DSSAT MODEL AS A TOOL FOR WATER AND NITROGEN MANAGEMENT IN INTENSIVE IRRIGATED AREAS: CALIBRATION AND VALIDATION

WAFA MALIK, FARIDA DECHMI, RAMON ISLA

Soil and Irrigation Department (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre of Aragon, Avda. Montañana 930, 50059 Zaragoza, Spain, wmalik@cita-aragon.es

Introduction and objective

The DSSAT model has been used worldwide to simulate crop biomass and yield, and soil N dynamics under different management practices and various climatic conditions (Li et al, 2015). There is a continuous need to test and update the models under a wide range of environments and cropping practices (López-Cedrón et al., 2008).

This study was focused on the evaluation of the performance of CERES-Maize to study the response (total biomass, grain yield and N uptake) of irrigated maize to different soil nitrogen availability under semi-arid condition.

Materials and Methods

- Three field experiments in Montañana 2010 (Mon10), Almudévar 2011 (Alm11) and 2012 (Alm12) (Spain), were performed under sprinkler irrigation system.
- ✤ Maize Pioneer 'PR34N43'.

soil N + N fertilizer).

- Five rate of N fertilizer (0 to 400 kg N ha⁻¹) were applied at each field that included four replications.
- The DSSAT (V4.5) was calibrated using plots managed under optimum N conditions and validated using other plots managed

under variable soil N available (from 60 to 871 kg N ha⁻¹, preplant

Results and Discussion

The best RMSE of grain yield achieved during the calibration process was about 844 kg ha⁻¹. The DSSAT validation process indicates an overestimation of grain yield, biomass and crop N uptake by the model (Table 1). The best result was obtained in Alm12 site with a RMSE of 1023 kg ha⁻¹ for grain yield and 2516 kg ha⁻¹ for total biomass. The model underestimated the residual soil N in the upper part of the soil profile while overestimated soil N in deeper layers (Table 2).

Table1. Validation results of DSSA ⁻	T model to simulate grain yield and total
biomas	s of maize.

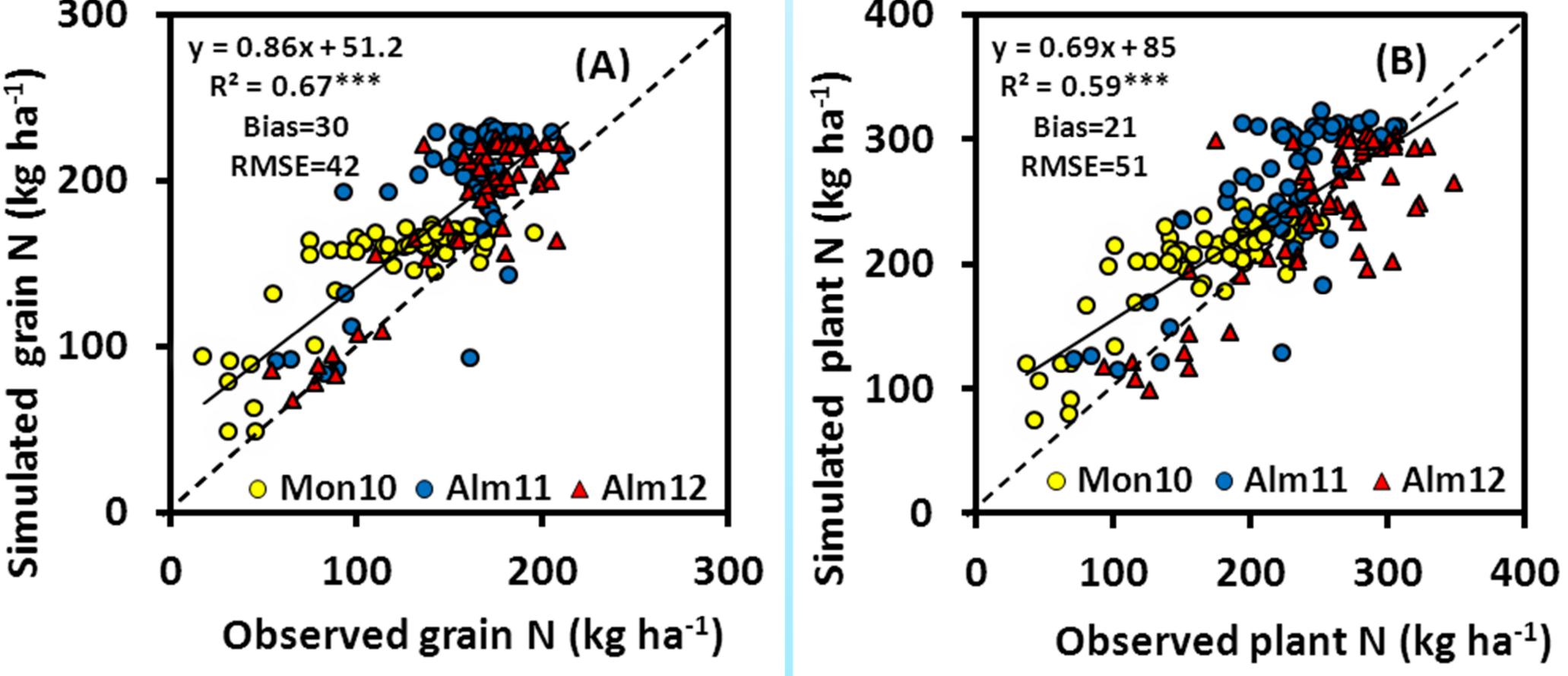
	Grain yield (kg ha ⁻¹)			Total biomass (kg ha ⁻¹)		
Field	Bias	RMSE	R ²	BIAS	RMSE	R ²
Mon10	883	2031	0.55***	2516	3656	0.58***
Alm11	271	1340	0.54***	1033	2874	0.46***
Alm12	388	1023	0.83***	1231	2516	0.67***

