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Abstract

Seed sourcing strategies are the basis for identifying genetic material meeting the require-

ments of future climatic conditions and social demands. Specifically, local seed sourcing

has been extensively promoted, based on the expected adaptation of the populations to

local conditions, but there are some limitations for the application. We analyzed Strict-sense

local and Wide-sense local (based on climatic similarity) seed sourcing strategies. We deter-

mined species and genetic pools based on these strategies for 40 species and deployment

zones in Spain. We also obtained the total number of seed sources and stands for these

species in the EU countries. We analyzed the richness of the pools, the relationship with var-

iables related to the use of the species in afforestation, and the availability of seed produc-

tion areas approved for the production of reproductive material destined to be marketed.

This study confirms the existence of extensive species and genetic local pools. Also, that

the importance of these pools differs for different species, limitations being derived from the

use of forest reproductive material and the existence of approved basic materials. Strategies

derived from local seed sourcing approaches are the basis for the use of forest reproductive

material because a large number of the species in the area considered in the study are

under regulation. However, despite the extensive work done to approve basic materials, lim-

itations based on the availability of seed production areas to provide local material for sus-

tainable forestry are found in those species. Considering a Wide-sense local seed sourcing

strategy we provide alternative pools in order to meet social demands under the actual regu-

lations on marketing of reproductive materials.

Introduction

Sustainable forest management aims at maintaining the biodiversity, productivity, regenera-

tion capacity, vitality and potential of forests (Resolution H1, Forest Europe 1993), taking into

account the economic value of the ecosystem services they provide [1], and the urgent need to

increase forest resilience [2]. In this context, both artificial and natural regeneration play

essential roles in ensuring resilience [3], long-term population persistence [4] and the restora-

tion of ecosystem functionality [5, 6].
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While natural regeneration is always based on local genetic resources, artificial regeneration

often makes use of the deliberate transfer of genetic resources from elsewhere. In the last case,

seed sourcing involves matching the reproductive material collection area (Seed Production

Area (SPA, [7]), region of provenance or seed zone) and the area where the material will be

used (deployment zone) [8].

The origin of the planting stock is a major concern in forestry since it influences (as shown

by extensive provenance research [9]) the existing genetic resources [10] and the future perfor-

mance and adaptability [11] of populations. The election of a local provenance (local seed
sourcing) is based on the expectation that populations are locally adapted [12–14], as origin

also influences different traits related to the stability, adaptation, resistance, productivity and

diversity of the planting stock [14, 15]. Local seed sourcing is the preferred, most widespread

approach [16] in biodiversity conservation [17]. It is recommended as a general principle in

Forest Europe and is followed by many countries [3]. It can be interpreted as strict-sense when

the material used in the deployment location was also collected there, or as wide-sense when

the material used in the deployment location was collected from locations with similar climate

[16, 18].

Other strategies have been suggested under climate change scenarios, such as climate-pre-

dictive, composite, admixture, climate-adjusted, and assisted migration [16, 19], which require

information on the performance of the planting stock under different environments [20–27].

A given seed-sourcing strategy makes it possible to define a species pool, i.e. the set of species

that can potentially inhabit a site due to suitable local ecological conditions [28], and a genetic

pool within those species [29], i.e. the set of genetic materials suitable for the site.

Although these pools can be defined only theoretically, their use for specific purposes (e.g.,

for forestry), requires that SPA should meet the regulations (e.g. European Union, OCDE,

USA schemes [30–32]) to be approved for the production of reproductive materials (i.e. seeds,

fruits, plants or part of plants). These regulations define different basic materials from which

they can be obtained (e.g. seed-sources, stands, seed orchards, parents of families, clones and

mixture of clones) and different categories of reproductive materials (e.g. source-identified,

selected, qualified and tested). They also define basic units for the marketing of source-identi-

fied and selected categories of reproductive materials (regions of provenance or seed zones,

depending on the scheme). Among all the types of basic materials, SPA for producing source-

identified and selected reproductive materials presents some advantages in the context of sus-

tainable forestry. They are collected from populations of known origin, high population size

and no phenotypic selected or selected stands. They are also the most frequent of all the exist-

ing basic materials (in the EU, for instance, they represent 79.2% of the total basic materials).

However, the amount of species under regulation, the presence of different areas for afforesta-

tion, and the cost of collecting reproductive material from many different zones, haves shown

a reduced availability that amount a major limitation in forestry and ecosystem restoration

[33, 34].

