REDUCCIÓN DE EMISIONES DE AMONIACO EN LA AGRICULTURA MEDITERRÁNEA A TRAVÉS DE TÉCNICAS INNOVADORAS DE FERTIRRIGACIÓN CON PURÍN

Proyecto LIFE ARIMEDA

Avances en la separación de sólidos en purines

Ramon Gea

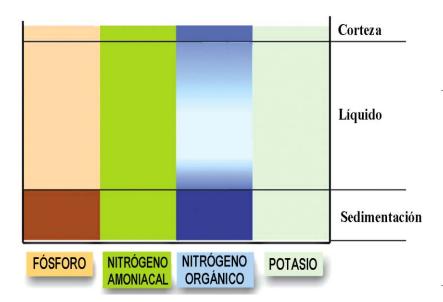
Socio Proyecto LIFE ARIMEDA Mecaniques Segales

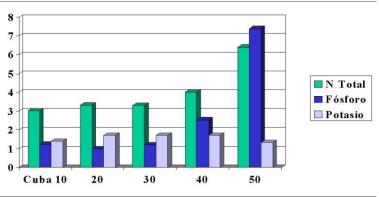
- •Creada 1966
- •Especializada en tratamiento y separación de purines
- •Actualmente vendiendo de forma regular en más de 20 países
- Contamos con equipo de investigación I+D+I
 - Proyectos en curso
 - •Higienización de la fracción sólida para cama de vacas
 - Planta NDN
 - Bandejas
 - Proyecto en fase inicial
 - •Batidores de purín externos
 - •REDUCCIÓN DE EMISIONES DE AMONIACO EN LA AGRICULTURA MEDITERRÁNEA A TRAVÉS DE TÉCNICAS INNOVADORAS DE FERTIRRIGACIÓN CON PURÍN

El purín, un contaminante o un fertilizante

Depuramos/ Reducimos nutrientes

Aplicamos





Difícil controlar la dosis de aplicación correcta

Evolución del contenido en nutrientes durante el vaciado de la fosa

I.T.G 2.002

Separación

Proceso físico que permite separar los sólidos contenidos en unas deyecciones de consistencia líquida y generar dos fracciones distintas, una sólida y otra líquida. La fracción sólida tiene una concentración de sólidos mucho más elevada que las deyecciones originales, y la fracción líquida, una concentración menor.

¿A qué afecta?

- •La aptitud de las deyecciones ante un tratamiento.
- •Reduce los malos olores.
- •Distribuye los nutrientes entre la fracción sólida y la fracción líquida.

Decantaciones naturales

Ventajas

- •Fracción líquida limpia
- •No consumo energético

inconvenientes

- Fracción sólida muy difícil de trabajar
- ➤ Necesidad de espacio
- >% de sólidos bajo poca concentración de nutrientes
- ➤ Altas emisiones

Objetivos de una separación mecánica

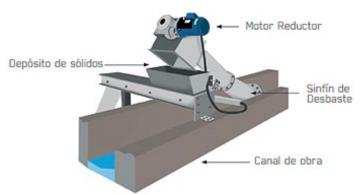
- ✓ Que ocupe poco espacio
- ✓ Que sea rápido (purín nuevo mas fácil de separar)
- ✓ Que no suponga un coste muy alto para la explotación
- ✓ Que sea robusta
- ✓ Que pueda solucionar la realidad de diferentes % de sólidos
- ✓ Que sea autónoma
- ✓ Que la operación sea económica

Que queremos conseguir

Máxima concentración de nutrientes en la fracción sólida Máxima limpieza de la fracción líquida

Parameters		Samples						
		PA	FLF	FSF	FLS	FSS	FLR	FSR
рН		7,78	7,92	7,75	7,61	8,30	7,57	7,67
CE	dS/m	22,10	18,51	18,75	17,55	13,40	18,15	16,54
ST	g/kg	36,85	25,61	109,71	28,40	233,40	25,91	44,95
SV	g/kg	19,03	12,56	85,80	15,08	187,96	12,43	29,45
SST	g/kg	20,28	14,09	-	15,09	-	14,00	-
SSV	g/kg	15,84	12,40		14,36		12,60	-
NKT	gN/kg	3,75	3,08	4,66	2,91	7,47	2,96	3,37
N-NH ₄	gN/kg	2.91	2,38	2,60	2,20	3 13	2,38	2,28
Norg	gN/kg	0,84	0,70	2,06	0,70	4,33	0,59	14,12
DQO	gO ₂ /kg	44,16	22,95	-	19,52	-	19,95	-
COX	gC/kg	7,06	2,11	17,59	9,09	62,36	0,59	14,12
Р	gP/kg	1,40	1,08	1,79	1,04	2,52	1,10	1,02
K	gK/kg	2,29	1,85	2,84	1,66	2,41	1,84	1,46

Segales 2012


Diferentes soluciones provenientes de la industria

Filtros estáticos

Transportado por Bomba (incorporamos consumo energético)

Fracción líquida

Hasta 500 micras

Fracción sólida

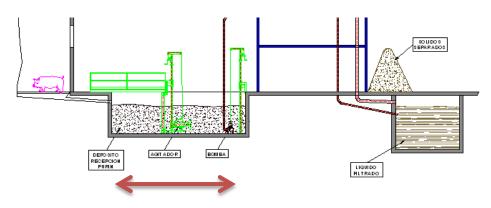
Aprox. 10% de MS (difícil transportar)

Consumo energético 0 kw

Inconveniente

Quedaban sólidos en el fondo de la balsa

Acumulación sólidos en rampa



Consumos energéticos:

Bomba **2/4** Kw /h

Agitador 4/7 Kw/h

Tambores rotativos

Aprovechando la experiencia de la rampa y para evitar acumulación de sólidos, la convertimos en tambor rotativo .

