

CENTRO DE INVESTIGACIÓN Y TECNOLOGÍA AGROALIMENTARIA DE ARAGÓN

OXIDATIVE STRESS ASSOCIATED WITH ROOTSTOCK-SCION INTERACTIONS

Patricia Irisarri, Helle Juel Martens, Pilar Errea, Ana Pina Fruit-tree Department Agrifood research and Technology Centre of Aragón (CITA) Zaragoza, Spain

All stress situations disturb cellular metabolism and the unbalance production / elimination of ROS lead to its accumulation and impose conditions of oxidative stress.

The oxidative stress as a mechanism that could trigger the degradation of tissues and cells in the incompatible graft union, due to a high accumulation of ROS.

OBJETIVE

To study different antioxidant enzymes in combinations of pear / quince with different degrees of compatibility at the early stages of development.

- Determination of gene expression and activity of antioxidant enzymes
 - Superoxide dismutase (SOD)
 - ✤ Catalase (CAT)
 - ✤ Ascorbate peroxidase (APX)
- In vivo ROS detection

MATERIAL and METHODS

In silico analysis

CENTRO DE INVESTIGACIÓN Y TECNOLOGÍA AGROALIMENTARIA DE ARAGÓN

Antioxidant enzymes are the most important components the in scavenging system of ROS and mostly they exist in some plant species as a family of genes

ClustalW2

P.persical A.thalianal

P.nersical A. thalianal

P.persical A.thalianal

P.persical A.thalianal

P.persical A.thalianal

P.persical A.thalianal

P.persical

A.thalianal

P.persical A.thaliana

P.persical A.thalianal

P.persical

A. thalianal

CACATGGAAGGCTCTGGGGTCTAACACCTATACCCTTATCAATAAGGCGGGGAAAGCACAG 660 CACATGGAAGGTGCTGGGGTCAACACTTACATGCTAATCAACAAAGCTGGAAAAGCTCAC 660

GDR Genome Database

Prunus Persica: Mostrando 4.871 kbp de scaffold_!

Ejemplos: scaffold_1:12360000..12479999, ppa014948m, BU0459!

BIN_EPPB4219 BIN_COPPL989

BIN_CGPAR90

CPPCT0049 BIN EDDCINGE1

1130k 1140k 1150k

-

+ BROHRINCH Sequence Alignment

BIN EPPCH4962B

EPPCU5637 BIN_U

BPPCT026

BIN_EPPC

Browser Select Tracks Snanshots Custom Tracks Prefe

File

Busca

Región

Detailes

Avuda

Punto o región de referencia:

Fuente de datos

Resumen

scaffold 5:1,202,692..1,207,56. Buscar

*
B
H
B
Genetic Mapped Markers

11108 11208

12024 * E B B H B B Transcript Mode

* 🗆 🖾 🖂 🛏 🛱 Alternate Transcript Mode

00047638

★ 🖬 🖾 🖂 🖬 Updated Transcripts v1.0-r1

BIN_CGPPL5340

Gene expression

RESULTS

Gene expression

Gene expression

Enzyme activity

The activity was not correlated with the gene expression.

It is expected that some posttranscriptional mechanisms are playing an important role in this biological process.

In vivo ROS detection

Incompatible combinations showed a slight increase in the accumulation of ROS two weeks after grafting.

CONCLUSIONS

•Gene expression analyses showed significant differences in the expression of antioxidant enzymes between homografts and heterografts at 10 and 21 DAG for the Wi genotype (incompatible cultivar).

•The scion-rootstock incompatible combination (Wi/BA29) displayed a lower antioxidant activity and could not counterbalance the negative effects of the oxidative stress.

• The low gene expression and antioxidant activity in the incompatible combination might produce an accumulation of ROS.

• More studies are needed to determine the role of ROS in the processes of graft (in-)compatibility, and its possible involvement in PCD and toxic effects on the cells.

Acknowledgements

Thank you for your attention

This work has been funded by the projects: INIA RTA2009-00128-00-00 and INIA RTA2012-00097-00-00.