We used Peninsular Spain and the Balearic Islands as our model study area, and expanded

our study to SPA (basic materials for producing source-identified and selected reproductive

materials) in the EU. Our model study area presents a higher tree diversity compared to other

areas in Europe [35], as it is a well-known biodiversity hot-spot with a strong interest in species

conservation [36]. In this area, there is a long tradition of multi-purpose forest plantations

with different goals [37]: restoration, protection and, to a lesser extent, production [38]. There

is a preference for source-identified and selected reproductive materials, from a highly diverse

species pool [39], that represent 97% of the total reproductive material produced annually in

Spain. The other two categories (qualified and tested materials) represent 3% of the basic mate-

rials produced for all the species.
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We used the defined regions of provenance [40] and deployment zones [41] to evaluate two

seed-sourcing strategies: Strict-sense local and Wide-sense local, taking into account the land-

scape level, and considering the reported scale of gene flow in forest tree species [42]. To do so,

we analysed 40 native forest tree species with actual trading of reproductive materials in Spain,

and identified the regions of provenance that were climatically suitable for each species and

deployment zone. We also defined the availability of SPA. Our objectives were to determine

the richness of the pools for each of the two seed-sourcing strategies, per species and deploy-

ment zone, and the relationship among richness, the use of the species reproductive material

and the climatic variables of the deployment zones. To conclude, we further discuss the appli-

cation of local seed-sourcing for afforestation, restoration and reforestation, in a highly diverse

environment such as the Mediterranean forests, and its application in other areas in Europe in

a context of sustainable forestry.

Material and methods

Species and pools

We considered 40 species (Table 1) regulated for marketing and trading of forest reproductive

material in Spain. They were classified depending on whether that material was mainly used

for restoration, for protection and to a lesser extent, in productive plantations according to the

published national guidelines [38].

Table 1. Species considered in the study.

Code1 Species Use2 Regpro3 Code Species Use Regpro
Aal Abies alba Mill. RE 6a psy Pinus sylvestris L. PR,PT 19a

api Abies pinsapo Boiss. RE 3a pun Pinus uncinata Ram. ex DC. PT 6a

apl Acer platanoides L. RE 7d pav Prunus avium L. PR,RE 33d

aps Acer pseudoplatanus L. RE 19d qca Quercus canariensis Willd. RE 5a

aun Arbutus unedo L. RE 47d qco Quercus coccifera L. RE 33d

bpu Betula pubescens Ehrh. RE 23d qfa Quercus faginea Lam. RE 27a

csa Castanea sativa Mill. PR 37d qil Quercus ilex L. PR,RE 28a

fsy Fagus sylvatica L. PT 18a qpe Quercus petraea (Matt.) Liebl. RE 13a

fex Fraxinus excelsior L. RE 17d qpu Quercus pubescens Willd. RE 6a

iaq Ilex aquifolium L. RE 30d qpy Quercus pyrenaica Willd. RE 28a

jre Juglans regia L. PR 39d qro Quercus robur L. RE 11a

jco Juniperus communis L. RE 31d qsu Quercus suber L. PR,RE 25a

jox Juniperus oxycedrus L. RE 45d sar Sorbus aria (L.) Crantz RE 31d

jph Juniperus phoenicea L. RE 36d sau Sorbus aucuparia L. RE 22d

jth Juniperus thurifera L. PT 28d tga Tamarix gallica L. RE 28d

oeu Olea europea Brot. RE 45d tba Taxus baccata L. RE 26d

pha Pinus halepensis Mill. PT 20a tco Tilia cordata Mill. RE 14d

pni Pinus nigra Arn. PR,PT 15a tpl Tilia platyphyllos Scop. RE 18d

ppa Pinus pinaster Aiton. PR,PT 29a ugl Ulmus glabra Huds. RE 21d

ppe Pinus pinea L. PR,PT 12a umi Ulmus minor Mill. s.l. RE 46d

1Code: According to the Commission Regulation (EC) No 1597/2002 of 6 September 2002.
2Use: from Peman et al. (2013). RE: restauration, PR: production, PT: protection.
3Regpro: number of regions of provenance of the species

(aAgglomerative method,
dDivisive method).

https://doi.org/10.1371/journal.pone.0278866.t001
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Distribution data were available for each species from the Spanish National Inventory and

Spanish Forest Map (1/25000) and transformed into species presence/absence data in a grid of

1x1 km2. We considered natural populations–i.e., excluding plantations- in the Spanish Ibe-

rian Peninsula and Balearic Islands, excluding plantations, following each species’ regions of

provenance [40].

