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Abstract 

Water scarcity is a critical environmental issue worldwide, especially in arid and 

semiarid regions. In those regions, climate change projections suggest further reductions 

in freshwater supplies and increases of the recurrence, longevity and intensity of 

drought events. At present, one important question for policy debate is the identification 

of water management policies that could address the mounting water scarcity problems. 

Suitable policies should improve economic efficiency, achieve environmental 

sustainability, and meet equity needs. This paper applies an integrated hydro-economic 

model that links a reduced form hydrological component, with economic and 

environmental components to such issues. The model is used to make a direct 

comparison of three water management alternatives, water markets, water pricing and 

institutional policies, based on their economic, environmental and equity outcomes. The 

analysis is performed in the Jucar Basin of Spain, which is a good natural experiment 

for studying the policies to confront water scarcity and climate change. Results indicate 

that both institutional and water market policies are good instruments to smooth the 

economic damage costs of droughts, achieving almost the same social benefits. 

However, the environmental effects of water markets are worrying. Another important 

finding is that water pricing is the worst policy option not only in terms of private and 

environmental benefits but also in terms of equity. 

 

Keywords. Water scarcity, Climate change, Water policies, Hydro-economic modeling, 

Economic and environmental benefits 
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1. Introduction   

Water scarcity and water quality degradation are becoming widespread problems in 

most regions around the world. The reasons are the large increase in global water 

extractions in the last century from 600 to 3,900 km3 driven by the intensive growth of 

population and income, coupled with a questionable performance of water governance 

and policies. The degradation of water resources is a threat to human water security and 

environmental biodiversity around the world, which so far has been addressed by large 

investments to ensure human security in medium and high income countries. However, 

the threats to natural ecosystems are hardly accounted for (Vörösmarty et al., 2010). 

The massive ecosystem damages in basins such as Ganges, Indus, Nile, Yellow, 

Yangtze, Amu and Syr Darya, Tigris, Euphrates, Murray-Darling, Colorado and Rio 

Grande call for a reconsideration of the water institutions and policies used at present. 

The need for such reform is not only for protecting ecosystems, but also to substitute the 

escalating investments that ensure human security for better water management options.  

The scale of the global growing overexploitation indicates that water 

mismanagement is quite common, and that sustainable management of basins is a 

complex and difficult task. At first, water scarcity resulted from surface extractions, but 

recently it is worsening because of the unprecedented depletion of groundwater brought 

about by falling pumping costs. Between 1960 and 2000, groundwater extractions rose 

from 310 to 730 km3 per year pushing depletion up to 150 km3 (Konikow, 2011). This 

staggering annual depletion ranges from 50 km3 in the Indus-Ganges-Brahmaputra 

region to 24 km3 in the USA, 13 km3 in the Tigris-Euphrates region, and 9 km3 in 

Northern China (NASA GRACE data estimations). 

Water scarcity is increased gradually by the decisions on water extractions in river 

basins linked to land use and economic activities. The problems arising from water 

scarcity could become critical during drought periods. Climate change is projected to 

aggravate the severity and recurrence of drought events, especially in arid and semiarid 

regions (IPCC, 2014). In those regions, the combined effects of human-induced 

permanent water scarcity and climate change-induced droughts portend unprecedented 

levels of water resources degradation.  

The sustainable management of water is quite challenging because of the different 

types of goods and services provided by water. These goods and services can be 
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classified as private goods, common pool resources, or public goods, depending on the 

degree of exclusion and rivalry in consumption among consumers. Treated drinkable 

water in urban networks is close to a private good (rivalry & exclusion), water in 

surface watercourses and aquifers is close to a common pool resource (rivalry & non-

exclusion), while water sustaining ecosystems comes close to a public good (non-rivalry 

& non-exclusion) (Booker et al., 2012). The management of water is governed by 

public policies because pure competitive markets fail to account for the common pool 

and public good characteristics of water.  

The objective of this paper is to contribute to the ongoing policy discussion to 

address water scarcity and droughts. A hydro-economic model of the Jucar basin in 

Spain is used to make a direct comparison of policies based on their economic, 

environmental and equity effects. Three policy alternatives are considered: (1) an 

institutional approach based on stakeholders’ cooperation; (2) a water market policy; 

and (3) a water pricing policy. The assessment of the three policies provides 

information to stakeholders and decision makers about the tradeoffs between the 

policies in the allocation of water among sectors and locations. The paper is organized 

as follows. First, the three types of water policies are reviewed in section 2. Then, the 

Jucar River Basin is presented in section 3. Section 4 describes the modeling 

framework, and section 5 presents the drought and policy scenarios and the simulation 

results. Section 6 concludes with the summary and policy implications. 

2. Types of policy instruments 

Economic theory offers three types of policy instruments that could account for the 

market externalities created by the common pool and public good characteristics of 

water. The first type is the “Pigou solution”, which is based on taxation of water 

extractions (Pigou, 1920). This is the water pricing approach that is being implemented 

in the European Water Framework Directive (WFD) (EC, 2012). The second type is the 

“Coase solution”, which is based on privatizing the resource and trading (Coase, 1960). 