Table2. Validation results of DSSAT model to simulate the residual soil N in Alm12.

Depth (m)	Bias (kg ha ⁻¹)	RMSE (kg ha⁻¹)
0.0-0.3	-31	49
0.3-0.6	8	17
0.6-0.9	11	15
0.9-1.2	9	13

tended model

to


ha⁻¹)

ed

Sim

overestimate the total nitrogen content in grain and plant (Figure 1).

- additional calibration An modifying the CTCNP2 parameter value allowed an improvement of grain N and total crop N uptake RMSE by 22% and 14%, respectively.
- A good agreement was obtained between observed and simulated a moderate grain yield and agreement for total plant N uptake comparing with other studies 2012; (Liu et al., Salmerón et al., 2014).

Figure 1. Relationship between simulated and observed of (A) grain N and (B) plant N uptake (kg N ha⁻¹) in Mon10, Alm11 and Alm12; (n =158), the dashed line represents the 1:1 relationship.

Conclusions

DSSAT

> The model evaluation could be considered acceptable comparing with other published works. However, the model calibration and validation needs to be improved with further data.

- > A better CTCNP2 parameter adjustment to specific field conditions is important to obtain more accurate maize N uptake estimation.
- > The application of calibrated model could be helpful to assess management practices for reducing N leaching in intensive irrigated areas.

References

Li, Z.T., J.Y. Yang., C.F. Drury et al. (2015). Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agricultural Systems, 135: 90-104.

Liu, H.-I., Y. Jing-yi, H. Ping et al. (2012). Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maiz Growth and Nitrogen Uptake in Northeast China. Journal of Integrative Agriculture, 11(11): 1898-1913.

López-Cedrón X.F., K.J. Boote, J. Piñeiro, et al. (2008). Improving the CERES-Maize Model Ability to Simulate Water deficit Impact on Maize Production and Yield Components. Agronomy Journal, 100: 296-307. Salmerón, M., Cavero J., Isla R., et al. (2014). DSSAT Nitrogen Cycle Simulation of Cover Crop-Maize Rotations under Irrigated Mediterranean Conditions. Agronomy Journal, 106(4): 1283-1296.

Acknowledgments

This work has been financed by the Spanish National Research Plan I+D+i (AGL2009-12897-C02-02 and AGL2013-48728-C2-2R). We thank the IAMZ-CIHEAM and the Spanish National Research Plan for awarding to Wafa Malik a Master and predoctoral fellowships, respectively.