Deployment zones were established by a division of Spain into continuous regions with sim-

ilar environmental characteristics and following a biogeographical classification [43], resulting

in fifty units [41, 44] (S1 Fig).

Regions of provenance, are the basic marketing units for source- identified and selected

materials according to EU regulations [30]. The regions were defined for all the species consid-

ered in this study (Table 1) using two different methodologies: agglomerative and divisive

[40]. The agglomerative method (see [45]), groups each species populations with similar eco-

logical, phenotypic or genetic characteristics. These species-specific regions of provenance

were defined for 17 main forest species: Abies (2), Fagus (1), Pinus (6) and Quercus (8). The

divisive method splits the territory into continuous regions with similar environmental charac-

teristics using a biogeographical classification [41]. This method was applied for the remaining

23 species in the in the study and resulted in regions that coincided with the deployment zones

and were not species-specific.

Seed sourcing strategies. A Strict-sense local seed-sourcing strategy (SSL) was defined for

each deployment zone as the use for each species of autochthonous populations pertaining to

the same region of provenance. Wide-sense local seed-sourcing strategy (WSL) was defined as

the use, in each zone, of regions of provenance with a suitable climatic niche.

Niche modelling was used to obtain the climate-predicted distribution of the species based

on actual presence and climate (assuming no restrictions to dispersal and no human influence)

(see [39] and S1 Annex). Eight climatic variables already used for the niche modelling of differ-

ent species in Spain [46] were used: Rainfall (P, mm), summer precipitation (SP, mm), winter

precipitation (WP), Dry period, considered when P<2T (DP, months), Frost period, consid-

ered when T<0˚C (FP, months), Annual mean temperature (TM, Celsius degrees), Mean of

the Maximum temperatures of the hottest month (MXHM, Celsius degrees) and Mean of the

minimum temperatures of the coldest month (MNCM, Celsius degrees). Climatic data was

obtained for a 1 km2 square grid. A similarity index [47] was obtained based on the Mahalano-

bis climatic distance (using the same set of climatic variables as in the niche modelling estima-

tion, see S1 Annex), comparing the points present both in the region of provenances and each

deployment zone. Based on this similarity, the regions of provenance were classified as suitable

or not for each deployment zone.

A dataset was created including the regions of provenance identified for each of the 40 spe-

cies and 50 deployment zones using the SSL and WSL strategies (DOI: 10.5281/zenodo.

7157589).

Seed sourcing pools. We defined eight seed-sourcing pools from this database by com-

bining the two seed-sourcing strategies SSL and WSL at two levels (species and genetic) and

considering the availability of SPA in the national register.

The species pool was defined as the set of species for each deployment zone following each

strategy. Similarly, the genetic pool was defined as the set of regions of provenance defined by

each strategy.

The available pool was defined as those regions of provenance with at least one SPA in the

national register (source-identified or selected categories). The National Register held by the

National Authority includes the existing approved basic materials (https://www.miteco.gob.es/

es/biodiversidad/temas/recursos-geneticos/geneticos-forestales/rgf_catalogo_materiales_base.

aspx; data accessed 31/12/2021).
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Data on reproductive material. The actual use of the species in afforestation and refores-

tation programs was defined by the following variables: Number of region of provenances of

the species (regpro); Mean number of SPA (entries or accessions in the national register) by

region of provenance (spa); Afforested area/year in ha (aff_su); Ratio of public afforestation to

total afforested area (aff_pu); Ratio afforested area for protection to total afforested area

(aff_pr); Source-identified and selected reproductive material by year in number of plants

(frm_si) and Qualified and tested reproductive material by year in number of plants (frm_qt).
Data on afforestation and production of reproductive material were obtained as the mean for

the period 2005–2016 (last year with available data) using on the Spanish forestry statistics.

We also calculated the percentage of deployment zones with endangered local populations

(recgen) for each species, following the criteria in the Spanish Strategy for the conservation and

sustainable use of forest genetic resources [40, 48]. This value was used as a proxy to the

genetic risk of transferring materials to a given zone.

Pool of basic material by country in the EU. We computed the available pool of basic

material of the species in our study compiled for each EU country. The FOREMATIS database

(https://ec.europa.eu/forematis/) includes the location of the approved basic material, type,

origin and purpose by species and country (Community List of Approved Basic Material for

the Production of Forest Reproductive Material [48]). We obtained the mean and the har-

monic mean of the basic material for all the species in each country (equivalent to an effective

number per species) for two classes: SPA (seed sources and stands) and improved basic for

qualified and tested categories (seed orchards, clones, parent of families).

