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Summary 

Growing water extractions combined with emerging demands for environment 

protection increase competition for scarce water resources worldwide, especially in arid 

and semiarid regions. In those regions, climate change is projected to exacerbate water 

scarcity and increase the recurrence and intensity of droughts. These circumstances call 

for methodologies that can support the design of sustainable water management. This 

paper presents a hydro-economic model that links a reduced form hydrological 

component, with economic and environmental components. The model is applied to an 

arid and semiarid basin in Southeastern Spain to analyze the effects of droughts and to 

assess alternative adaptation policies: institutional cooperation, water markets and water 

pricing. Results indicate that drought events have large impacts on social welfare, with 

the main adjustments sustained by irrigation and the environment. The water market 

policy seems to be a suitable option, although the environmental effects may weaken its 

advantages for society. The water pricing policy is the worst option in terms of private 

and environmental benefits. Because of their very large profit losses, farmers will 

oppose strongly water pricing, and the measure would become politically unfeasible.  

The current water management approach in Spain, based on stakeholders’ cooperation, 

achieves almost the same economic outcomes and better environmental outcomes 

compared to a pure water market. These findings call for a reconsideration of the 

current management in basins around the world. The paper illustrates the potential of 

hydro-economic modeling for integrating the multiple dimensions of water resources, 

becoming a valuable tool in the advancement of sustainable water management policies. 

 

Keywords: hydro-economic modeling, droughts, climate change, stakeholders’ 

cooperation, water markets, water pricing, environmental benefits 
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1. Introduction  

The pressure on water resources has been mounting worldwide with water scarcity 

becoming a widespread problem in most arid and semiarid regions around the world. 

Global water extractions have increased more than six-fold in the last century, which is 

more than twice the rate of human population growth. The huge exploitation of water 

resources has resulted in 35 percent of the world population living in regions with 

severe water scarcity. Furthermore, about 65 percent of global river flows and aquatic 

ecosystems are under moderate to high threats of degradation [Alcamo et al., 2000; 

Vörösmarty et al., 2010]. 

Projected future climate change impacts would further exacerbate the current 

situation of water scarcity in arid and semiarid regions. These regions would likely 

experience more severe and frequent droughts, making future water management even 

more difficult [IPCC, 2007]. The impacts of droughts in arid and semiarid regions can 

be substantial because they add on to the existing water scarcity situation. This is the 

case of recent droughts in Australia, the western United States, southern Europe, and 

Africa. 

Severe droughts could have large impacts on agriculture, domestic and industrial 

users, tourism, and on ecosystems. Costs of drought damages seem to be considerable, 

and have been estimated to range from $2 to $6 billion per year in the United States 

[FEMA, 1995; NOAA, 2008], and around 3 billion € per year in the European Union 

[EC, 2007]. These costs represent between 0.05 and 0.1 percent of the gross domestic 

product (GDP), although the costs of drought could be exceptionally higher some years. 

Losses in the Murray-Darling basin (Australia) during 2009 were 20 percent of the 

value of irrigated agriculture, representing about 1 percent of GDP [Kirby et al., 2014].  
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The scale and costs of the global growing overdraft of water resources indicates 

that water mismanagement is quite common, and that sustainable management of basins 

is a complex and difficult task. These difficulties call for the development of 

methodologies that allow a better understanding of water management issues within the 

contexts of scarcity, drought, and climate change. Integrated hydro-economic modeling 

is a potential methodology for implementing comprehensive river basin scale analysis to 

support the design of sustainable water management policies. 

This methodology to model river basin interactions has been previously used in 

several studies, such as Booker and Young [1995], McKinney et al. [1999], Cai et al. 

[2003], Booker et al. [2005], Lund et al. [2006], Pulido et al. [2008], and Ward [2009]. 

The present paper suggests a prototype river basin hydro-economic model that links a 

reduced form hydrological component, with a regional economic optimization 

component and an environmental component. The reduced form hydrological 

component is calibrated to observed water allocations in normal and drought years 

using a regression approach. This new simple approach calibrates adequately the 

hydrological component and captures the basin response flexibility to various water 

availability levels, when detailed hydrological information is not available (which is the 

case in many basins worldwide). The regional economic component includes a detailed 

farm-level optimization model and an urban social surplus model, which differs from 

the usually used piece-wise linear or quadratic equations, exogenously generated, 

relating water use to economic benefits. The environmental component estimates the 

benefits that environmental amenities provide to society in a way that makes them 

comparable with the benefits derived from other uses, which is a challenging task in 

hydro-economic modeling. 
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The integrated model simulates demand nodes’ behavior under different drought 

scenarios and policy intervention alternatives (institutional, agriculture-urban water 

market, and environmental water market policies). The linkage between model 

components allows a rigorous evaluation of drought impacts under the different policy 

settings: allocation among sectors, spatial distribution, use of surface and groundwater, 

land use decisions, and private and social benefits and costs of water utilization. The 

hydro-economic model is empirically tested in a semiarid basin in Southeastern Spain. 

The empirical application provides a valuable illustration of the development procedure 

of hydro-economic modeling, data requirements and calibration processes, as well as its 

use for comprehensive river basin climate and policy impact assessment. 

The contributions of this paper relative to prior literature are both methodological 

and empirical ones, and the insights could be generalized for addressing the current 

mismanagement pervading the main basins in arid and semiarid regions around the 

world. The methodology combines three key elements partially tackled in previous 

hydro-economic modeling: a simplified hydrology circumventing full hydrological 

knowledge, a regional model including all economic sectors, and an explicit benefit 

function of basin ecosystems. This approach could be easily applied to most basins 

around the world.   

Empirically, the results show the advantages of stakeholders’ cooperation for water 

management. This is the institutional approach being implemented in Spain to address 

water scarcity, where stakeholders themselves participate in the design of management 

rules and implementation of enforcement mechanisms. The results show that this 

institutional approach achieves almost the same economic outcomes and better 

environmental outcomes compared to a pure water market policy (Pareto-efficient 
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solution). These findings call for a reconsideration of the current water institutions and 

policies in many arid and semiarid basins, based on command and control instruments 

or else on pure economic instruments, such as water markets or water pricing. These 

instruments, that disregard stakeholders’ role, have failed in reducing water scarcity and 

protecting ecosystems because they lack both legitimacy among stakeholders, and 

knowledge of local conditions. This empirical finding is an important policy issue for 

basins around the world, suggesting that collective action seems to be a key ingredient 

to move towards a more sustainable water management.  

2. Modeling framework  

The hydro-economic river basin model integrates hydrologic, economic, institutional, 

and environmental variables, and involves the main users in the basin, including 

irrigation districts, urban centers, and aquatic ecosystem requirements. The model is 

used to simulate various drought scenarios, and to assess the scope of possibilities to 

improve the environmental and economic outcomes of the basin under those drought 

scenarios.   

Hydro-economic modeling is a powerful tool to analyze water scarcity, drought, 

and climate change issues. These models represent all major spatially distributed 

hydrologic and engineering parts of the studied river basin. Moreover, hydro-economic 

models allow capturing the effects of the interactions between the hydrologic and the 

economic systems, ensuring that the optimal economic results take into account the 

spatial distribution of water resources. The spatial location of water users, such as 

irrigation districts and households with respect to the river stream determines largely the 

magnitude of the impacts of any allocation decision and policy intervention to cope with 

water scarcity [Harou et al., 2009; Maneta et al., 2009].  
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However, developing the hydrologic part of the model is a time-consuming and 

complex task that involves detailed hydrologic knowledge and highly-disaggregated 

biophysical information that may not be available, requiring advanced modeling 

abilities that could represent the complex hydrological relationships. Moreover, 

hydrologic and economic models usually have different resolution techniques, and 

spatial and temporal scales, which further complicate their linkage [Harou et al., 2009]. 

An alternative approach is to use aggregated historical data provided by water 

authorities, together with simulated data and network topology from existing hydrologic 

models. This method is a quick and credible way to build a reduced form hydrological 

model of the studied river basin [Cai et al., 2003].  

The reduced form hydrological model is a node-link network, in which nodes 

represent physical units impacting the stream system, and links represent the connection 

between these units. The nodes that could be included in the network are classified into 

two types: supply nodes, such as rivers, reservoirs, and aquifers; and demand nodes, 

such as irrigation districts, households, and aquatic ecosystems. The links could be 

rivers or canals (See below the representation of the Jucar model in figure 3).  

The flows of water are routed between nodes using basic hydrologic concepts, such 

as mass balance and river flow continuity equations. The mass balance principle could 

be applied for surface flow, reservoir, and aquifer levels. The model is initially 

constrained by a known volume of water availability into the basin, and this volume can 

be varied depending on climate scenarios. Boundary conditions in the form of lower and 

upper bound constraints, such as minimum volume of water stored in reservoirs and 

maximum reservoirs and aquifers depletion, could be incorporated anywhere in the 

network. Institutional constraints could be added to the network to characterize the 
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basin’s allocation rules. River basin authorities worldwide have developed numerous 

institutional rules to allocate water among uses for political, legal, or environmental 

reasons. Examples include water rights, water sharing arrangements, and minimum 

environmental flows of river reaches. These constraints typically limit the choice of the 

hydro-economic model to optimally allocate water among uses [Ward, 2009].   

