum air temperature is the same for corn, alfalfa, and 15 

sunflower (25 ºC) which are summer crops; whereas for barley the optimum air temperature is 16 

set at 15.0 ºC since it is winter crop. For the same reasons, the base temperatures for corn, 17 

alfalfa and sunflower are above zero, whereas the base temperature for barley is set at 0.0 ºC. 18 

The results indicate a good adjustment between the simulated and the observed mean crop 19 

yields obtained during the calibration and validation periods (Fig. 2). The mean simulated 20 

alfalfa yield was about 15.1 Mg ha-1 and the mean measured yield was 14.0 Mg ha-1, 21 

indicating that SWAT-IRRIG over-estimated the alfalfa yield by 7.8%. The variability of the 22 

measured alfalfa yield (CV = 13%) was higher than the variability of the estimated alfalfa 23 

yield (CV = 5%). SWAT-IRRIG also over-estimated the mean barley yield by 9.6% (5.8 Mg 24 

ha-1 vs. 6.3 Mg ha-1), and the simulated yield was less variable (CV = 3%) than the observed 25 



 15

yield (CV = 15%). In contrast, SWAT-IRRIG under-estimated the mean corn and sunflower 1 

yield by 4.5% and 6.7%, respectively. The variability of the observed and simulated corn 2 

yields were similar (CV = 10% and 9%, respectively). 3 

In regard to crop’s actual evapotranspirations (Fig. 2), the results indicate that the mean 4 

annual ETa values simulated by SWAT-IRRIG (736, 730, 515, and 696 mm, for alfalfa, corn, 5 

barley, and sunflower, respectively) were quite similar to those calculated with the soil water 6 

balance. The differences between the simulated and calculated ETa values for corn, barley and 7 

sunflower ranged from 3.7 to 7.0%. In the case of alfalfa, the soil water balance over-8 

estimated the value of ETa by almost 17.4%.  9 

For all crops, the lowest values of average simulated yields and ETa were obtained in the 10 

platform soils, whereas the highest values were found in the deep alluvial soils (Fig. 3). 11 

Intermediate simulated values of crop yields and ETa were obtained in the shallow alluvial 12 

soils. Average yields of corn and alfalfa obtained in deep alluvial soils were found to be 19% 13 

and 6% higher than those obtained in platform and shallow alluvial soils, respectively. Also, 14 

higher mean sunflower yields were obtained in the deep alluvial soils than in the platform 15 

soils (3.2 Mg ha-1 vs. 2.4 Mg ha-1, respectively). The mean barley yields obtained in the deep 16 

and shallow alluvial soils were similar, whereas the yields in the platform soils were 7% 17 

lower. These results were expected and could be for the most part driven by the variability of 18 

the soil types characteristics. Moreover, a Duncan’s multiple comparison analysis indicated 19 

that differences in irrigation water use between soil types were not significant (P < 0.1) for 20 

both calibration and validation periods. 21 

The small depth (0.6 m on average), the existence of a petrocalcic horizon limiting rooting 22 

depths, and the small average value of the soil total available water (TAW = 70 mm) of 23 

platform soils resulted in the lowest average simulated values of yields and ETa. Platform 24 

soils are stony (20% on average) so that the applied irrigation water quickly percolates 25 
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through the soil profile. This explains the highest annual volumes of baseflow (GWQ) 1 

generated during the calibration and validation periods (Fig. 3). The opposite occurred in the 2 

deep alluvial soils that have a high TAW average of 179.1 mm. The mean annual GWQ 3 

values for all crops were 75.2 mm in the platform soils, and 45.9 mm in the deep and shallow 4 

alluvial soils. The soils occupied by corn and sunflower presented the highest GWQ mean 5 

annual values.  6 

 7 

3.2. SWAT2005 vs. SWAT-IRRIG  8 

Comparisons between the monthly streamflows measured and estimated using SWAT2005 9 

and SWAT-IRRIG indicated very large differences between the observed and the SWAT2005 10 

simulated data (Fig. 4). These differences were most important during the months where 11 

irrigation is intensive (Jun to September). The SWAT2005 predictions for the lateral flow 12 

(LATQ), baseflow (GWQ) and transmission losses (TLSS), which are the main SWAT model 13 

processes that affect the total water yield at the outlet of the system, were underestimated by 14 