This is the water market approach that has been implemented in Australia (NWC, 

2011). The third type is the common property governance (Ostrom, 1990), based on the 

evidence that coercive government rules fail because they lack legitimacy and 

knowledge of local conditions. This is the institutional approach, where stakeholders 

themselves have to design the rules and enforcement mechanisms for the sustainable 
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management of common resources (Ostrom et al., 1999), although this approach has 

been mostly ignored by water authorities. 

Mainstream water policies in some countries derive from the Dublin Statement on 

Water, which declares water an economic good (ICWE, 1992), and are based on so-

called economic instruments such as water markets or water pricing. Besides the 

European Union and Australia, both water pricing and water markets are being 

considered at present for solving the acute water scarcity problems in China (Che & 

Shang, 2015). 

These economic instruments work well when water exhibits private good 

characteristics such as in urban networks, but not so well when water exhibits common 

pool resource or public good characteristics. There is a strong consensus among experts 

that water pricing could achieve sizable gains in efficiency and welfare in urban and 

industrial water networks (Hanemann, 1997), although implementation could face 

technical and political difficulties. Irrigation water from surface watercourses and 

aquifers exhibits common pool resource characteristics, and the use of economic 

instruments requires transforming the resource into a private good. This transformation 

is quite difficult, especially in arid and semiarid regions under strong water scarcity 

pressures, and would require the support of stakeholders. 

Irrigated agriculture is the largest user of water in most arid and semiarid regions, 

and plays an important role in sustaining rural livelihoods and ecosystems. During 

drought spells, the adjustments to the shortfall of water supply in basins fall mainly on 

irrigation activities, which consequently trigger considerable economic and 

environmental impacts, and social conflicts. One important question for future policy 

debates is the identification of potential water management policies in irrigation. 

Suitable policies should improve economic efficiency, achieve environmental 

sustainability, and address equity within contexts of scarcity, droughts and climate 

change. The debate here deals with the relative efficacy of the different approaches to 

allocate water in irrigation, including water pricing, water markets and institutional 

mechanisms.  

Water pricing in irrigation, to achieve water conservation, has been the subject of 

debate since the 1990s. A string of the literature finds that irrigation water pricing has 

limited effects on water conservation (Moore, 1991; Sheierling et al., 2004), and some 
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authors indicate that water markets seem far more effective than water pricing for 

allocating irrigation water (Cornish et al., 2004). In contrast, Tsur et al. (2004) indicate 

that water pricing could achieve an efficient allocation of irrigation water. 

In recent decades, the water market approach has been gaining ground in some 

parts of the world to allocate water in irrigation such as in Australia and Chile. Previous 

studies in the literature consider that water trading is a flexible and efficient way to 

address water allocation problems (Easter et al., 1998; Connor et al., 2009; Howitt et al., 

2012). These studies indicate that water markets may increase water use efficiency, 

avoid the development of new costly water resources, and achieve significant welfare 

gains by reallocating water from crops with low to high marginal value of water. 

Numerous pre-requisites are needed for the design of well-functioning water markets 

such as the definition of water rights, the creation of legal and institutional frameworks 

for trade, and investments in infrastructure to facilitate water transfer (Dinar et al., 

1997).  

The Murray-Darling Basin is at present the most active water market in the world, 

and during the drought of 2002-2012 this market has generated benefits in the range of 

several hundred million to 1 billion US dollars per year (Connor & Kaczan, 2013). A 

challenge to water markets are the third party effects such as environmental impacts, 

which would reduce the benefits of trading. Water markets reduce streamflows because 

previously unused water allocations are traded, and also because gains in irrigation 

efficiency at parcel level reduce drainage and return flows to the environment 

downstream. This reduction in basin return flows has been analyzed both in Australia 

and the U.S. (Qureshi et al., 2010; Howe et al., 1986). Another worrying effect is the 

large surge in groundwater extractions, as shown in the last drought in the Murray-

Darling.1 The choice in Australia has been to mostly ignore the third party impacts of 

water markets (Connor & Kaczan, 2013). 

Medellín et al. (2013) estimate very large potential gains from water trading under 

droughts or climate change in California. These gains in the Central Valley of 

California are estimated at 1.4 billion US dollars. However, implementing these 

potential gains from trading is quite a challenge as the failure of the Water Bank 

                                                            
1 Blewett (2012) indicates that extractions between 2002 and 2007 were seven times above the allowed 
limits placed on groundwater users. 
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Figure 1. Map of the Jucar River Basin. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

experience in the 2009 drought shows. Water transfers were blocked by the water 

exporting regions and environmentalist NGOs (Medellín et al., 2013). The attainment of 

this solution seems to require stronger institutions, involving stakeholders’ cooperation.  