Incorporamos un compactador Conellos ya conseguimos un liquido a 500 micras y un sólido de aproximadamente un 20% de MS.

Consumo energético 2 kw/h 0.2 Kw m3

Inconvenientes

Alto mantenimiento por roturas y falta de seguridad de funcionamiento

La maquina ideal para realizar esta separación seria las centrifugas

- Fficiencia:
 - 28 % N
 - 71 % P
- Consumo:
 - 2 4 kWh/m3
- Inversión:
 - 40 60,000 €
- Coste de operación:
 0,6 2,3 €/m3

Fuente: Flotats, et al 2011

costes altos

Deficiente para trabajar con % de sólidos superior al 5%

% de MS de hasta un 25/30% 250 micras sin obturaciones Consumo energético 4 kw/h

Inconvenientes

0.4 Kw m3

- •Con purín muy líquido, la presión para escurrir la fracción sólida es dificultosa.
- Por las variaciones de caudal se nos destapona

Comportamiento

•Con un % de líquido, era superior al 7-8% la maquina se comportaba perfectamente inferior se podía mejorar

¿Que % de sólidos tienen los purines?

Purín de vacuno con cama caliente 8-9% Con paja o con el mismo purín para cama10- 11% solucionada

posible mejora

posible mejora

Purín de porcino

De 2 al 5% en países donde separamos los ciclos reproductivos

Patos de embuche 6-8%

Nueva aplicación

Consumo energético 0.25 kw/h 0.02 Kw m3

Recuperamos filtro estático

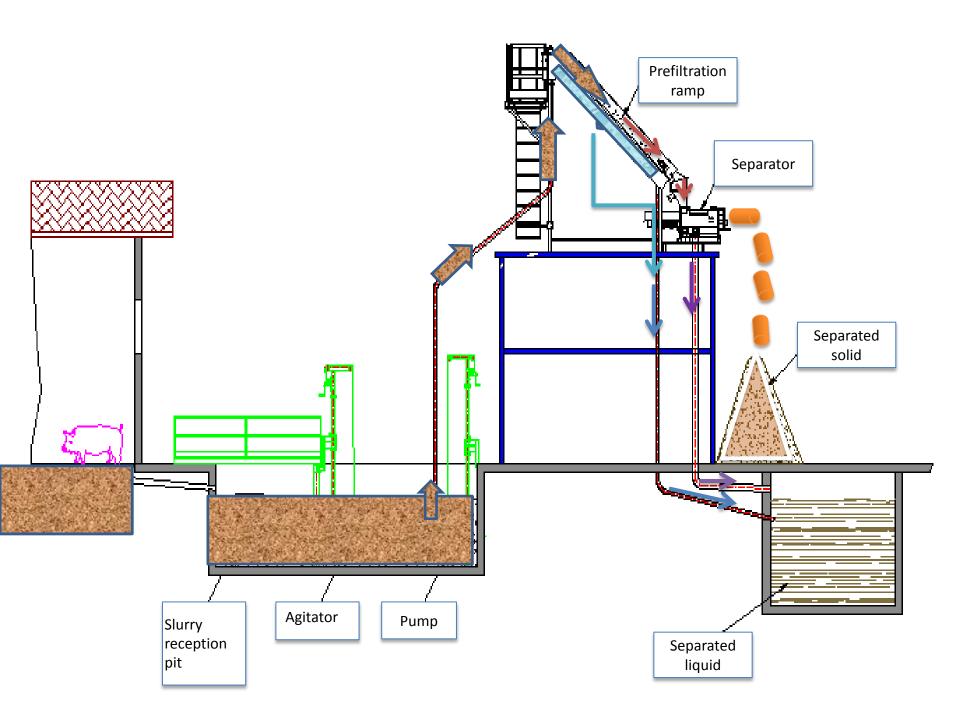
Fracción solida

Aprox. 10% de MS (difícil transportar) Acumulación sólidos en rampa.

Mejoramos sus deficiencias

Fracción solida

Aprox. 10% de MS entrega a separador Cepillos arrastre sólidos en rampa.



Consumo energético 3.5/6 kw/h 0.17/0.075 Kw m3

Asitador 4/2 Kw

% de MS de hasta un 25/30%

Nuestro objetivo en el proyecto Life Arimeda

Prototipo 1

El objetivo es encontrar una planta que nos permita separar a diferentes medidas de 750 micras hasta 250 micras, con ellos se probará qué tamices son necesarios para una fertirrigación a través de aspersión.

Conseguir una fracción sólida con un % de materia seca superior al 30% (ideal para compostar).

Prototipo 2

Separación de la fracción liquida (ya separada con el prototipo 1) para poderla aplicar a riego por gotero.