74.0, 341.1, and 6.7%, respectively (Table 2) in comparison with the SWAT-IRRIG 15 

predictions. These differences were due to the fact that during some irrigation events, the 16 

irrigation depths were higher than those needed to fill the soils up to field capacity and 17 

therefore the remaining amounts of water applied were lost and not used in the daily soil 18 

water balance calculation. As a result, the total water yield (WYLD) at the outlet of DRW was 19 

underestimated by 117.6% (Table 2). The Nash and Sutcliffe (NSE) increased from -0.50 20 

using SWAT2005 to 0.90 using SWAT_IRRIG.  21 

3.3. Sensitivity analysis 22 

The sensitivity analysis performed with the observed data indicated that the effective 23 

hydraulic conductivity in main channel alluvium (CH_K2) was the highest sensitive 24 

parameter (S = 0.43). ALPHA_BF (baseflow alpha factor), SURLAG (surface runoff lag 25 



 17

coefficient) and CN2 (curve number) have a medium sensitivity (S = from 0.06 to 0.20) and 1 

the remaining parameters were classified as low (S < 0.06). Without the use of observed data, 2 

the sensitivity of the parameters that govern groundwater and surface water flows increased 3 

and more parameters were in the “high” and “medium” sensitive classes.. The threshold depth 4 

water in the shallow aquifer for “revap” and percolation (REVAPMN) was ranked as the most 5 

sensitive parameter (S = 0.91), followed by the deep aquifer percolation (RCHRG_DP) and 6 

the soil evaporation compensation factor (ESCO) with S values of 0.74 and 0.43, respectively. 7 

The sensitivities obtained for REVAPMN, RCHRG_DP and ESCO were classified as high. 8 

These parameters were followed by six parameters with medium sensitivities, (CN2, 9 

SOL_AWC (soil available water capacity), SOL_Z (soil depth), GW_DELAY (groundwater 10 

delay time), BLAI (maximum potential leaf area index) and ALPHA_BF). The sensitivities of 11 

the remaining parameters were classified as low (S < 0.06). 12 

3.4. Streamflow calibration and validation 13 

Only those parameters with high and medium sensitivities were considered in the calibration 14 

process except for SOL_Z (Depth from soil surface to bottom of layer) and BLAI (maximum 15 

potential leaf area index for the plant). For SOL_Z the measured values were considered and 16 

BLAI was already adjusted in the process of crop parameters adjustment. The default values 17 

and the adjusted values for each parameter considered in the calibration process are presented 18 

in Table 3.  19 

SWAT-IRRIG was manually calibrated and the daily simulated and observed streamflows at 20 

the DRW outlet were compared considering the calibration (Fig. 5A) and the validation (Fig. 21 

5B) periods. Minor discrepancies between the observed and simulated stream discharges can 22 

be observed. During the calibration period, the calculated R2 on a daily scale was about 0.55, 23 

which can be considered as acceptable. However the NSE value was very low (NSE = -0.23), 24 

mainly driven by the two very high stream discharges recorded on 28/10/08 and 02/11/08 25 
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(Fig. 5A). It seems that this problem in simulating high peaks flows is typical in SWAT model 1 

when implemented in particular climatic conditions as the Mediterranean ones (Panagopoulos 2 

et al., 2011b). In addition, the SWAT-IRRIG over-estimation of streamflows during high 3 

discharges might result from an underestimation of the daily precipitations (especially those 4 

events corresponding to peak stream discharges) arising from an inadequate sampling of 5 

subbasin precipitations. In fact, a comparison between the monthly precipitations recorded at 6 

the weather station located at 6 km from the study area and those measured with a 7 

pluviometer installed in the middle of the study area indicated that they were quite different in 8 

those months with high rainfall events. , If these high stream discharges were not considered, 9 

the NSE value increased to 0.47. A similar tendency was observed in the validation process. 10 

On a daily basis, the R2 values were high (about 0.86), but the NSE was very low (-0.64) due 11 

mainly to two very high stream discharges recorded on 11/04/09 and 09/08/09 (Fig. 5B). 12 

A good agreement between the monthly observed and simulated stream discharges was 13 

observed in the calibration and validation processes (Fig. 6B and 6D), with very high R2 and 14 

NSE values of 0.90. The monthly RMSE and RSR were 26.38 103 m3 and 0.33, respectively, 15 

and the absolute value of the PBIAS for the 2008 calibration year was 1.10%. Hence, 16 

according to the model evaluation guidelines proposed by Moriasi et al. (2007), SWAT-17 

IRRIG simulation was “very good” for the Del Reguero stream discharge.  18 

Values of R2 and NSE greater than 0.8 were also found in several SWAT hydrological 19 

calibration studies (Hao et al., 2004; Kalin and Hantush, 2006; Wang and Melesse, 2006; 20 