In Spain, the approach to water management is based on institutional arrangements 

and relies on the river basin authorities (CHE, 2008). The basin authorities are 

responsible for water management, water allocation, control and enforcement, planning 

and waterworks. The special feature of this institutional arrangement is the key role 

played by stakeholders in managing the basin authority.  

Stakeholders are part of the basin authorities, taking decisions in the basin 

governing bodies and in local watershed boards, and they are involved at all levels of 

decision making: planning, financing, waterworks, measures design, enforcement, and 

water management. The management of water is decentralized, with the basin 

authorities in charge of water allocation, and water user associations in charge of 

secondary infrastructure and water usage. The main advantage of this institutional 

setting is that stakeholders cooperate in the design and enforcement of decisions, rules 

and regulations, and therefore the implementation and enforcement processes are 

carried on smoothly (Albiac et al. 2013). 
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Table 1. Water use by sector and origin in the JRB in a normal flow year (Mm3). 
Origin Agriculture Urban Industrial Total 

Surface water  761 118 24 903 
Groundwater 633 104 25 762 
Reuse 11 0 1 12 

Total 1,405 222 50 1,677 
Source. CHJ 2009.  

Therefore, water allocation relies on the cooperation of stakeholders in basin 

authorities. Although water management in Spain is far from perfect, there have been 

recent mounting signs of successful experiences in the case of the La Mancha aquifers 

(Esteban & Albiac, 2012), where aquifer extractions have been curbed through 

stakeholders’ cooperation.  

3. The Jucar River Basin  

The Jucar River Basin (JRB) is located in the regions of Valencia and Castilla-La 

Mancha in Eastern Spain. It extends over 22,300 Km2 and covers the area drained by 

the Jucar River and its tributaries mainly the Magro and the Cabriel Rivers (Figure 1). 

The basin has an irregular Mediterranean hydrology, characterized by recurrent drought 

spells and normal years with dry summers. 

The JRB renewable water resources are nearly 1,700 Mm3/year but water 

extractions are very close to renewable resources, 1,680 Mm3, and the basin is almost a 

closed water system. The main water use is irrigated agriculture with 1,400 Mm3, 

followed by urban and industrial uses of 270 Mm3, which supply households, industries, 

and services of more than one million inhabitants (Table 1). There are also non-

consumptive uses for hydropower, aquaculture and recreation. 

The irrigated area extends over 190,000 ha, and the main crops grown are rice, 

wheat, barley, garlic, lettuce, grapes, and citrus. There are three major irrigation areas 

located in the upper Jucar, the lower Jucar, and the bordering area of the Turia basin. 

The Eastern La Mancha irrigation area (EM) is located in the upper Jucar, covering 

100,000 ha. The irrigation districts of Acequia Real del Jucar (ARJ), Escalona y 

Carcagente (ESC), and Ribera Baja (RB) are in the lower Jucar, with an area of 35,000 

ha. The irrigation district of Canal Jucar-Turia (CJT) is located in the bordering Turia 

basin with an area of 22,000 ha (Table 2).  

The expansion of water extractions in the basin and the severe drought spells in 

recent decades have triggered considerable negative environmental and economic  
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Table 2. The main water users in the JRB. 

Water users 
Water use (Mm3) 

Surface water Groundwater Total 
City of Albacete 17 0 17 
EM aquifer irrigation district 13 386 399 
Nuclear central of Cofrentes 14 0 14 
City of Valencia 95 0 95 
City of Sagunto 8 0 8 
CJT irrigation district 70 91 161 
ARJ irrigation district 213 0 213 
ESC irrigation district 38 0 38 
RB irrigation district 254 0 254 
Other uses 193 285 478 
Total JRB 915 762 1,677 

Source. CHJ 2009.  
 

impacts. The growth of water extractions in recent decades has been driven especially 

by subsurface irrigation from the EM aquifer. The aquifer depletion, combined with 

other important water extractions in the basin, and the recurrent drought spells have 

caused the water flows in the Jucar River to diminish. Environmental flows are 

dwindling in many parts of the basin, resulting in serious damages to water-dependent 

ecosystems. There have been negative impacts on the downstream water users. For 

instance, the water available to the ARJ district has fallen from 700 to 200 Mm3 in the 

last 40 years. Consequently, the dwindling return flows from the irrigation districts in 

the lower Jucar have caused serious environmental problems to the Albufera wetland, 

which is mostly fed by these return flows (Garcia-Molla et al., 2013).  

The Albufera wetland is the main aquatic ecosystem in the JRB. It is a fresh-water 

lagoon included in the RAMSAR list, and was declared a special protected area for 

birds. The Albufera receives water from the return flows of the irrigation districts in the 

lower Jucar, mainly from the ARJ and the RB irrigation districts, and other flows 

originate from discharges of untreated and treated urban and industrial wastewaters. 

There is an important water quality problem driven by deficiencies in the sewage 

disposal and treatment systems in the adjacent municipalities, and by the reduced flows 

originating from the Jucar River that used to improve the quality of wastewater 

discharges (Sanchis, 2011). 