The development of the reduced form hydrological model requires accurate 

information on the geographical location of both supply and demand nodes, and the 

links and interactions between them (such as surface water diversion, groundwater 

extractions, return flows, wastewater discharge, reuse), and physical characterization of 

the nodes. Additionally, the model development needs information on water inflows 

(available runoff) time series measured at the considered headwater stream gauges, time 

series data on water use of demand nodes, streamflow time series data measured or 

estimated at selected river gauges, and infrastructure features at each node, including 

facility capacities, losses, and evaporation.   

The reduced form hydrological model allows controlling the flows of water in each 

node and estimating the distribution of the available water among users under each 

climate condition. The model is calibrated so that predicted allocations to users in both 

normal and drought periods match historical water allocations in those periods. The 

calibration process involves defining time series data on streamflows at the considered 

stream diversion gauges, and the diversion of water for the demand nodes from those 

gauges during normal flow and drought years. In this paper, a regression approach 

modeling the relationship between water availability and diversion at each node has 

been used to calibrate the reduced form hydrological model. The calibration of the 

model may pose difficulties derived from the unobserved variables involved in the 
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water allocation decisions, and the uncertainty linked to water use data. Letcher et al. 

[2007] suggest that integrated models should not be developed for prediction purposes, 

but to support the understanding of basin responses to changes, such as climate or 

policy changes.   

The reduced form hydrological model, once calibrated, is incorporated into an 

economic framework. The linkage between the hydrologic and economic components 

requires adding several relationships that allow transferring information and feedback 

from one model component to the other. The economic benefits from water use in the 

irrigation sector are jointly determined using calibrated mathematical programming 

models that search for the optimal behavior of irrigation demand nodes subject to a set 

of technical and resource constraints. Alternatively, empirically estimated benefit 

functions, using econometric models that rely on the observed behavior of irrigation 

demand nodes could be used. Generally, calibrated mathematical programming models 

are computationally intensive, while econometric models are data intensive. The 

required data for econometric models is usually not available at a scale suitable for 

regional analysis, and they are less suitable for changing economic and biophysical 

conditions [Young and Loomis, 2014].  

The economic benefits from urban water use are often found by measuring the 

social surplus derived from inverse water demand functions estimated using 

econometric techniques. Demand functions relate water use to the price of water and 

other explanatory variables such as income, climate, and household structure [Young 

and Loomis, 2014]. Environmental benefits provided by aquatic ecosystems could be 

modeled by developing ecological response models of those ecosystems and using 

existing economic valuation studies [Keeler et al., 2012]. Otherwise, environmental  
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Figure 1. Modeling framework. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

water uses may be represented with minimum-flow constraints if environmental 

valuation studies and ecosystem health indicators are unavailable.  

The integrated hydro-economic model could then be used to simulate the effects of 

various drought scenarios on water uses in the studied river basin under the current 

institutional and policy setting predefined by the modeler. The procedure is as follows: 

(1) the calibrated reduced form hydrological model predicts water flows in each node 

and endogenously provides water availability constraints (supply) to the economic and 

environmental models, and (2) the economic and environmental models simultaneously 

determine water demand in each node to maximize nodes’ economic benefits from 

water use. Different policy constraints could be added to the underlying framework or 
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some existing constraints could be relaxed to investigate alternative allocation rules, 

institutional arrangements and policy interventions.   

The modeling framework described in this section is summarized in figure 1 and it 

is applied to the drought management problem in a semiarid basin in Southeastern 

Spain, the Jucar River Basin. The next section provides background information on the 

basin, and the following sections present the design and calibration of the reduced form 

hydrological model and that of the economic models to the conditions in the Jucar River 

Basin.  

3. The Jucar River Basin: Background information     

The approach to water management in Spain is institutional and relies on the river basin 

authorities. The rationale behind that approach is the different types of goods and 

services provided by water, which can be classified as private goods, common pool 

resources, or public goods. Treated drinkable water in urban networks is close to a 

private good, irrigation water from surface watercourses and aquifers is close to a 

common pool resource, while water sustaining ecosystems comes close to a public good 

[Booker et al., 2012]. The common pool and public good characteristics of water is a 

good reason for the institutional approach based on basin authorities achieving the 

collective action of stakeholders.   

The basin authorities in Spain are responsible for water management, water 

allocation and water public domain, planning and waterworks. The special characteristic 

of this institutional approach is the key role played by stakeholders in basin authorities. 

Stakeholders are inside basin authorities taking decisions in the basin governing bodies 

and in local watershed boards, and they are involved at all levels of decision making: 

planning, financing, waterworks, measures design, enforcement, and water  
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Figure 2. Map of the Jucar River Basin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

management. The management of water is decentralized, with the basin authorities in 

charge of water allocation, and water user associations in charge of secondary 

infrastructure, water usage, operation and maintenance, investments, and cost recovery. 

The main advantage of this institutional setting is that stakeholders cooperate in the 

design and enforcement of decisions, rules and regulations, and therefore the 

implementation and enforcement processes are carried on smoothly. 

The Jucar River Basin (henceforth JRB) is located in the regions of Valencia and 

Castilla La Mancha in Southeastern Spain (Figure 2). It extends over 22,300 Km2 and 

covers the area drained by the Jucar River and its tributaries, mainly the Magro and the 

Cabriel Rivers. The basin has an irregular Mediterranean hydrology, characterized by 

recurrent drought spells and normal years with dry summers.  



12 

 

The basin includes 13 reservoirs, the most important of which are the Alarcon, 

Contreras and Tous dams. There are two major water distribution canals: the Acequia 

Real canal, which conveys water from the Tous dam to the traditional irrigation districts 

in the lower Jucar, and the Jucar-Turia canal, which transfers water from the Tous dam 

to irrigation districts located in the bordering Turia River Basin.  

At present, renewable water resources in the JRB are nearly 1,700 Mm3, of which 

930 are surface water and 770 are groundwater resources. Water extractions are 1,680 

Mm3, very close to renewable resources, making the JRB an almost closed water 

system. Extractions for irrigated agriculture are nearly 1,400 Mm3. Urban and industrial 

extractions total 270 Mm3, which supply households, industries, and services of more 

than one million inhabitants, located mostly in the cities of Valencia, Sagunto and 

Albacete.  

The irrigated area extends over 190,000 ha, and the main crops grown are rice, 

wheat, barley, garlic, grapes, and citrus. There are three major irrigation areas, the 

Eastern La Mancha irrigation area (henceforth EM) is located in the upper Jucar, the 

traditional irrigation districts of Acequia Real del Jucar (henceforth ARJ), Escalona y 

Carcagente (henceforth ESC), and Ribera Baja (henceforth RB) are in the lower Jucar, 

and the irrigation area of the Canal Jucar-Turia (henceforth CJT) is located in the 

bordering Turia River Basin. 

The expansion of water extractions and the severe drought spells in recent decades 

have triggered considerable negative environmental and economic impacts in the basin 

[CHJ, 2009]. The growth of water extractions has been driven especially by 

groundwater irrigation from the EM aquifer. The aquifer water table has dropped about 

80 m in some areas, resulting in large storage depletion, fluctuating around 2,500 Mm3. 



13 

 

The aquifer is linked to the Jucar River stream, and it fed the Jucar River with about 150 

Mm3/year in the 1980s. Due to the depletion, the aquifer is at present draining the water 

flow of the upper Jucar rather than feeding it, at an average of 70 Mm3/year during 

2001–2005 [Sanz et al., 2011]. 

Environmental flows are dwindling in many parts of the basin, resulting in serious 

damages to water-dependent ecosystems. The environmental flow in the final tract of 

the Jucar River is below 1 m3/s, which is very low compared with the other two major 

rivers in the region, the Ebro and Segura Rivers. In addition, there have been negative 

impacts on the downstream water users. For instance, the water available to the ARJ 

district has been reduced from 700 to 200 Mm3 in the last 40 years. Consequently, the 

dwindling return flows from the irrigation districts have caused serious environmental 

problems to the Albufera wetland, the main aquatic ecosystem in the JRB, which is 

mostly fed by these return flows [Garcia-Molla et al., 2013].  

The Albufera wetland is a freshwater lagoon with an area covering 2,430 ha, supporting 

very rich aquatic ecosystems. The Albufera is a RAMSAR site and a special protected 

area for birds. The Albufera receives water from the return flows of the ARJ and RB 

irrigation districts. Other flows originate from the Turia River Basin, and from 

discharges of untreated and treated urban and industrial wastewaters in the adjacent 

municipalities. At present, the wetland suffers from the reduction of inflows originating 

from the Jucar River and the degradation of water quality. The Jucar River flows play 

an important role in improving the quality of urban and industrial wastewater discharges 

to the wetland and in meeting its minimum water requirements. Water inflows reduction 

and quality degradation has caused severe damages to the Albufera wetland, triggering 

the decline of fish populations and recreation services [Sanchis, 2011]. 
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Figure 3. JRB network. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. The model components 

The hydro-economic model includes three components: (1) a reduced form hydrological 

model, (2) a regional economic model, and (3) an environmental benefit model. The 

features of each model and the estimation procedure used for its coefficients are 

described below (See Kahil et al. [2014] for further details). 