Wang et al., 2006; Jha et al., 2007). Kalin and Hantush (2006) reported accurate surface 21 

runoff and streamflow results for the Pocono Creek watershed in eastern Pennsylvania (R2 22 

and NSE = 0.87). Accurate streamflow predictions were also achieved by Wang and Melesse 23 

(2006) in the Elm River North Dakota watershed (R2 and NSE = 0.89 and 0.88, respectively). 24 
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However, NSE values obtained in other Mediterranean country were lower than 0.8 1 

(Panagopoulos et al., 2011a).  2 

The Baseflow calibration results at the DRW outlet also showed a good agreement with the 3 

observed baseflows. The baseflow fraction was about 0.80 of the total streamflow simulated 4 

by SWAT-IRRIG and about 0.77 for the observed data using the EC approach. A good 5 

agreement between the measured and simulated baseflows was also found by Tolson and 6 

Shoemaker (2007) in the Connonsville Reservoir watershed using the same technique of 7 

baseflow separation described by Arnold and Allen (1999). 8 

For the validation process, the R2 value calculated using daily data was 0.74, indicating a good 9 

agreement between observed and simulated daily streamflows. The slight discrepancy 10 

between observed and simulated data was also mainly driven by the two extreme discharge 11 

values recorded on dates of 11/04/09 and 09/08/09. The value of NSE obtained using the daily 12 

data was -0.64, and increased to 0.22 when the two high discharge values were eliminated. 13 

The SWAT-IRRIG estimations of the monthly stream discharges were classified as “very 14 

good” according to Moriasi et al. (2007): R2 = 0.82, NSE = 0.80, RMSE = 46.31 103 m3, RSR 15 

= 0.45 and PBIAS = 3.16%.  16 

The calibration results were better than the validation results. Monthly best results achieved 17 

during the calibration period in comparison with the validation period were also found in 18 

several SWAT hydrological studies (Srinivasan et al., 1998; Arabi et al., 2006; Green et al., 19 

2006; Kalin and Hantush, 2006). Green et al. (2006) evaluated SWAT performance in 20 

simulating the streamflow in the South Fork of the Iowa River watershed over the 1995-1998 21 

period. The monthly values of R2 and NSE in the calibration period were 0.9, and decreased to  22 

0.6 and 0.5, respectively, in the validation period (Green et al., 2006). In a study performed by 23 

Srinivasan et al. (1998) for streamflow calibration and validation in the Richland-Chambers 24 

Reservoir watershed, the monthly R2 and NSE values achieved during the validation and 25 
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calibration periods were similar (R2 and NSE monthly values of 0.82 for validation and 0.87 1 

and 0.84, respectively, for calibration).  2 

3.5. Sediments calibration and validation   3 

Large discrepancies between daily observed and simulated total suspended sediment (TSS) 4 

loads were observed in the calibration process (Fig. 7A). The R2 value was about 0.12 5 

indicating a poor correlation between observed and simulated TSS loads. On a monthly basis 6 

the measured and simulated TSS loads were close, except in June, July and August 2008 (Fig. 7 

7B). The R2 value was high (0.87) showing a good correlation between simulated and 8 

observed TSS loads (Table 4). Also, the NSE and PBIAS values (0.72 and 15.87%, 9 

respectively) were considered as ‘good’, and the RSR value (0.38) was considered as ‘very 10 

good’ according to Moriasi et al. (2007).  11 

On a monthly basis, similar sediment predictions were reported by Hao et al., (2004), and 12 

Santhi et al., (2001). Hao et al. (2004) successfully tested SWAT using sediment data 13 

collected from the Lushi watershed in China. They concluded that the agreement between 14 

observed and SWAT predicted sediment loads was good, with R2 and NSE values of 0.72 on a 15 

monthly time step. Santhi et al. (2001) evaluated SWAT using two gauging stations located in 16 

the Bosque River watershed (Texas, USA) and found a good agreement between measured 17 

and predicted sediment loads (NSE of about 0.75). 18 

A poor relationship between daily observed and simulated TSS loads was observed in the 19 

validation process (Fig. 7C) (R2 = 0.18). On a monthly basis, the agreement between observed 20 

and simulated sediment yields was satisfactory (Fig. 7D). As shown in Table 4, the statistical 21 

results indicate a “satisfactory” SWAT-IRRIG performance in describing monthly sediment 22 

yields. The monthly value of R2 was 0.93, indicating a “very good” agreement between 23 

monthly observed and simulated sediment yields. The value of NSE was 0.52, considered as 24 
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“satisfactory” according to Moriasi et al. (2007). The PBIAS (1.39) and RSR (0.27) values for 1 

the validation process were considered “very good”.   2 

Monthly values of R2 and NSE for the validation period were similar or better than other 3 

sediment modelling studies. Chu et al. (2004) found a poor agreement between observed and 4 

simulated sediment during the validation period using observed monthly data for the Warner 5 