The increased frequency and intensity of drought spells during recent decades has 

been addressed by the Jucar basin authority with investments in several long-term 

adaptation measures, such as construction of storage and regulation facilities, 
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improvement of water efficiency through investment in irrigation systems, and 

installation of metering devices and special groundwater monitoring programs to 

control groundwater extractions. 

 

4. The Modeling Framework 

The comparison of policies is based on the hydro-economic model developed in Kahil 

et al. (2015). The model includes three components: (1) a reduced form hydrological 

sub-model; (2) a regional economic sub-model consisting on irrigation districts and 

urban centers; and (3) an environmental benefit sub-model. The reduced form 

hydrological sub-model is used to link the different components of the river basin and to 

simulate the spatial hydrological impacts of droughts. The mathematical formulation of 

the reduced form hydrological sub-model is as follows: 

ௗݐݑ݋ܹ       ൌ ܹ݅݊ௗ െ ௗݏݏ݋݈ܹ െ ௗݒ݅ܦ
ூோ െ ௗݒ݅ܦ

௎ோ஻                                                   [1] 

       ܹ݅݊ௗାଵ ൌ ௗݐݑ݋ܹ ൅ ௗݎ
ூோ · ሺݒ݅ܦௗ

ூோሻ ൅ ௗݎ
௎ோ஻ · ሺݒ݅ܦௗ

௎ோ஻ሻ ൅ ܴܱௗାଵ                       [2] 

ௗݐݑ݋ܹ          ൒ ௗܧ
௠௜௡                                                                                                     [3] 

where equations [1], [2] and [3] are the mass balance, the flow continuity, and the 

minimum-environmental flow constraints, respectively. These constraints determine the 

water available in the different river reaches that can be used for economic activities 

after considering the environmental restrictions. ܹݐݑ݋ௗ is the water outflow from a 

river reach d; ܹ݅݊ௗ the water inflow to d; ܹ݈ݏݏ݋ௗ the loss of water in d; ݒ݅ܦௗ
ூோ the 

water diversion to irrigation districts located in d; ݒ݅ܦௗ
௎ோ஻ the water diversion to urban 

and industrial activities located in d; ܹ݅݊ௗାଵ the water inflow to the next river reach 

݀ ൅ 1; ሾݎௗ
ூோ · ሺݒ݅ܦௗ

ூோሻሿ the return flows from irrigation districts; ሾݎௗ
௎ோ஻ · ሺݒ݅ܦௗ

௎ோ஻ሻሿ the 

return flows from urban and industrial activities; ܴܱௗାଵ the runoff entering river reach 

݀ ൅ 1 from tributaries; and ܧௗ
௠௜௡ the minimum environmental flow established for each 

river reach. 

The regional economic sub-model accounts for the decision processes made by 

irrigation water users in the five major irrigation districts (EM, CJT, ARJ, ESC, and 

RB) and by urban users in the three main cities (Valencia, Albacete, and Sagunto). A 

farm-level programming component has been developed for each irrigation district, 

which maximizes farmers’ private benefits from irrigation activities by choosing a crop 
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mix subject to various technical and resource constraints. A Leontief production 

function technology is assumed with fixed input and output prices, in which farmers are 

price takers. The optimization problem is given by the following formulation: 

௞ܤ ݔܽܯ  
ூோ ൌ ∑ ௜௝௞ܥ

′ · ௜ܺ௝௞௜௝                                                                                     [4]  

subject to 

         ∑ ௜ܺ௝௞௜ ൑ ݈ܶܽ݊݀௞௝                                                                                                [5] 

         ∑ ௜ܹ௝௞௜௝ · ௜ܺ௝௞ ൑  ௞                                                                                    [6]ݎ݁ݐܽݓܶ

         ∑ ௜௝௞௜௝ܮ · ௜ܺ௝௞ ൑  ௞                                                                                      [7]ݎ݋ܾ݈ܽܶ

         ௜ܺ௝௞ ൒ 0                                                                                                                 [8] 

where ܤ௞
ூோ is farmers’ private benefits in irrigation district ݇. ܥ௜௝௞

′  is a vector of 

coefficients of net income per hectare of crop i using irrigation technology j. The net 

income of each crop is equal to revenue minus direct and indirect costs, and 

amortizations. The decision variable in the optimization problem is ௜ܺ௝௞, corresponding 

to the area of crop ݅ using irrigation technology ݆. Crops are aggregated into three 

representative crop groups: cereals, vegetables, and fruit trees. Irrigation technologies 

are flood, sprinkler, and drip.  

Constraint [5] represents the available area for irrigation equipped with technology 

݆ in irrigation district ݇, ݈ܶܽ݊݀௞௝. The water constraint [6] represents irrigation water 

availability in irrigation district ݇, ܶݎ݁ݐܽݓ௞, that depends on surface and subsurface 

water extractions for that district. Parameter ௜ܹ௝௞ is gross water requirements per 

hectare of each crop ݅ using irrigation technology ݆. The labor constraint [7] represents 

labor availability in irrigation district ݇, ݈ܾܶܽݎ݋௞. Parameter ܮ௜௝௞ is labor requirements 

per hectare of crop ݅ using irrigation technology ݆. 