4.1. Reduced form hydrological model  

The model is applied, using data from the Jucar basin authority [CHJ, 2009]. The model 

is calibrated to water allocations in both normal and drought periods, taking into 

account the response of the basin authority to three consecutive years in the last drought 

period from 2006 to 2008. Figure 3 presents the hydrological network of the basin, 

including the most important infrastructures, and water supply and demand nodes. 
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The reduced form hydrological model of the JRB is based on the principles of 

water mass balance and continuity of river flow, which determine the volume of water 

availability that can be used for economic activities after considering the environmental 

restrictions. The mathematical formulation of the reduced form model is as follows: 

 

ௗݐݑ݋ܹ                  ൌ ܹ݅݊ௗ െ ௗݏݏ݋݈ܹ െ ௗݒ݅ܦ
ூோ െ ௗݒ݅ܦ

௎ோ஻                                       (1) 
 

             ܹ݅݊ௗାଵ ൌ ௗݐݑ݋ܹ ൅ ௗݎ
ூோ · ሺݒ݅ܦௗ

ூோሻ ൅ ௗݎ
௎ோ஻ · ሺݒ݅ܦௗ

௎ோ஻ሻ ൅ ܴܱௗାଵ                 (2) 
 

ௗݐݑ݋ܹ                                       ൒ ௗܧ
௠௜௡                                                                        (3) 

The mass balance equation (1) determines the water outflow ܹݐݑ݋ௗ from a river 

reach d, which is equal to water inflow ܹ݅݊ௗ minus the loss of water ܹ݈ݏݏ݋ௗ 

(including evaporation, seepage to aquifers and any other loss) and the diversions for 

irrigation ݒ݅ܦௗ
ூோ, and urban and industrial uses ݒ݅ܦௗ

௎ோ஻. The continuity equation (2) 

guarantees the continuity of river flow, where the water inflow to the next river reach 

ܹ݅݊ௗାଵ is the sum of outflow from upstream river reach ܹݐݑ݋ௗ, the return flows from 

previous irrigation districts [ݎௗ
ூோ · ሺݒ݅ܦௗ

ூோሻ], the return flows from the cities [ݎௗ
௎ோ஻ ·

ሺݒ݅ܦௗ
௎ோ஻ሻ], and runoff entering that river reach from tributaries, ܴܱௗାଵ. Equation (3) 

states that the water outflow ܹݐݑ݋ௗ from a river reach d must be greater than or equal 

to the minimum environmental flow ܧௗ
௠௜௡ in that river reach.  

Water diversions for irrigation districts ݒ݅ܦௗ
ூோ and for urban and industrial uses 

ௗݒ݅ܦ
௎ோ஻, and minimum environmental flows ܧௗ

௠௜௡, are governed by a set of allocation 

rules defined in the JRB’s regulations, which are implemented by the basin authority in 

response to climate conditions and reservoir storage. The hydrological plan of the JRB 

defines surface water allocations in the basin following the historical water rights and 

the access to groundwater resources. The Alarcon agreement of 2001 transferred the 
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ownership of the Alarcon dam from farmers in the lower Jucar with seniority rights to 

the public administration, in exchange for guarantees on water rights and water use 

priority to these traditional districts. The agreement establishes that during drought 

situations, selected users could continue extracting surface water but they have to pay 

compensation to the traditional irrigation districts that are reducing surface extractions. 

Additionally, these traditional districts get a special authorization to substitute surface 

water for groundwater during drought, and the compensation covers the costs of 

groundwater pumping.  

The JRB drought plan, approved in 2007, includes an integrated system of 

hydrological indicators that are used to declare the state of alert or full drought. Drought 

events trigger progressively stronger measures as the drought situation worsens. The 

drought plan allocates water following the priority rules that guarantee the provision of 

urban, industrial and environmental demand, while giving low priority to irrigation 

[CHJ, 2007]. The draft of the upcoming hydrological plan of the JRB proposes 

minimum environmental flows for the different reaches of the Jucar River, based on 

technical studies that evaluate ecosystem needs for each reach [CHJ, 2009].  

Water diversions for the different uses under the current institutional setting have 

been approximated by regression equations. These equations model the relationship 

between water diversion for each demand node (ݒ݅ܦௗ
ூோ or ݒ݅ܦௗ

௎ோ஻, as dependent 

variables) and the net water inflow to the corresponding river reach (ܹ݅݊ௗ, as an 

explanatory variable). These relationships have been calculated using data on water 

diversions and water inflows in each diversion node for a normal flow year and for each 

year in the drought period (2006, 2007, and 2008). The advantage of using the 

regression approach instead of fixed allocation coefficients is that it captures implicitly 
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the flexibility of the basin authority’s response to drought including water allocation 

rules and reservoir operation regimes. The distinctive feature of the current management 

(baseline scenario) in the JRB is the institutional approach to water management, based 

on river basin authorities that organize the collective action of stakeholders. This 

approach is based on negotiated arrangements and stakeholders’ cooperation. The water 

allocations in the baseline scenario are the result of this collective action process. These 

allocations are captured in the model through the use of the regression equations. When 

water market scenarios are simulated, the regression equations are removed from the 

model, and market-based (equi-marginal principle) water allocations are driven by the 

optimization of economic benefits.  

Information on groundwater extractions by demand node has been incorporated 

exogenously into the reduced form hydrological model to cover the demand of each 

node [CHJ, 2009]. It is assumed that groundwater use in the EM irrigation district 

decreases as drought severity intensifies, based on the observed cooperative behavior of 

farmers in the last two decades. This behavior is driven by the pressures of the basin 

authority with the political influence of the downstream stakeholders, calling for the 

control of extractions and threatening farmers by not issuing water rights [Sanz et al., 

2011; Esteban and Albiac, 2012]. Increases in groundwater extractions in certain 

irrigation districts are allowed by the basin authority during drought periods within the 

framework of the Alarcon agreement. These additional extractions are restricted in the 

model based on past maximum pumping levels [IGME, 2009]. In this paper, 

groundwater dynamics and pumping costs are held constant because of the short run 

nature of the model. Furthermore, the major groundwater extractions in the JRB are 

those of the EM aquifer, which is the largest aquifer system in Spain. Any changes in its 

water table level require a very long period of time. 
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The interaction between the Jucar River and EM aquifer has been approximated by 

a linear regression equation covering the period 1984 to 2004. The dependent variable is 

the discharge ܳ from aquifer to river, and the explanatory variable is groundwater 

pumping ீܹௐ. This approximation follows the results by Sanz et al. [2011] indicating 

that there is a linear relationship between the Jucar River depletion and groundwater 

extraction in the EM aquifer. Sanz et al. [2011] find that although groundwater 

extractions increased considerably from 1980s, the depletion of the aquifer has been 

lower than expected because of the aquifer recharge coming from the Jucar River. Only 

a contemporary (one period) river-aquifer interaction is included in the reduced form 

hydrological model, given the short run or static nature of the analysis.  

4.2. Regional economic model  

The regional economic model accounts for the decision processes made by irrigation 

users in the five major irrigation districts (EM, CJT, ARJ, ESC, and RB) and by urban 

users in the three main cities (Valencia, Albacete, and Sagunto).  

A farm-level model has been developed for each irrigation district, which 

maximizes farmers’ private benefits of the chosen crop mix subject to technical and 

resource constraints. A Leontief production function technology is assumed with fixed 

input and output prices, in which farmers are price takers. The optimization problem is 

given by the following formulation: 

 
௞ܤ ݔܽܯ                          

ூோ ൌ ∑ ௜௝௞ܥ
′ · ௜ܺ௝௞௜௝                                                           (4)  

subject to 
                                  ∑ ௜ܺ௝௞௜ ൑ ݈ܶܽ݊݀௞௝  ;   ݆ ൌ ,݀݋݋݈݂ ,ݎ݈݁݇݊݅ݎ݌ݏ  (5)                   ݌݅ݎ݀
 
                                  ∑ ௜ܹ௝௞௜௝ · ௜ܺ௝௞ ൑  ௞                                                         (6)ݎ݁ݐܽݓܶ
 
                                  ∑ ௜௝௞௜௝ܮ · ௜ܺ௝௞ ൑  ௞                                                           (7)ݎ݋ܾ݈ܽܶ
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                                  ௜ܺ௝௞ ൌ ∑ ௡௡ߙ · ௜ܺ௝௞௡ ;  ∑ ௡௡ߙ ൌ ௡ߙ ; 1 ൒ 0                               (8) 
 
                                  ௜ܺ௝௞ ൒ 0                                                                                      (9) 
 

where ܤ௞
ூோ is private benefit in irrigation district ݇ and ܥ௜௝௞

′  is net income per hectare of 

crop i using irrigation technology j. The decision variable in the optimization problem is 

௜ܺ௝௞, the area of crop ݅ under irrigation technology ݆. Crops are aggregated into three 

representative groups: cereals, vegetables, and fruit trees. Irrigation technologies are 

flood, sprinkler, and drip. 

The land constraint (5) represents the irrigation area equipped with technology ݆ in 

district ݇, ݈ܶܽ݊݀௞௝. The water constraint (6) represents the water available in district ݇, 

 ௞, which is the sum of surface water and groundwater extractions. Parameterݎ݁ݐܽݓܶ

௜ܹ௝௞ is gross water requirements per hectare of crop ݅ with technology ݆. The water 

constraint level is the connecting variable between the economic optimization model of 

irrigation districts and the reduced form hydrological model. The labor constraint (7) 

represents labor availability in district ݇, ݈ܾܶܽݎ݋௞. Parameter ܮ௜௝௞ is labor requirements 

per hectare of crop ݅ using technology ݆.  

