CLONING OF THE SELF-COMPATIBLE S' LOCUS IN ALMOND

T. Hanada¹, K. Fukuta¹, H. Yamane¹, R. Tao^{1*}, J.M. Alonso² and R. Socias i Company²

¹ Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

² Unidad de Fruticultura, CITA de Aragón, Apartado 727, 50080 Zaragoza, Spain

Almond has a gametophytic self-incompatibility system as do most other fruit tree species in the genus *Prunus*. Although almond cultivars are largely self-incompatible, several self-compatible cultivars and lines exist. The S^f haplotype found in 'Tuono' has been a promising source for self-compatibility in many almond breeding programmes. DNA and protein markers for the S^f haplotype have been developed to be used for self-compatibility breeding in these programmes. However, although the DNA sequence for the pistil $S(S^f$ -RNase) has been reported, the pollen S (SFB^f) sequence remains to be clarified. Furthermore, expression of S^f -RNase and of SFB^f has yet to be fully characterized. In this study, the S^f locus has been cloned and the expression of S^f -RNase and of SFB^f has been characterized The molecular basis of self-compatibility observed with the S^f haplotype is discussed.