For urban water uses, an economic surplus optimization scheme has been 

developed for each city in the basin. The optimization problem maximizes social 

surplus given by the consumer and producer surplus from water use in each city, subject 

to several physical and institutional constraints. The optimization problem is:  

௨ܤ ݔܽܯ
௎ோ஻ ൌ ቀܽௗ௨ · ܳௗ௨ െ ଵ

ଶ
· ܾௗ௨ · ܳௗ௨

ଶ െ ܽ௦௨ · ܳ௦௨ െ ଵ

ଶ
· ܾ௦௨ · ܳ௦௨

ଶ ቁ                          [9] 

subject to 

            ܳௗ௨ െ ܳ௦௨ ൑ 0                                                                                                  [10] 
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             ܳௗ௨, ܳ௦௨ ൒ 0                                                                                                    [11] 

where ܤ௨
௎ோ஻ is the consumer and producer surplus of city u. Variables Qdu and Qsu are 

water demand and supply by/to the city u, respectively. Parameters adu and bdu are the 

intercept and slope of the inverse demand function, while parameters asu and bsu are the 

intercept and slope of the water supply function. Equation [10] states that supply must 

be greater than or equal to demand. The quantity supplied, Qsu, is the connecting 

variable between urban use optimization components and the reduced form hydrological 

sub-model.  

The environmental benefits sub-model accounts for the environmental benefits 

generated by the main aquatic ecosystem in the JRB, the Albufera wetland. The sub-

model considers only water inflows to the Albufera wetland originated from irrigation 

return flows of the downstream ARJ and RB irrigation districts. Inflows and benefits of 

the Albufera wetland are given by the following expressions: 

஺௟௕௨௙௘௥௔ܧ      ൌ ߙ · ஺ோ௃ݎ
ூோ · ൫ܦ஺ோ௃

ூோ ൯ ൅ ߚ · ோ஻ݎ
ூோ · ሺܦோ஻

ூோ ሻ                                             [12] 

஺௟௕௨௙௘௥௔ܤ       ൌ ቐ

ଵߩ    · ஺௟௕௨௙௘௥௔           ݂݅  0 ൑ܧ ஺௟௕௨௙௘௥௔ܧ ൑ ଵܧ

ଶߜ ൅ ଶߩ · ଵܧ  ݂݅     ஺௟௕௨௙௘௥௔ܧ ൏ ஺௟௕௨௙௘௥௔ܧ ൑ ଶܧ

ଷߜ ൅ ଷߩ · ஺௟௕௨௙௘௥௔ܧ ݂݅                 ஺௟௕௨௙௘௥௔ܧ ൐ ଶܧ

                     [13] 

where equation [12] determines the quantity of water flowing to the Albufera wetland, 

 ஺௟௕௨௙௘௥௔. Parameters α and β represent the shares of return flows that feed the wetlandܧ

from the ARJ and RB irrigation districts, respectively. The products [ݎ஺ோ௃
ூோ · ሺܦ஺ோ௃

ூோ ሻ] and 

ோ஻ݎ]
ூோ · ሺܦோ஻

ூோ )] are return flows from the ARJ and RB irrigation districts, respectively.  

Equation [13] represents economic environmental benefits, ܤ஺௟௕௨௙௘௥௔, from the 

ecosystem services that the Albufera wetland provides to society. The environmental 

benefit function is assumed to be a piecewise linear function of water inflows, 

 ஺௟௕௨௙௘௥௔, to the wetland. This function expresses shifts in the ecosystem status whenܧ

critical thresholds of water inflows E1 and E2 are reached, following the approach of 

Scheffer et al. (2001). The reason is that ecosystems do not always respond smoothly to 

changes in environmental conditions, and they may switch abruptly to a contrasting 

alternative state for certain critical levels. Time series data of various hydrological and 

chemical indicators have been collected to characterize the ecosystem health status of 

the wetland (CHJ, 2009), along with economic valuation studies of the Albufera and 

other wetlands (Del Saz & Perez, 1999; Woodward & Wui, 2001; Brander et al., 2006). 
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The specification and estimation of the environmental benefit function is described in 

Kahil et al. (2015).   

Detailed information on the technical coefficients and parameters of the hydro-

economic model has been collected from field surveys, expert consultation, statistics, 

and reviewing the literature (GV, 2009; GCLM, 2009; INE, 2009; CHJ, 2009 and 2012; 

MARM, 2010). This information covers water inflows to the basin, water diversion to 

users, urban water prices and costs, efficiency of primary and secondary conveyance 

channels, crop yields and prices, subsidies, production costs, amortizations, crop water 

requirements, crop labor requirements, land and labor availability, and groundwater 

extractions.  

