J. Albechaalany^{1,2,3}, M-P. Ellies-Oury^{1,2}, J. Saracco³, M.M. Campo⁴, I. Richardson⁵, P. Ertbjerg⁶, S. Failla⁷, B. Panea⁸, J.L. Williams^{9,10}, M. Christensen¹¹, J-F. Hocquette² ## Background Vanhonaker et al., 2013 The majority of meat consumers claim to reduce their meat consumption due to multiple reason as: - Environment - Animal Welfare - Disappointment by the Quality # **Experimental protocol** - 3 450 Steers / 15 breed / 5 EU country - Similar Diet Genetics of Meat Quality (GemQual) - slaughter age: 15month - sample collected from Longissimus thoracis muscle - 9 51 variable describing the physiological, muscular and sensory characteristics, to evaluate beef quality ## **Objective** Modeling the impact of the physiological and muscular characteristics on the beef sensory quality ## Methodology - Using a Hierarchical cluster and Principal component analyses approach to reduce the total number of variable - Implementing an Analysis of covariance (ANCOVA) to study the relationship between the different selected cluster : Yi = Breed + aXi + b *Yi = single cluster* Xi= All variables – (Variables of the cluster Yi) Selecting the important explicatory variables using the Akaike information criterion (AIC) Figure 1: Dendrogram representing the relation between 51 variables clustered by 10 groups **Conclusion** - The physiological characteristics studied (growth, muscle mass) negatively impact sensory quality - The muscle characteristics studied (Ageing, lipids, oxidative metabolism) have a positive impact on sensory qualities #### Perspectives - Validation of model simulations based on actual results - Comparison of the taste results of the jury (GemQual) with the taste results obtained by consumers (Meat Standards Australia project) Table 1: Representation of the relationships between the 10 clusters from the ANCOVA model (8) This Project Has Received Funding From