The aggregation constraint (8) forces crop production activities ௜ܺ௝௞ to fall within a 

convex combination of historically observed crop mixes ௜ܺ௝௞௡, where the index ݊ 

indicates the number of the observed crop mixes. The aggregate supply response 

solution determines endogenously the weight variables ߙ௡ during the optimization 

process, because the optimal solution is the weighted sum of the corresponding crops 

mixes [Önal and McCarl, 1991]. Mathematical programming models have to account 

for the aggregation problem when performing an analysis at regional level, because 

farms are heterogeneous. The convex combination approach solves the aggregation 
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problem using theoretical results from linear programming. Other procedures such as 

the representative farm approach and the positive mathematical programming make 

quite strong assumptions on farm responses.  

Detailed information on the technical coefficients and parameters have been 

collected from field surveys, expert consultation, statistical reports, and reviewing the 

literature. This information covers crop yields and prices, subsidies, crop water and 

labor requirements and parcel irrigation efficiencies, water and production costs, land 

and labor availability, and groundwater extractions [GV, 2009; GCLM, 2009; INE, 

2009; MARM, 2010]. The district models are calibrated for the year 2009 (a normal flow 

year), with observed crop area, water use, and net income of each irrigation district by 

crop group (Table 1).  

For urban water uses, an economic surplus model has been developed for each city 

in the basin. The model maximizes social surplus given by the consumer and producer 

surplus from water use in each city, subject to several physical and institutional 

constraints. The optimization problem is:  

 

௨ܤ ݔܽܯ  
௎ோ஻ ൌ ቀܽௗ௨ · ܳௗ௨ െ ଵ

ଶ
· ܾௗ௨ · ܳௗ௨

ଶ െ ܽ௦௨ · ܳ௦௨ െ ଵ

ଶ
· ܾ௦௨ · ܳ௦௨

ଶ ቁ             (10) 

 
subject to 
                                                      ܳௗ௨ െ ܳ௦௨ ൑ 0                                                     (11) 
 

                                              ܳௗ௨ ;  ܳ௦௨ ൒ 0                                                       (12) 
 

where ܤ௨
௎ோ஻ is the consumer and producer surplus of city u. Variables Qdu and Qsu are 

water demand and supply by/to the city u, respectively. Parameters adu and bdu are the 

intercept and slope of the inverse demand function, while parameters asu and bsu are the 

intercept and slope of the water supply function. Equation (11) states that supply must 
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be greater than or equal to demand. The quantity supplied, Qsu, is the connecting 

variable between urban use optimization models and the reduced form hydrological 

model. This research adapts the empirical water demand findings for Valencia, 

Albacete, and Sagunto from the study by Collazos [2004]. Urban water use decisions 

are simulated through the price mechanism, in which information on changed supplies 

is transmitted through price changes. Information on urban water prices and costs are 

taken from the Jucar basin authority reports [CHJ, 2009] (Table 1).   

4.3. Environmental benefit model  

The river basin model accounts for environmental benefits generated by the main 

aquatic ecosystem in the JRB, the Albufera wetland. Wetlands provide a wide range of 

services to society, including food production, groundwater recharge, nutrient cycling, 

carbon sequestration, habitat for valuable species, and recreational opportunities 

[Woodward and Wui, 2001]. Estimating wetland benefits in a way that makes them 

comparable with the benefits derived from other uses is helpful for the design of 

sustainable water management policies [Turner et al., 2000]. 

The environmental benefit model developed here considers only water inflows to 

the Albufera wetland originating from irrigation return flows of the ARJ and RB 

irrigation districts. Inflows and benefits of the Albufera wetland are given by the 

following expressions: 

 
஺௟௕௨௙௘௥௔ܧ           ൌ ߙ · ஺ோ௃ݎ

ூோ · ൫ݒ݅ܦ஺ோ௃
ூோ ൯ ൅ ߚ · ோ஻ݎ

ூோ · ሺݒ݅ܦோ஻
ூோ ሻ                            (13) 

 

஺௟௕௨௙௘௥௔ܤ    ൌ ቐ

ଵ                                                  ݂݅ 0ߜ ൑ ஺௟௕௨௙௘௥௔ܧ ൑ ଵܧ

ଶߜ ൅ ଶߩ · ଵܧ  ݂݅                 ஺௟௕௨௙௘௥௔ܧ ൏ ஺௟௕௨௙௘௥௔ܧ ൑ ଶܧ

ଷߜ ൅ ଷߩ · ଶܧ  ݂݅                 ஺௟௕௨௙௘௥௔ܧ ൏ ஺௟௕௨௙௘௥௔ܧ ൑ ଷܧ

         (14) 
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where equation (13) determines the quantity of water flowing to the Albufera wetland 

from irrigation return flows, ܧ஺௟௕௨௙௘௥௔. Parameters α and β represent the shares of return 

flows that feed the wetland from the ARJ and RB irrigation districts, respectively. The 

products [ݎ஺ோ௃
ூோ · ሺݒ݅ܦ஺ோ௃

ூோ ሻ] and [ݎோ஻
ூோ · ሺݒ݅ܦோ஻

ூோ )] are return flows from the ARJ and RB 

irrigation districts, respectively. Equation (14) represents economic environmental 

benefits, ܤ஺௟௕௨௙௘௥௔, from the services that the Albufera wetland provides to society. The 

economic environmental benefit function is assumed to be a piecewise linear function of 

water inflows, ܧ஺௟௕௨௙௘௥௔, to the wetland. This function expresses shifts in the ecosystem 

status when critical thresholds of environmental conditions (water inflows in this case) 

E1 and E2 are reached, while E3 is the maximum observed inflow. This functional form 

is adapted from the study by Scheffer et al. [2001], indicating that ecosystems do not 

always respond smoothly to changes in environmental conditions, but they may switch 

abruptly to a contrasting alternative state when these conditions approach certain critical 

levels. ܧ஺௟௕௨௙௘௥௔ is the connecting variable between the environmental benefit model, 

the economic regional model, and the reduced form hydrological model. 

Time series data of various ecosystem health indicators of the Albufera wetland 

have been collected including the quantity of water inflows, the number of water 

replenishments, chlorophyll a and phosphorus concentration, and salinity level, to 

calculate a unique health index of the wetland for each year of available data following 

the methodology developed by Jorgensen et al. [2010]. We assume that environmental 

benefits of the wetland are a function of its ecosystem health. With one year’s worth of 

information about the economic value of the wetland, we extrapolate the economic 

value for each year of the available data using the health index of such year. Once the 

economic values are calculated for each year, the thresholds E1 and E2 in the health  
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Table 1. Parameters of the JRB model. 
Parameters Value Unit 

Total irrigated area 157,000 ha 
   Cereals area 70,650 ha 
   Vegetables area 21,980 ha 
   Fruit trees area 64,370 ha 
   Flood irrigation area 28,260 ha 
   Sprinkler irrigation area 58,090 ha 
   Drip irrigation area 70,650 ha 
Average irrigation water price  0.05 €/m3 
Average urban water price 0.71 €/m3  
Inverse water demand functions for cities 
   Intercept (adu) 
       Valencia 6 € 
       Albacete 6 € 
       Sagunto 6 € 
   Slope (bdu) 
        Valencia -0.06  €/Mm3 
        Albacete -0.3  €/Mm3 
        Sagunto -0.5  €/Mm3  
Benefit function of the Albufera from water inflows 
      Intercept (ߜଵሻ 33 106 € 
   First threshold of inflows to the Albufera (ܧଵሻ 51 Mm3 
      Intercept (ߜଶሻ -214 106 € 
      Slope (ߩଶሻ 4.8 €/m3 
   Second threshold of inflows to the Albufera (ܧଶሻ 78 Mm3 
      Intercept (ߜଷሻ 43 106 €  
      Slope (ߩଷሻ 1.8 €/m3  
   Third threshold of inflows to the Albufera (ܧଷሻ 138 Mm3 
Economic value of the Albufera wetland 13,600 €/ha 

 

index are determined, and the relationships between the environmental benefits and 

water inflows to the wetland are estimated.  

The economic value of the Albufera wetland used to estimate the environmental 

benefit function is approximated, using the results from Del Saz and Perez [1999] on 

the recreation value of the Albufera wetland in the 1995, and other studies from the 

literature that estimate non-recreation values of wetlands [Woodward and Wui, 2001; 

Brander et al., 2006]. The economic value used for estimating the environmental 

benefit function of the Albufera wetland, and the parameters estimates are presented in 

Table 1.  

4.4. JRB optimization model 

The JRB optimization model integrates the three components presented earlier. The 

model maximizes total basin benefits subject to the hydrological constraints and the 
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constraints of the individual economic sector optimization models. The optimization 

problem for the whole river basin takes the following form: 

∑൫ ݔܽܯ                                ௟௟ܤ ൅ ݈ ׊   ஺௟௕௨௙௘௥௔൯ܤ ൌ ݇,  (15)                             ݑ

subject to the constraints in equations (1), (2), (3), (5), (6), (7), (8), (9), (11), (12), (13), 

and a set of constraints that defines the allocation of water among users depending on 

the policy intervention alternative that will be presented in section 6.1:                                        

ௗݒ݅ܦ                                                
௟ ൌ ݂ሺܹ݅݊ௗሻ   ׊ ݈, ݀                                       (16) 

                                                ∑ ௗݒ݅ܦ
௟

௟ௗ ൑ ܹ                                                       (17) 

where ܤ௟ is the benefits of each demand node ݈ and ܤ஺௟௕௨௙௘௥௔ is the environmental 

benefits provided by the Albufera wetland to society. Equations (16) and (17) are used 

to allocate water among users under the baseline scenario. Equations (16) ensures that 

water diversion, ݒ݅ܦௗ
௟ , for each demand node ݈ located in a river reach ݀ is a function, 

݂ሺ. ሻ, of net water inflow to the corresponding river reach, ܹ݅݊ௗ. Equation (17) ensures 

that the sum of water diversions to all users, ݒ݅ܦௗ
௟ , does not exceed water available for 

the whole basin, ܹ. Under the water market scenarios, equation (16) is removed from 

the model and only equation (17) is used to allocate water among users.   