5. Comparison of water policies  

The hydro-economic model is used to analyze the economic and environmental effects 

of the three alternative water policies designed to cope with scarcity and drought: the 

current institutional arrangement of the basin authority, water markets, and water 

pricing. The model provides results on the private benefits of users, environmental 

benefits, water use and return flows, and inflows to the Albufera wetland. Social 

benefits are assumed to be the sum of the private benefits from irrigation and urban use, 

and the environmental benefits (Table 3).  

Two drought scenarios are considered, mild drought and severe drought. The 

reduction of water inflows over normal levels is 22 percent for mild droughts, and 66 

percent for severe droughts. More information on the characterization of drought 

scenarios can be found in Kahil et al. (2015). The model simulates the outcomes of the 

three alternative policies to deal with these two drought scenarios. 

Institutional cooperation is the baseline policy, and represents the current water 

management to cope with scarcity and droughts. This approach entails flexible adaptive 

changes in water allocations based on the negotiation and cooperation of users. The 

special feature of this approach is the involvement of water stakeholders in the decision 

making process, including the environmental concerns. The water allocations that result 

from cooperation are observed in the data from both normal and drought periods.  

The water market policy opens up water trading between economic agents in 

irrigation districts and urban centers. Economic theory predicts that water markets  
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Table 3. Policies under drought scarcity: institutional, water markets, and water pricing.  
Drought Scenario Normal Year Mild Drought Severe Drought 

Type of 
Water Policy 

Current situation 
(Cooperation) 

Cooperation 
Water markets 

and 
Water pricing 

Cooperation 
Water markets and

Water pricing 

Water Use (Mm3) 
  Irrigation districts 1030 908 908 683 683 
    EM 399 359 363 304 316 
    CJT 155 132 150 107 146 
    ARJ 200 180 197 131 185 
    ESC 33 30 32 18 31 
    RB 243 207 166 123 4 
  Urban use  119 105 105 74 74 
 Environmental flows 
   (inflows to Albufera) 

60 52 50 34 29 

 Private and Environmental Benefits (million Euros)    

    
Current situation 

(Cooperation) 
Cooperation 

Water 
markets

Water 
pricing

Cooperation 
Water 

markets 
Water 
pricing 

Private benefits    
  Irrigation districts  190 171 175 93 136 148 54 
    EM             80 72 72 37 61 62 31 
    CJT 45 40 42 33 36 39 17 
    ARJ 34 31 32 17 23 25 4 
    ESC 7 7 7 5 4 5 2 
    RB 24 21 22 1 12 17 0 
  Urban use 283 276 276 276 241 241 241 
Total 473 447 451 369 377 389 295 
Environmental benefits 75 37 32 32 22 19 19 
Social benefits 548 484 483 401 399 408 314 
(Top) Water allocations to irrigation, urban use and environment in million cubic meters. (Bottom) 
Private benefits from irrigation and urban use, and environmental benefits in million Euros. 
 

achieve welfare gains by reallocating water from low to high marginal values of water, 

and this efficient use of water maximizes the private benefits of agents. The model is 

used to test the water market policy alternative, and empirically estimate the market 

potential welfare gains. Water trade becomes more pronounced as drought severity 

intensifies, reaching 120 Mm3 under severe drought. The main effect is the 

improvement of irrigation efficiency, but also the subsequent fall in irrigation return 

flows up to 19 Mm3 which further reduce the environmental flows in the basin. 

The water pricing policy achieves also the efficient use of water by adjusting water 

prices to balance water demand with the available water supply during drought. This 

policy alternative is in line with the water pricing policy advocated by the European 

Water Framework Directive, reiterated in the recent Blueprint to Safeguard Europe's 

Water Resources (EC, 2012). Water prices in each irrigation district and urban center 

are set equal to the marginal value of water at the efficient level of water use, which is 

the market-clearing price. One advantage of the water pricing policy is that it assures 
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the financial viability of the public and private water agencies responsible for water 

supply, which could guarantee its operation without the need of public subsidies.  

Social benefits under the institutional or baseline policy in normal flow conditions 

amount to 548 million Euros. Private benefits are 190 million Euros for irrigation and 

283 million for urban demand, from using 1,030 and 119 Mm3 of water, respectively. 

Environmental benefits provided by the Albufera wetland are 75 million Euros, and the 

Albufera wetland receives 60 Mm3 of return flows from the ARJ and RB irrigation 

districts, which support the ecological status of the wetland.  

5.1 Mild drought scenario  

Mild drought events reduce social benefits by 65 million Euros under the institutional 

and water market policies, but the social benefit losses go up to 150 million Euros under 

water pricing. The environmental losses are close to 40 million Euros under all policies, 

cutting environmental benefits by half. The difference among policies is the irrigation 

losses, which are below 20 million under institutional and water market policies, but 

escalate to 100 million under water pricing. Therefore the staggering benefit losses from 

the water pricing policy are driven by the large impact of pricing on irrigation profits.  