Creek watershed. The values of R2 and NSE were 0.19 and 0.11, respectively. Gikas et al. 6 

(2005) reported that SWAT correctly simulated the transport of sediments within the Vistonis 7 

Lagoon watershed in Greece using data for nine gauging stations. The R2 values ranged from 8 

0.34 to 0.98 on a monthly basis.  9 

  10 

3.6. Total phosphorus (TP) calibration and validation  11 

The daily observed and simulated TP loads showed a relatively good agreement (R2 = 0.34) 12 

during the calibration process. The simulated and measured monthly TP loads were close 13 

(Fig. 8A and B). The NSE, RSR, and PBIAS values (0.66, 0.57, and - 9.75%, respectively) 14 

indicate a “good” simulation of monthly TP loadings during the calibration period (Table 4). 15 

These results are considerably better or similar than the monthly TP calibration reported by 16 

Grunwald and Qi (2006). They found lower NSE values, ranging from -0.89 to 0.07. Hanratty 17 

and Stefan (1998) calibrated SWAT phosphorus predictions using measured data collected in 18 

the Cottonwood watershed in Minnesota, and reported satisfactory TP predictions results 19 

(NSE = 0.54). Using nine gauging stations within the Vistonis Lagoon watershed (Greece), 20 

Gikas et al. (2005) found a good model performance for TP monthly loads with R2 values 21 

ranging from 0.50 to 0.82. 22 

The model TP validation showed a good relationship between observed and simulated TP 23 

loads (Fig. 8 C and D), with an R2 value of 0.70 for the daily data and of 0.71 for the monthly 24 

data. The statistical results indicate a “satisfactory” SWAT-IRRIG performance in predicting 25 
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monthly TP loads at the DRW outlet along the validation process (Table 4). The value of NSE 1 

was 0.76, considered as ‘satisfactory’ according to Moriasi et al. (2007). The percent bias 2 

(PBIAS) between simulated and observed TP loads shows that the simulated TP loads were 3 

relatively over-predicted (PBIAS of 20.8%), but the value was considered as ‘very good’. The 4 

RSR measure showed a monthly value of 0.56 which is also considered as “good”. Monthly 5 

values of R2 and NSE achieved during the validation period were similar or better than those 6 

reported in other SWAT modelling studies. Saleh and Du (2004) achieved a monthly NSE 7 

value of 0.71 for the Upper North Bosque River watershed in Texas. In a study performed by 8 

Tolson and Shoemaker (2007), in the Cannonsville watershed (Texas, USA), the reported 9 

values of R2 (from 0.72 to 0.83) and NSE (from 0.52 to 0.76) were similar to those found in 10 

Del Reguero watershed. In another study performed by White and Chaubey (2005), the values 11 

of R2 and NSE ranged between 0.58 and 0.76 and -0.29 and 0.67, respectively, for three 12 

gauges located in the Beaver Reservoir watershed (Arkansas).  13 

 14 

3.7. Total dissolved phosphorus (TDP) calibration and validation  15 

Results indicated a relatively good relationship between daily observed and simulated TDP 16 

loads (R2 = 0.35) in the calibration process. This relationship was improved when monthly 17 

observed and simulated TDP loads were considered (R2 = 0.50). However, an underestimation 18 

of TDP loads during the February to May period was shown (PBIAS = 40.50%). This 19 

explains the relatively low NSE (NSE = 0.38) obtained (Table 4). Low values of NSE on a 20 

monthly basis were also reported in other SWAT modeling studies. Bouraoui et al. (2002) 21 

performed a study about climate change impacts on nutrient loads in the Yorkshire Ouse 22 

watershed (UK). The monthly value of NSE for TDP calibration was 0.02, which was judged 23 

as very low. Also Chu et al. (2004) achieved a negative value of monthly NSE (-0.08) for 24 

TDP predictions in the Warner Creek watershed. The percent bias (PBIAS) between simulated 25 
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and observed TDP loads shows that they were under-predicted (PBIAS of 11.82%) and that 1 

the RSR was unsatisfactory (RSR of 0.74) (Table 4). 2 

The validation results were better than the calibration results. A good relationship between 3 

observed and simulated TP loads was observed on a daily (R2 = 0.72) and on a monthly (R2 = 4 

0.67) basis (Table 4). The statistical results indicate a “satisfactory” SWAT-IRRIG 5 

performance in describing monthly TDP loads at Del Reguero watershed outlet. Indeed, the 6 