5. Data sources and hydrological relationships   

Information about water inflows to the main reservoirs and river reaches has been taken 

from the reports and modeling efforts of the Jucar basin authority. The annual reports 

provide historical data on gauged inflows in the basin, while the hydrological model of 

the JRB “AQUATOOL” provides additional information on the circulating flows in the 

basin [CHJ, 2002, 2012; Deidda, 2004; Collazos, 2004] (Figure 4).  
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Figure 4. Surface water inflows to the main reservoirs and river reaches (a) and 
diversions for the demand nodes (b) in the JRB. 

 

 
 

 
 
 

 

 

 

 

Water diversions for irrigation have been calculated using detailed information on 

crop areas and water requirements, and irrigation technologies and efficiencies in each 

irrigation district [INE, 2009; GV, 2009; GCLM, 2009]. Water diversions for cities and 

industries have been taken from the Jucar basin authority [CHJ, 2002, 2009], where the 

water diversion to the nuclear power plant of Cofrentes (henceforth NCC) is always 

maintained at a fixed level (Figure 4).  

Return flows have been calculated as the fraction of diverted water not used in crop 

evapotranspiration [ݎௗ
ூோ · ሺݒ݅ܦௗ

ூோሻ] and urban consumption [ݎௗ
௎ோ஻ · ሺݒ݅ܦௗ

௎ோ஻ሻ]. Most 

return flows originate from irrigation, with overall irrigation efficiency estimated at 60 

percent, given the efficiency of farm plots and primary and secondary conveyance 

networks. Information about the distribution of return flows is taken from the reports of 

the basin authority [CHJ, 2009]. 

A good ecological status of the Albufera wetland is directly linked to the return 

flows from the ARJ and RB districts in the lower Jucar. Studies by the Jucar basin 

authority provide information on the amount and sources of water flows feeding the 

Albufera wetland during recent years [CHJ, 2009]. Following these studies, the  
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Table 2. Relationships between water diversions and inflows. 
Demand nodes  Regression equations*

Albacete**  ݒ݅ܦ௎ோ஻ ൌ 5.2089 ൅ 0.0358 · WinA୪ୟ୰ୡ୭୬                                  (0.98) 
EM irrigation district**  ݒ݅ܦூோ ൌ െ5.3319 ൅ 0.0562 · WinA୪ୟ୰ୡ୭୬                                  (0.98) 
Jucar River-EM aquifer interaction**  ܳ ൌ 475.06 െ 1.2214 · WGW                                                     (0.50) 
Valencia† ݒ݅ܦ௎ோ஻ ൌ 21.806 ൅ 0.086 · WinT୭୳ୱ                                        (0.86) 
Sagunto***  ݒ݅ܦ௎ோ஻ ൌ 1.9201 ൅ 0.007 · WinT୭୳ୱ                                        (0.93) 
CJT irrigation district††  ݒ݅ܦூோ ൌ 22.44 െ 0.1173 · WinT୭୳ୱ ൅ 0.0002 · WinT୭୳ୱ

ଶ           (0.99) 
ARJ irrigation district†   ݒ݅ܦூோ ൌ 52.364 ൅ 0.1761 · WinT୭୳ୱ                                         (0.76) 
ESC irrigation district††   ݒ݅ܦூோ ൌ 1.344 ൅ 0.0384 · WinT୭୳ୱ                                           (0.57) 
RB irrigation district*** ݒ݅ܦூோ ൌ 31.25 ൅ 0.1988 · ሺWinT୭୳ୱ ൅ WinSRଵ ൅ rIR · DivIRሻ  (0.91) 

Note: WinA୪ୟ୰ୡ୭୬= Water inflows to Alarcon dam; WinT୭୳ୱ= Water inflows to Tous dam; WinSRଵ= Water inflows 
from small rivers 1; rIR · DivIR= Irrigation return flows from previous irrigation districts; WGW= Groundwater 
pumping. * R2 are in parenthesis; ** Regression coefficients significant at p<0.01; *** Regression coefficients 
significant at p<0.05; † Regression coefficients significant at p<0.1; †† Regression coefficients significant at p<0.2. 

 

Albufera receives 28 and 23 percent of the return flows from the ARJ and RB districts, 

respectively. These return flows distribution coefficients are held constant for all 

drought scenarios.  

Table 2 presents the relationships between water diversions for demand nodes and 

water inflows to the diversion nodes, and also the Jucar River-EM aquifer relationship. 

For simplicity, all estimated relationships have been assumed linear, except in the case 

of the CJT irrigation district for which a quadratic specification seems more suitable. 

These equations are used to reproduce the observed water allocations to users under 

normal flow and drought years. After validation, they are used to simulate the allocation 

of water under the baseline scenario for the hypothetical future drought scenarios that 

will be presented in section 6.1.       

The reduced form hydrological model is validated by comparing the simulated and 

observed values of water diversions in the demand nodes for normal flow and drought 

years. The robustness of the model results are tested using the coefficient of 

determination (R2) and the Nash-Sutcliffe efficiency coefficient (NSE, ranges from 1 to 

-∞) [Krause et al., 2005]. The validation results verify the robustness of the reduced 

form hydrological model, because the values of R2 range between 0.55 and 0.99, and 

the values of NSE range between 0.54 and 1. The outcomes are broadly consistent,  
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Table 3. Simulated (Sim) and Observed (Ob) water diversions (Mm3). 

Demand nodes 
Normal flow 2006 2007 2008 Statistical measures
Sim  Ob  Sim Ob  Sim  Ob  Sim  Ob  R2 NSE  

Albacete 17 17 8 8 11 11 9 10 0.99 0.98 
EM 13 13 0 0.2 4 5 1 0 0.99 0.98 
NCC 14 14 14 14 14 14 14 14 - 1 
Valencia 94 95 41 42 59 47 56 66 0.86 0.86 
Sagunto 8 8 3 4 5 5 5 4 0.84 0.81 
CJT  64 70 6 7 9 14 7 5 0.99 0.98 
ARJ  200 213 92 120 129 100 123 110 0.76 0.76 
ESC  33 38 10 20 18 10 17 10 0.55 0.54 
RB  243 254 87 110 136 110 126 120 0.91 0.91 
Albufera 51 55 21 27 30 24 29 26 0.85 0.85 
Total 738 777 282 352 415 340 387 365 0.91 0.91 

 

indicating that the model reproduces adequately the hydrologic conditions. However, 

the differences between the simulated and observed outcomes are sizable for some 

demand nodes in both normal and drought years. These differences are probably 

explained by the limited number of observations in the data series used for the 

estimation (Table 3). A detailed description of the validation process can be found in 

Kahil et al. [2014]. 

6. Results and discussion  

6.1. River basin model application and scenarios   

The modeling framework is used to analyze the impacts of climate change-induced 

drought on water uses in the JRB. Given the uncertainty associated with future climate 

change, three alternate drought scenarios are developed to reflect a range of possible 

future water availability in the basin. Drought scenarios expressed as a percentage 

reduction of normal year water inflows are the following: mild (-22 percent), severe (-

44 percent), and very severe (-66 percent). The characterization of drought scenarios 

severity is based on historical water inflows following the classification procedure of 

drought severity by the Jucar basin authority. 
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Estimations of climate change impacts in the Jucar basin indicate a reduction of 

water availability by 19 percent in the short-term (2010-2040), and 40 to 50 percent in 

the long-term (2070-2100) [Ferrer et al., 2012]. A study by CEDEX [2010] forecasts 

water availability reductions between 5 and 12 percent for 2011-2040, between 13 and 

18 percent for 2041-2070, and between 24 and 32 percent for 2071-2100. The drought 

scenarios considered in this paper cover the range of these estimations.  

The model is used to assess the economic and environmental effects of alternative 

drought management policies under the drought scenarios described above. Three 

policy intervention alternatives are considered: 

Institutional cooperation: Represents the current water management approach 

implemented in the JRB to cope with water scarcity and drought. This approach allows 

flexible adaptive changes in water allocations, based in the negotiation and cooperation 

of users. The special characteristic of this approach is that all water stakeholders are 

involved in the decision making process, and environmental concerns are considered.  

Water market: There are increasing calls from international water institutions, water 

experts, and the Spanish government for market-based allocation of water during 

droughts. Water markets would allow water transfers between willing buyers and 

sellers, leading to welfare gains. This policy intervention highlights the question of 

whether these gains predicted by economic theory are quantitatively significant in 

practice. Under this policy, water trading is allowed among irrigation districts and with 

urban users in the JRB.  