The environment sustains significant benefit losses derived from the reduction of 

water inflows to the Albufera. These water inflows under water markets and water 

pricing fall below the critical threshold E1, creating a regime shift in the wetland. The 

institutional policy achieves higher environmental benefits because it allocates more 

water to the Albufera, avoiding further desiccation and ecosystems degradation. 

The effects on the urban sector are moderate both in terms of water allocations and 

private benefits. The reason is the priority rules under the institutional policy, and also 

the availability of additional water sources at higher costs from neighboring basins in 

the case of Valencia and Sagunto (Turia basin), or groundwater in the case of Albacete.  

 Farmers face diminishing water extractions from drought and reduce crop acreage, 

mostly of cereals because these are the less profitable crops. The allocation of irrigation 

water to the RB, ARJ and CJT districts changes between the institutional and water 

market policies. Water markets allocate 40 Mm3 less water to RB, and this water is 

assigned to ARJ and CJT. These water exchanges are driven by the differences among 
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water shadow prices in districts. However, the private benefits of all irrigation districts 

are almost the same under both the institutional and water market policies.  

The opportunity costs of policies for farmers are the benefit losses sustained under 

each policy. A steep increase in the opportunity costs of a particular policy would be 

met by opposition from farmers leading to policy failure, given that other feasible 

policies are less costly. The costs of the water pricing policy are very high for farmers 

compared to the institutional or water market policies, with irrigation benefits falling by 

half when water pricing is implemented instead of the other policies. Opposition to the 

water pricing policy would be strong in the RB, EM and ARJ districts, where the 

opportunity costs of implementing water pricing are especially damaging to farmers. 

This empirical finding shows that the institutional and water market policy options are 

much more feasible and equitable than water pricing, because water pricing involves 

disproportionate costs to farmers. 

5.2 Severe drought scenario  

The effects of severe drought are more pronounced than those of mild drought, although 

they show similar patterns. The fall in social benefits is almost 150 million Euros under 

the institutional and water market policies, but social benefits losses escalate to almost 

250 million under water pricing. Environmental benefits sustain quite large losses, 

although the institutional policy allocates slightly more inflows to the Albufera. 

The irrigation benefits by district are almost the same under the institutional and 

water market policies, and the main difference is the change in water allocation to the 

RB, ARJ and CJT districts. Compared to the institutional policy, water markets respond 

to the shadow prices of water. Water trading allocates more water to the ARJ, ESC, EM 

and CJT districts by reducing the allocation of the RB district by 120 Mm3. 

Choosing the water pricing policy under severe drought is quite detrimental to 

farmers. The implementation of water pricing instead of the institutional or water 

market policies, make farmers lose two thirds of their private profits. In districts such as 

RB and ARJ, the private benefits of farmers are almost entirely wiped out. The 

opportunity costs for farmers of the water pricing policy are disproportionate.  

The cost distribution of confronting a severe drought in the Jucar basin by the 

irrigation, urban and environmental sectors depends on the policy selected by decision 
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makers, and these costs are given by the benefit losses incurred by each sector. These 

costs are 42 million Euros for the urban sector (283-241) and 53 million for the 

environment (75-22) regardless of the policy chosen, but these costs triple from 50 

million Euros (190-140) to almost 150 million (190-54) for the irrigation sector by 

selecting the water pricing policy instead of the other policies. 

5.3 Additional measures to protect the environment 

The environmental flows, especially during droughts, are a major concern in almost all 

basins in arid and semiarid regions. In these basins, regulators face a challenge to 

enforce environmental flows not only because they have to control surface and 

subsurface extractions, but also because the irrigation returns component of 

environmental flows is even more difficult to regulate than water extractions. Examples 

of these management difficulties include basins where water management efforts are 

quite sophisticated, such as the Jucar basin in Spain, the Murray-Darling basin in 

Australia, and the Central Valley in California.2  

Two additional measures are considered for the JRB to protect environmental 

flows, one associated to water markets and the other to the institutional policy. The first 

measure follows the example of the Murray-Darling basin, where a very expensive 

program is being implemented to recover water for the environment using a public 

water buyback program. This seems to be a suitable policy to reap the private benefits 

of pure water markets while protecting ecosystems, and this is called the environmental 

water market. The second measure is to improve the current institutional stakeholder 

cooperation in Jucar, by including the environment as a full stakeholder. These 

augmented environmental flows are achieved by the negotiation among all economic 

and environmental stakeholders, which is called the sustainable institutional policy.   

Both the environmental water market and the sustainable institutional policies 

achieve large gains in environmental benefits, above 200 Million Euros in mild and 

severe droughts, with social benefits in the basin reaching around 730 million Euros 

under mild drought and 660 million Euros under severe drought (See Kahil et al., 2013 

and 2015, for details).     