NSE monthly value of 0.56 was considered ‘satisfactory’. The value of PBIAS (19.96%) 7 

shows that simulated TDP loads were somewhat over-predicted, but it was considered as 8 

“very good” according to Moriasi et al. (2007). 9 

The validation monthly values of R2 and NSE achieved in this study are within the range of 10 

variation of those achieved in the study performed by Bracmort et al. (2006) in the Dreisbach 11 

and Smith Fry watersheds (Indiana). Performance values presented by the cited authors were 12 

0.63 and 0.86 for R2, whereas values of NSE ranged from 0.51 to 0.74. Values of R2 (0.65) 13 

and NSE (0.55) found by Chu et al. (2004) for a monthly time step are similar to those found 14 

in this study. In the Upper North Bosque River watershed (Texas), Saleh and Du (2004) 15 

reported a TDP validation NSE value of 0.40 on a monthly basis. 16 

 17 

3.8. Particulate phosphorus (PP) calibration and validation  18 

A poor agreement between daily observed and simulated daily PP loads was obtained (R2 = 19 

0.04) in the calibration process, but the agreement for the monthly data was satisfactory (R2 = 20 

0.66). Cerucci and Conrad (2003) calibrated SWAT-PP predictions using measured data 21 

obtained for the Townbrook watershed in New York, and reported a monthly R2 value of 0.40, 22 

if the measured data from February and March were excluded from the regression.  23 

The monthly NSE value was about 0.66, indicating a good agreement between observed and 24 

simulated PP loads in the calibration period. This result was better than those obtained in 25 
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other SWAT modelling studies. Saleh et al. (2000) evaluated SWAT using data measured at 1 

the Upper Bosque River watershed outlet. They found that the monthly calibration statistics 2 

parameters generally indicated a good model performance for PP loads (NSE = 0.54). In 3 

Texas, Saleh and Du, (2004) tested SWAT predictions of PP using measured data within the 4 

Upper Bosque River watershed. They concluded that SWAT satisfactorily simulated PP losses 5 

with a monthly calibration NSE value of 0.59. The percentage difference between simulated 6 

and observed PP loads shows that simulated PP loads were moderately over-predicted (PBIAS 7 

of 2.68%), but considered as ‘very good’. The RMSE-observation standard deviation ratio 8 

(RSR) showed a monthly value of 0.61, also considered as ‘satisfactory’ (Table 4).  9 

A relatively good relationship (R2 = 0.36) was obtained between the observed and simulated 10 

daily PP loads in the validation process. On a monthly basis the relationship between 11 

observed and simulated PP loads improved (R2 = 0.60). The NSE value was about 0.52, 12 

indicating a “satisfactory” prediction of monthly PP loads. The NSE value achieved during 13 

the validation period was within the range of variation found by Santhi et al. (2001) for the 14 

Bosque River watershed in Texas. Considering the PBIAS value (29.20%), the results show 15 

that the simulated PP loads were over-predicted, although they were considered “good” 16 

according to Moriasi et al. (2007). The RSR value (0.66) was also considered “satisfactory” at 17 

the monthly time step (Table 4).  18 

 19 

4. Conclusions  20 

The SWAT model does not reproduce the irrigation return flows (IRF) at the outlet of 21 

intensive irrigated watersheds when the irrigation source is outside the watershed. SWAT2005 22 

model modifications regarding: (i) the maximum amount of irrigation water to be applied, (ii) 23 

the soil water percolation under irrigation, and (iii) the order of soil water routing were 24 

necessary for model applications to intensive irrigation watersheds such as those found in the 25 
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middle Ebro River Basin (Spain). The SWAT-IRRIG modified version showed better model 1 

performance under irrigated systems. The monthly model calibration (NSE = 0.90, PBIAS = 2 

1.1%, and RSR = 0.33) and validation (NSE = 0.80, PBIAS = 3.2%, and RSR = 0.45) 3 

statistics indicated a “very good” SWAT-IRRIG performance in describing stream discharge 4 

at the outlet of the Del Reguero study watershed. However, the model was unable to predict 5 

satisfactorily the observed streamflow peaks and, therefore, it should be further improved to 6 

obtain better estimations of sediments and particulate phosphorus. The monthly SWAT-7 

IRRIG calibration and validation results indicated, respectively, a “good” and “satisfactory” 8 

performance in describing total phosphorus and total suspended sediment loads measured at 9 

the outlet of Del Reguero watershed. The SWAT-IRRIG model calibrated for hydrology, 10 

sediments and phosphorus can be used to determine the effects of different best management 11 

practices scenarios on phosphorus transfer from irrigated agricultural land to the IRF 12 

receiving water bodies. 13 
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