Water pricing: The water pricing approach is being implemented in the European water 

policies (European Commission 2012). Water pricing and water markets work well 

when water exhibits private good characteristics such as in urban networks, but not so 
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well when water exhibits common pool resource or public good characteristics. There is 

a strong consensus among experts that water pricing could achieve sizable gains in 

efficiency and welfare in urban and industrial water networks (Hanemann 1997), 

although implementation could face technical and political difficulties. Irrigation water 

from surface watercourses and aquifers exhibits common pool resource characteristics, 

and the use of water pricing or other economic instruments requires transforming the 

resource into a private good. This transformation is quite difficult, especially in arid and 

semiarid regions under strong water scarcity pressures, and would require the support of 

stakeholders. 

The model is well-suited to analyze other drought management policies, such as 

investments in irrigation technologies and increasing the allocation of water to the 

environment, but this policies are not analyzed here. The GAMS package has been used 

for model development and scenario simulation. The model has been solved using a 

mixed integer nonlinear programming algorithm.  

6.2. Results  

The economic and environmental outcomes from the three policy alternatives and 

drought scenarios are depicted in table 4. Further spatially disaggregated details for 

water use and benefits can be found in Kahil et al. [2014, Tables A3 and A4].   

Institutional cooperation  

The sum of private and environmental benefits in the JRB under the Institutional 

cooperation  policy (baseline) and normal flow conditions amounts to 548 million € 

(Table 4). Water extractions are 1,119 Mm3 divided between 1,000 Mm3 in irrigation 

activities that generate 190 million €, and  119 Mm3 in urban centers that generate 283 

million € of economic surplus. About 60 Mm3 of return flows from the ARJ and RB  
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Table 4. Alternative drought policies: institutional, water markets, and water pricing.  
Drought Scenario Normal Year Mild Drought Severe Drought 

Type of Policy 
Institutional 
cooperation 
(Baseline) 

Institutional 
cooperation 

Water markets 
and 

Water pricing 

Institutional 
cooperation 

Water markets 
and 

Water pricing 

Water Use (Mm3) 
  Irrigation districts 1000 878 878 653 653 
    Mancha Oriental 399 359 363 304 316 
    Canal Jucar-Turia 125 102 120 77 116 
    Acequia Real Jucar 200 180 197 131 185 
    Escalona 33 30 32 18 31 
    Ribera Baja 243 207 166 123 4 
  Urban use  119 105 105 74 74 
 Environmental flows 
   (inflows to Albufera) 

60 52 50 34 29 

 Private and Environmental Benefits (million Euros)    

Type of Policy 
Institutional 
cooperation 
(Baseline) 

Institutional 
cooperation 

Water 
markets

Water 
pricing 

Institutional 
cooperation 

Water 
markets 

Water 
pricing

Private benefits    
  Irrigation 190 171 175 93 136 148 54 
    Mancha Oriental             80 72 72 37 61 62 31 
    Canal Jucar-Turia 45 40 42 33 36 39 17 
    Acequia Real Jucar 34 31 32 17 23 25 4 
    Escalona 7 7 7 5 4 5 2 
    Ribera Baja 24 21 22 1 12 17 0 
  Urban use 283 276 276 276 241 241 241 
Total 473 447 451 369 377 389 295 
Environmental benefits 75 37 32 32 22 19 19 
Private and 
environmental benefits 

548 484 483 401 399 408 314 

(Top) Water allocations to irrigation, urban use and environment in million cubic meters. (Bottom) 
Private benefits from irrigation and urban use, and environmental benefits in million Euros. 
 

irrigation districts feed the Albufera wetland. These return flows support the good 

ecological status of the wetland. Environmental benefits provided by the Albufera 

wetland are 75 million €.  

Results from drought scenarios indicate that drought events may reduce private and 

environmental benefits up to 140 million € (severe drought). Water use patterns show a 

reduction in extractions of surface water (up to 52%) and groundwater (up to 9%). The 

share of groundwater expands when drought increases in severity, from 42 percent in 

normal years up to 57 percent in very severe drought years. Irrigation activities face the 

main adjustment to water scarcity, with almost 90 percent of restrictions allocated to 

irrigation and the remainder allocated to urban uses.   
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The irrigation sector reduces surface water extractions up to 350 Mm3 (severe 

drought). Increased pumping is allowed in the lower Jucar, while the curtailment of 

groundwater extractions is achieved in the EM irrigation district where farmers have 

been cooperating to control extractions during the last two decades. The reasons 

explaining this cooperation are the rising pumping costs from the very large aquifer 

depletion, and the significant pressures from downstream users losing water, and from 

the basin authority. 

The losses of benefits to the irrigation sector under the Institutional policy range 

between 19 and 54 million € under mild and very severe drought conditions, and the 

irrigated area falls between 14,200 and 39,000 ha, respectively. By irrigation 

technology, the share of flood irrigation decreases while the share of sprinkler and drip 

irrigation increases. These changes in land use and irrigation technology distribution 

result in declining water application rates as drought severity intensifies. 

Irrigation benefits in all five irrigation districts are reduced in drought years, but 

the impacts are distributed quite differently varying over space and severity of drought. 

Benefit losses in the traditional districts (ARJ, ESC, and RB) are larger than in the EM 

and CJT districts. Water use patterns show that the proportional cutback of surface 

water diversion during drought spells is lower in the traditional irrigation districts (ARJ, 

ESC, and RB), although with larger economic losses because they cannot totally 

substitute surface water with groundwater. The EM and CJT districts are based mostly 

on groundwater, which reduce their vulnerability to drought. 

The cropping pattern and irrigation technology distribution by district and drought 

scenario can be found in Kahil et al. [2014, figures A2 and A3]. Results show the water 

and land management options for adapting to water scarcity, which are changes of crop 
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mix, land fallowing, and improving irrigation efficiency through the adoption of water 

conserving-technologies. Generally, irrigation districts reduce the irrigated area of 

cereals and fruit trees, while maintaining the area of vegetables. By irrigation 

technology, the share of flood irrigation is reduced while the share of sprinkler and drip 

increases. However, the adaptive responses vary among the districts. Several factors 

may explain the varying adaptive responses of irrigation districts to increasing water 

scarcity. These are cropping patterns and crop diversification, the degree of irrigation 

modernization of the district, and the access to alternative water resources.    

The reduction in irrigation water extractions has negative impacts on the Albufera 

wetland, which is mostly fed by irrigation return flows. Total irrigation return flows 

decrease up to 135 Mm3, depending on the drought severity. Consequently, water 

inflows to the Albufera wetland dwindle – falling up to 26 Mm3. Under severe drought 

conditions, water inflows to the Albufera wetland are less than the critical threshold E1 

equal to 51 Mm3, causing a regime shift in the ecosystem. Damages to the Albufera 

wetland under drought conditions are substantial and may exceed 70 percent of the 

benefit level in normal years.  

The current water regulation in the JRB guarantees the priority of urban water for 

the human population. During severe drought spells the urban demand must be fully 

satisfied first because of such priority rules. The simulated drought scenarios show a 

reduced supply to the main cities in the JRB. However, the full demand of Valencia and 

Sagunto is always met with additional water from the bordering Turia River Basin. 

During extreme drought periods, the provision of water to these cities is supplied 

equally from the Jucar and the Turia Rivers. In the city of Albacete, the supply of water 

during dry periods is amended by pumping groundwater from the Eastern La Mancha 
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aquifer [CHJ, 2009]. The simulation results for the urban sector indicate that the 

provision of surface water for urban use from the Jucar River falls by almost half, while 

groundwater extractions increase up to 8 Mm3. The losses of benefits during droughts in 

the urban sector are nearly 15 percent in the worst-case scenario, because water 

provision is maintained with additional extractions from the Turia River and the Eastern 

La Mancha aquifer, but at higher costs. Several rationing measures have been 

implemented in the JRB to reduce water demand such as the installation of advanced 

water meters and the promotion of the use of water-saving devices [CHJ, 2009]. 

However, their effectiveness was quite limited, and they were not considered in our 

model. 

Water markets 

Results for the Water market policy indicate that introducing water trading in the JRB 

increases private benefits up to 3 percent compared to the Institutional policy (baseline). 

Irrigation benefits increase under water markets up to 9 percent, and urban benefits 

remain unchanged. This is explained because water trading occurs only among 

irrigation districts, and there is no water transfer to the urban sector. Irrigation water 

shadow prices in the market are greater than the cost of alternative water resources 

available to the urban sector in the JRB. Long run policy analysis may reorder these 

results because of possible changes in relative shadow prices of irrigation and urban 

water use.  

Water trading becomes more pronounced as drought severity intensifies, with 

trades increasing from 1 Mm3 (under a normal flow scenario) up to 119 Mm3 (under 

very severe drought scenario). These results indicate that the benefits from 

implementing water markets are higher in drought situations compared to normal years. 
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In normal years, the gains from the Water market policy are modest compared to the 

Institutional policy, which means that the current institutional approach used in the JRB 

to allocate water among users is almost efficient. During drought periods, Pareto 

improvements could be achieved by allowing water trading among irrigation districts. 

Hence, introducing water markets in the JRB could mitigate drought damages for 

irrigation activities. Moreover, drought damages become more evenly distributed 

among irrigation districts in the Water market policy compared to the Institutional  

policy.   