                                                            
2 In the Jucar, there was a desiccation of the Jucar riverbed during the last drought. In the Murray-Darling 
basin groundwater depletion reached 104 km3 during the last drought (Blewett 2012). In the Central 
Valley of California groundwater depletion has reached 80 km3 during the current drought (UCCHM, 
2014).  
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6. Conclusion  

The increasing pressures on water resources from economic and population growth are 

aggravating water scarcity problems worldwide, which result in serious damages to 

valuable water-dependent ecosystems. Climate change is also becoming a disruptive 

driver of the water cycle, contributing to worsening water scarcity in arid and semiarid 

regions. The sustainable use of water resources requires a reliable understanding of the 

main processes, an accurate assessment of impacts, and improving management by 

stakeholders and governance by policy makers to deal with water scarcity, droughts and 

climate change. Sound management and governance is quite a challenge because of the 

different types of goods and services provided by water, which could be private goods, 

common pool resources, and public goods. 

This paper presents an empirical assessment of three water policy instruments to 

address water scarcity and droughts: water pricing, water markets, and common 

property governance. A direct comparison of the three policies is made by using a 

hydro-economic model of the Jucar basin in Spain, analyzing the economic and 

environmental effects of each policy. 

Water pricing and water markets are economic instruments that work well when 

water is a private good, but less well when water is a common pool resource or public 

good. Studies in California and Australia demonstrate the large gains of water markets, 

both potential gains in California (Howitt et al., 2012; Medellín et al., 2013) and real 

gains in Australia (Connor & Kaczan, 2013).  

We present evidence from Spain because the policy approach is institutional, with a 

strong tradition of cooperation among stakeholders in water user associations dating 

back centuries. Evidence from Spain regarding policy instruments is derived from the 

Jucar basin, where water markets, water pricing, and institutional policies are simulated 

under drought. 

The empirical results highlight that both institutional and water market policies are 

good instruments to smooth the economic damage costs of droughts, achieving similar 

social benefits in terms of private and environmental benefits. This finding is important 

because it shows that in the case of Jucar, the institutional policy can attain almost the 

same private benefits as water markets. 
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The advantages of water markets compared to the institutional policy are a slight 

reduction in land fallowing, a small improvement in irrigation efficiency, and a more 

evenly distribution of drought losses among irrigation districts, thus addressing equity 

concerns. Water markets achieve the optimal private benefits but disregard the 

environmental benefits. Results show that water markets entail a reduction of water for 

environmental purposes, causing faster ecosystem regime shifts compared to the current 

institutional setting. The reason is the public good characteristic of environmental flows 

which are external to markets, leading to excessive depletion and ecosystem 

degradation. This is critically important when planning for a future with climate change 

and emerging social demands for aquatic ecosystem protection. 

Water pricing is the policy advocated by the European WFD. This policy poses 

important challenges in arid and semiarid regions such as Spain, where irrigation is the 

largest user of water, having strong links to a wide range of ecosystem services. The 

water pricing policy for managing drought is very detrimental to farmers. Implementing 

water pricing instead of water markets or institutional policies, increases farmers’ losses 

substantially by 80 and 100 million Euros under mild and severe drought, respectively. 

These benefit losses are the opportunity costs of the water pricing policy to 

farmers, and the steep opportunity costs of water pricing would surely lead to policy 

failure. The main empirical finding on water pricing is that farmers loose from half to 

two thirds of their private benefits when the water pricing policy is implemented during 

drought, instead of the water market or institutional policies. Enforcing water pricing 

will become a quite difficult task facing tough political and technical hurdles.  

The empirical results show that water market and institutional policies are much 

more feasible and equitable than water pricing, because water pricing involves 

disproportionate costs to farmers. There are also additional measures for these two 

policies that could enhance the protection of environmental flows. One measure is 

public water buyback programs for water markets, in order to reap the benefits of water 

markets while protecting ecosystems. The other measure is greening the cooperation in 

the institutional policy, by including the environment as a full stakeholder in the process 

of water allocation among sectors and spatial locations. However, protecting the 

environment with water pricing will require adding further “environmental” and 
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“resource use” costs to water prices (in WFD terminology), resulting in extreme 

disproportionate costs to farmers. 

Water management in the JRB is based on the negotiation and cooperation of 

stakeholders, which seems to provide a worthwhile prospect for sustainable water 

management in irrigation. In fact, this approach achieves better environmental outcomes 

compared to other policy instruments, and almost the same outcomes in terms of 

farmers’ private benefits and social benefits compared to water market policy. However, 

the institutional-based approach is not easy to implement in real-world situations. The 

reasons are that institutions may involve asymmetric negotiation power among the 

stakeholders, and also the severe scarcity of water resources may considerably reduce 

the incentives for cooperation. 

The evidence from the JRB highlights that, despite these limitations, the 

institutional-based approach was able to reduce environmental and economic damages 

during the last drought period, and to surrogate social conflicts by cooperation. The JRB 

experience suggests that the implementation of the institutional approach in managing 

water resources requires sufficient institutional capacity to deal with power asymmetry 

and resource scarcity, and available social capital supporting cooperation, which is 

particularly necessary for the promotion of self-regulation initiatives.     
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