The water available under each drought scenario is the same for the Institutional 

and Water market policies. However, water markets increase consumption through crop 

evapotranspiration with additional reductions in return flows of up to 19 Mm3 (10%) 

compared to the Institutional policy. These 19 Mm3 of additional reductions are divided 

between 14 Mm3 of return losses to the Jucar River and aquifers, and 5 Mm3 of return 

losses to the Albufera wetland. Under the Water market policy, farmers maximize their 

benefits from water use by increasing crop evapotranspiration, either by increasing crop 

area, crop switching, or changing irrigation technology. 

Under mild drought conditions, water inflows to the Albufera wetland are less than 

the critical threshold E1 equal to 51 Mm3, causing a shift in the ecosystem regime. The 

ecosystem regime shift takes place faster under the Water market policy compared to 

the Institutional policy. The reason is that the Albufera wetland is linked to the ARJ and 

RB irrigation districts that display a lower value of water than other districts. Under the 

drought scenarios, the ARJ and RB districts gain by selling water to other districts. As a 

consequence, return flows to the wetland under the Water market policy decline 

compared to the Institutional policy, leading to further desiccation and ecosystems 
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degradation. Under severe and very severe droughts, the Albufera receives fewer 

inflows from the Water market policy than from the Institutional policy, but 

environmental benefits changes are small because they have already reached their 

lowest value. These results indicate that Water market reduces water availability to 

environmental uses, despite the fact that the small legally-required environmental flows 

are included in the hydro-economic model. However, the Albufera wetland does not 

have at present minimum binding inflows, and therefore receives less water under the 

Water market policy. 

Water pricing 

Water pricing in irrigation, to achieve water conservation, has been the subject of 

debate since the 1990s. A string of the literature finds that irrigation water pricing has 

limited effects on water conservation (Moore 1991, Sheierling et al. 2004), and some 

authors indicate that water markets seem far more effective than water pricing for 

allocating irrigation water (Cornish et al. 2004). 

Water pricing is the worst policy option in terms of private and environmental 

benefits for the whole basin. Benefits of water pricing under drought are 20 percent 

lower than benefits of water markets or institutional policies (see table 4, last row). The 

water pricing instrument is politically unfeasible because farmers lose up to 60 percent 

of their profits when water pricing is used instead of the institutional or water markets 

alternatives, with profits falling to 93 and 54 million Euros under mild and severe 

drought, respectively (Table 4). 

In summary, the main findings regarding the Institutional, Water market and Water 

pricing policies are the following. The private and environmental benefits under the 

current institutional cooperation are close to the benefits achieved under water markets 
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(Table 4). Under severe drought the difference in benefits is small between institutional 

cooperation and water markets (399 versus 408 million Euros; last row in table 4), and 

under mild drought the benefits are the same (484 million Euros). This demonstrates 

that the policy of water markets is not superior to the policy of institutional cooperation 

in Jucar. Furthermore, the policy of cooperation is more environmental friendly than 

pure water markets because the policy of cooperation allocates more water to the 

environment than water markets. 

Another important finding is that the Water pricing policy is the worst possible 

alternative to address water scarcity and drought. Two reasons support this finding: 

first, the private and environmental benefits of water pricing are considerably below the 

benefits of institutional cooperation or water markets; and second, water pricing is 

politically unfeasible because choosing water pricing instead of the institutional or 

water market alternatives makes farmers loose 60 percent of their profits. These profits 

losses are the costs that farmers will sustain because of the wrong choice of policy. 

Since farmers are fully aware of their staggering costs of the water pricing alternative, 

they will strongly oppose this option leading to the failure of the water pricing policy.    

7. Conclusions, policy implications, and future research 

This paper presents the development and application of a policy-relevant integrated 

hydro-economic model. The contribution of this paper to previous hydro-economic 

modeling efforts stems from the development of a reduced form hydrological 

component, including theoretical concepts, data requirements, calibration, and use for 

climate and policy analysis. The idea is basically that when a detailed hydrological 

component is not available (which is the case in many basins worldwide), a calibrated 

reduced form can be used to predict water flows, becoming a component of hydro-
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economic modeling. Furthermore, the hydro-economic model includes a detailed 

regional economic component, and it accounts for ecosystem benefits in a way that 

makes them comparable with the benefits derived from other water uses. This modeling 

approach could be easily applied to most basins around the world.   

The model has been used for empirical water policy analysis in a semiarid basin in 

Southeastern Spain, the Jucar River Basin, which is a good case for studying policies 

dealing with water scarcity and drought impacts from the impending climate change. 

The Jucar River is under severe stress, with acute water scarcity problems and 

escalating degradation of ecosystems. This is a common situation in many arid and 

semiarid basins around the world, and the empirical findings provide valuable insights 

to policy-makers not only in Spain but also in these arid and semiarid basins.  

The implementation of a pure water market policy in the Jucar River Basin shows 

modest gains compared to the current institutional setting. Yet, the water market 

achieves a more even distribution of drought losses among irrigation districts. The 

reason could be that the current institutions involve asymmetric negotiation power 

among users in the basin authority. However, the water market entails a reduction of the 

water available to the environment, causing faster ecosystem regime shifts compared to 

what may happen under the current institutional setting. The reason is that water is 

mostly a common pool resource with environmental externalities, and markets disregard 

these externalities leading to excessive water extractions and damages to ecosystems. 

Water pricing is the worst policy option to address water scarcity and droughts. 

This is so not only because it reduces the private and environmental benefits in the 

basin, but also because the cost of water pricing to farmers are staggering compared to 

the current institutional cooperation or to water markets. Therefore, it is impossible for 



38 

 

farmers to accept the water pricing alternative, and the empirical findings demonstrate 

that this policy is doomed to failure.  

The results highlight the advantages of negotiation and stakeholders’ cooperation, 

which is the current institutional approach to water management in Spain. Indeed, 

compared to a pure water market policy (Pareto-efficient solution), this institutional 

approach achieves almost the same economic outcomes and better environmental 

outcomes. The policy implications of these findings highlight the importance of 

stakeholders’ cooperation, and call for a reconsideration of water policies, specially 

water pricing. Water management arrangements and policies in arid and semiarid basins 

around the world are mostly based on command and control instruments or pure 

economic instruments, disregarding the potential of stakeholders’ cooperation. These 

instruments fail because they lack legitimacy and knowledge of local conditions. The 

findings in the Jucar seem to indicate the importance of collective action in achieving a 

more sustainable water management. 

A number of limitations of the hydro-economic model developed in this paper need 

to be addressed in future research. First, many questions linked to water and the 

environment involve time-dependent dynamic elements, such as groundwater depletion, 

reservoir storage, multi-year droughts, and river-aquifer interactions. The time 

dimension should be considered for an accurate assessment of climate change impacts 

and policy evaluation. Then, environmental benefits provided by the Albufera wetland 

to society are estimated, based on the quantity of water inflows from irrigation 

activities, disregarding other sources of water and quality variables. These limitations 

point to pathways by which future research could advance modeling performance to 

inform water policy at basin scale within the contexts of scarcity, droughts, and climate 
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change. For now, this hydro-economic model illustrates how such a model can integrate 

the multiple dimensions of water resources, constituting a valuable tool to support the 

design of sustainable water management policies in arid and semiarid regions, as is the 

case of the Jucar River Basin.   

 

Acknowledgements 

This study has been financed by project BIL/13/MA/072 from MAPFRE and project 

INIA RTA2010-00109-C04 from the Spanish Ministry of Economy and 

Competitiveness. Special assistance has been received from Llorenç Avella, Marta 

García-Molla, and Manuel Pulido-Velazquez (UPV), Alfonso Calera and David Sanz 

(IDR), and Maria Calera (UCL). 

 

References 

Alcamo, J., T. Henrichs, and T. Rösch (2000), World water in 2025: global modeling 
and scenario analysis for the World Commission on Water for the 21st Century, 
Kassel World Water Series, Report 2, Center for Environmental System Research, 
University of Kassel, Kassel. 

Booker, J. and R. Young (1994), Modeling intrastate and interstate markets for 
Colorado River water-resources. J. Environ. Econ. Manag., 26 (1): 66–87. 

Booker, J., A. Michelsen, and F. Ward (2005), Economic impact of alternative policy 
responses to prolonged and severe drought in the Rio Grande Basin. Water Resour. 
Res., 41 (2): 1-15. doi:10.1029/2004WR003486 

Booker, J., R. Howitt, A. Michelsen, and R. Young (2012), Economics and the 
modeling of water resources and policies. Nat. Resour. Model., 25(1): 168-218.  

Brander, L., R. Florax, and J. Vermaat (2006), The empirics of wetland valuation: a 
comprehensive summary and a meta-analysis of the literature. Environ. Resour. 
Econ., 33: 223-250.  

Cai, X., D. McKinney, and L. Lasdon (2003), Integrated Hydrologic-Agronomic-
Economic Model for River Basin Management. J. Water Res. Pl. Manag., 129: 4-17. 

Centro de Estudios y Experimentación de Obras Públicas (CEDEX) (2010), Estudio de 
los impactos del cambio climático en los recursos hídricos y las masas de agua, Ficha 



40 

 

1: Evaluación del impacto del cambio climático en los recursos hídricos en régimen 
natural, MARM, Madrid.   

Collazos, G. (2004), Sistema soporte de decisión para evaluación y optimización 
económica de sistemas de recursos hídricos, Ph.D. Thesis, Universidad Politécnica 
de Valencia, Valencia.  

Confederación Hidrográfica del Júcar (CHJ) (2002), Estudio de utilización conjunta de 
los recursos hídricos superficiales y subterráneos en las cuencas media y baja de los 
ríos Júcar y Turia, Informe final, Documento de síntesis, MIMAM, Valencia. 

Confederación Hidrográfica del Júcar (CHJ) (2007), Plan especial de Alerta y eventual 
sequia en la Confederacion Hidrografica del Júcar, MIMAM, Valencia. 

Confederación Hidrográfica del Júcar (CHJ) (2009), Esquema provisional de temas 
importantes, MARM, Valencia.  

Confederación Hidrográfica del Júcar (CHJ) (2012), Sistema Júcar: Datos del año 
hidrológico 2012-2013, MAGRAMA, Valencia.  

Cornish, G., B. Bosworth, C. Perry and J. Burke (2004), Water charging in irrigated 
agriculture. An analysis of international experience. FAO Water Reports 28. FAO, 
Rome. 

Deidda, D. (2004), Análisis económico de sistemas de recursos hídricos mediante 
modelos de simulación: Aplicación a la cuenca del rio Júcar, M.S. Thesis, 
Universidad Politécnica de Valencia, Valencia.   

Del Saz, S. and L. Perez (1999), El valor de uso recreativo del parque natural de 
L’Albufera a través del método indirecto del coste de viaje. Estud. Econ. Apli., 11: 
41-62.  

Esteban, E. and J. Albiac (2012), The problem of sustainable groundwater management: 
the case of La Mancha aquifers, Spain. Hydrogeol. J., 20(5): 851-863.  

European Commission (EC) (2007), Communication from the Commission to the 
European Parliament and the Council, Addressing the challenge of water scarcity and 
droughts in the European Union, COM 414/2007, European Commission, Brussels. 

European Commission (EC) (2012), Communication from the Commission to the 
European Parliament, the Council, the European Economic and Social Committee 
and the Committee of the Regions. A Blueprint to Safeguard Europe's Water 
Resources. COM(2012) 673 final. Brussels: European Commission. 

Federal Emergency Management Agency (FEMA) (1995), National mitigation strategy: 
partnerships for building safer communities, Federal Emergency Management 
Agency, Washington DC. 

Ferrer, J., M. Perez, S. Jiminez, T. Estrela, and J. Andreu (2012), GIS-based models for 
water quantity and quality assessment in the Júcar River Basin, Spain, including 
climate change effects. Sci. Total Environ., 440: 42-59.   

García-Molla, M., C. Sanchis, M. Ortega, and L. Avella (2013), Irrigation associations 
coping with drought: The case of four irrigation districts in Eastern Spain, In 
Drought in Arid and Semi-Arid Environments: A Multi-Disciplinary and Cross-
Country Perspective, edited by K. Schwabe, J. Albiac, J. Connor, R. Hassan and L. 
Meza, pp. 101-122, Springer, Dordrecht.  



41 

 

Generalitat Valenciana (GV) (2009), Base de datos 1T de superficies de cultivos por 
término municipal para La Generalitat Valenciana 2009, Departamento de 
Agricultura, Generalitat Valenciana. Valencia. 

Gobierno de Castilla La Mancha (CCLM) (2009), Base de datos 1T de superficies de 
cultivos por término municipal para Castilla La Mancha 2009, Departamento de 
Agricultura, Gobierno de Castilla La Mancha, Albacete. 

Harou, J., M. Pulido, D.E. Rosenberg, J. Medellín, J. Lund, and R. Howitt (2009), 
Hydro-economic models: Concepts, design, applications, and future prospects. J. 
Hydrol., 375: 627–643. 

Intergovernmental Panel on Climate Change (IPCC) (2007), Climate change 2007: 
Synthesis report, Contribution of Working Groups I, II and III to the Fourth 
Assessment Report of the IPCC, IPCC, Geneva. 

Instituto Geológico y Minero de España (IGME) (2009), Análisis de la evolución y del 
estado de las masas de agua subterránea utilizadas en épocas de sequia en la cuenca 
del Júcar, Informe de situación final de la campaña de riego, IGME, Madrid.  

Instituto Nacional de Estadística (INE) (2009), Censo agrario 2009, INE, Madrid. 

Jorgensen, S., F. Xu, J. Marques, and F. Salas (2010), Application of indicators for the 
assessment of ecosystem health, In Handbook of Ecological Indicators for 
Assessment of Ecosystem Health, edited by S. Jorgensen, F. Xu, and R. Costanza, pp 
9-75, CRC press, Boca Raton. 

Kahil, M.T., A. Dinar, and J. Albiac (2014), Modeling water scarcity and drought 
severity for policy adaptation to climate change: Application to the Jucar Basin, 
Spain, University of California Water Science and Policy Center, Working Paper 01-
0114, January 2014.  
http://wspc.ucr.edu/working_papers/WSPC_WP_01_0114_policy%20climate%20ch
ange%20jucar%20basin.pdf 

Keeler, B., S. Polasky, K. Brauman, K. Johnson, J. Finlay, A. O’Neill, K. Kovacs, and 
B. Dalzell (2012), Linking water quality and well-being for improved assessment and 
valuation of ecosystem services. PNAS, 109(45): 18619-18624. 

Kirby, M., R. Bark, J. Connor, E. Qureshi, and S. Keyworth (2014), Sustainable 
irrigation: How did irrigated agriculture in Australia’s Murray–Darling Basin adapt 
in the Millennium Drought?. Agr. Water Manage, in Press.    

Krause, P., D. Boyle, and F. Bäse (2005), Comparison of different efficiency criteria for 
hydrological model assessment. Advances in Geosciences, 5: 89–97. 

Letcher, R., B. Croke, and A. Jakeman (2007), Integrated assessment modelling for 
water resource allocation and management: A generalized conceptual framework. 
Environ. Modell. Softw., 22: 733-742. 

Lund, J., X. Cai, and G. Characklis (2006), Economic engineering of environmental and 
water resource systems. J. Water Res. Pl., 132 (6): 399–402. 

Maneta, M., M. Torres, W. Wallender, S. Vosti, R. Howitt, L. Rodrigues, L. Bassoi, and 
S. Panday (2009), A spatially distributed hydroeconomic model to assess the effects 
of drought on land use, farm profits, and agricultural employment. Water Resour. 
Res., 45:1-19. doi:10.1029/2008WR007534 



42 

 

McKinney, D., X. Cai, M. Rosegrant, C. Ringler, and C. Scott (1999), Modeling water 
resources management at the basin level: review and future directions, SWIM Paper 
6, International Water Management Institute, Colombo. 

Ministerio de Medio Ambiente, Rural y Marino (MARM) (2010), Análisis de la 
economía de los sistemas de producción: Resultados técnico-económicos de 
explotaciones agrícolas de en Valencia y Castilla La Mancha en 2009, Subsecretaria 
de Medio Ambiente, Rural y Marino, MARM, Madrid. 

Moore, M. (1991), The bureau of reclamations new mandate for irrigation water 
conservation – purposes and policy alternatives. Water Resour. Res., 27(2): 145–155. 

National Oceanic and Atmospheric Administration (NOAA) (2008), Summary of 
National Hazard Statistics for 2008 in the United States, National Weather Service, 
NOAA, Washington DC. 

Önal, H. and B. McCarl (1991), Exact aggregation in mathematical programming sector 
models. Can. J. Agr. Econ., 39: 319-334.  

Pulido, M., J. Andreu, A. Sahuquillo, and D. Pulido-Velazquez (2008), Hydro-
economic river basin modelling: The application of a holistic surface–groundwater 
model to assess opportunity costs of water use in Spain. Ecol. Econ., 66: 51-65.  

Sanchis, C. (2011), La Albufera de Valencia: cincuenta años de eutrofia. Métode 70. 

Sanz, D., S. Castaño, E. Cassiraga, A. Sahuquillo, J. Gómez, S. Peña, and A. Calera 
(2011), Modeling aquifer-river interactions under the influence of groundwater 
abstractions in the Mancha Oriental System (SE Spain). Hydrogeol. J., 19: 475-487. 

Scheffer, M., S. Carpenter, J. Foley, and B. Walker (2001), Catastrophic shifts in 
ecosystems. Nature, 413:591-596. 

Scheierling, S., R. Young and G. Cardon (2004), Determining the price responsiveness 
of demands for irrigation water deliveries versus consumptive use. Journal of 
Agricultural and Resource Economics 29(2): 328–345.  

Turner, K., J. van den Bergh, T. Söderqvist, A. Barendregt, J. van der Straaten, E. 
Maltby, and E. van Ierland (2000), Ecological-economic analysis of wetlands: 
scientific integration for management and policy. Ecol. Econ., 35:7-23. 

Vörösmarty C., P. McIntyre, M. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. 
Glidden, S. Bunn, C. Sullivan, C. Liermann, and P. Davies (2010), Global threats to 
human water security and river biodiversity. Nature, 467: 555-561.  

Ward, F. (2009), Economics in integrated water management. Environ. Modell. Softw., 
24: 948-958.    

Woodward, R. and Y. Wui (2001), The economic value of wetland services: A meta-
analysis. Ecol. Econ., 37: 257–270. 

Young, R. and J. Loomis (2014), Determining the economic value of water: Concepts 
and methods. 2nd edition, RFF Press and Routledge, Oxon. 

 

 