Statistical analysis

Richness of seed sourcing pools per deployment zone. We obtained the richness of the

eight pools (already defined for each deployment zone) and analyzed the climatic variables

related to the richness increment between Strict-sense and Wide-sense local for the different

categories (species, genetic and available genetic). A stepwise linear selection model was

applied (lm function, stepAIC option in R), to select the variables explaining the relationship

among richness increment pools and climatic variables. The procedure start with a saturated

model, and the least significant variables are removed until no further decrease in the Bayesian

Information Criterion (BIC). Non-significant variables (α>0.05) were also removed from the

final selected model. Mean values of the climatic variables used in niche modelling, and the

altitude for each deployment zone, were computed based on the 1 km grid, and standardized

by the mean and standard deviation across deployment zones.

Relationship among seed sourcing pools and use of the species. We explored the rela-

tionship among the set of variables describing the seed sourcing pools by species (richness of

the genetic and available genetic pools, number and harmonic mean of deployment zones

-equivalent to the effective number of deployment zones- according to the frequency of the

species’ present in the region), and the variable set describing the actual deployment of repro-

ductive materials (see above). A canonical correspondence analysis (CCA) [49], was per-

formed and the biplot of variables and species was used to explore the relationship among

these two sets of variables.

Additionally, we explored the relationship among the variables related to the seed sourcing

pools and the variables describing the use of the species for two main type of species depending

on the method–agglomerative of divisive- for establishing the regions of provenance. A T-test

for two means with unknown population standard deviations (t.test function in the stat pack-

age in R), was computed from the means and standard deviation of each of the two groups of

species.
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Basic materials in the EU. We compared by ANOVA (lm function in R) the values of the

number of species under regulation in each country from the 40 considered in the study, and

the mean values for the SPA and improved basic materials for different EU regions (Nordic,

Western Central, Eastern Central, Western South, Eastern South).

All statistical analyses were made within the R environment (R Core Team, 2015), with the

packages corrplot [50], Hmisc [51], CCA [49], and MASS [52].

Results

Seed sourcing pools by deployment zone

The species differed in their range of distribution, and therefore in the local materials available

for each deployment zone. The richness of the species pool (for both SSL and WSL strategies)

varied greatly among deployment zones. The mean value of the SSL species pool was 20.2 ± 7.6

(range from 4 to 36 species) with a slight increment for the WSL species pool to 26.9 ± 8.1

(range from 8 to 39) (Fig 1 and S1 Table).

When considering the genetic pools, richness increased greatly for both seed-sourcing strat-

egies: to 27.7 ± 12.6 (range from 4 to 63) for SSL and to 114.1±57.8 (range from 10 to 245) for

WSL. However, the available genetic pool, (SPAs in the national register), for all species,

decreased to 17.7 ± 10.1 (60.2% of the total) for SSL and 57.6 ± 33.9 (48.4% of the total) for

WSL strategy.

The increment of richness among SSL and WSL pools showed a climatic trend mainly asso-

ciated to temperature for the three levels considered: species, genetic and available genetic

(Table 2), with a reduction in the areas with higher temperatures, in southern Spain.

Fig 1. Richness of pools for Strict-sense and Wide-sense local seed-sourcing strategies for the species (a, b), genetic (c,

d) and available genetic pools (e, f). BDLJE CC-BY 4.0 ign.es, DR miteco.gob.es.

https://doi.org/10.1371/journal.pone.0278866.g001
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Seed sourcing genetic pools per species

The richness per deployment zone of genetic pools differed greatly between SSL and WSL

strategies: 1.5±0.7 and 4.0±1.6, respectively. Moreover, the available pools were significantly

lower (1.0±0.8 and 2.1±0.9 respectively). For the 40 species, only 41% of the regions of prove-

nance had at least one basic material (source-identified or selected categories) in the national

register, with a mean value of 5.8 basic materials per region of provenance (S2 Table).

Nevertheless, the pools can be used in a significantly higher number of deployment zones

(133% as an average increment, from 25.3±12.6 in the Strict-sense local to 33.6±14.1 in the

Wide-sense local). This value is reduced when considering availability (15.1±10.0 and 26.2

±14.1 respectively).

The canonical correlation analysis showed a trend in the biplot of species on the two first

components based on variables related to the use of forest reproductive material, with a transi-

tion from those species more extensively used to those used mostly for ecological restoration

(Fig 2 and S3 Table). The species with an agglomerative method have a lower number of

regions of provenance, a higher amount of SPAs, higher afforested surface, and a higher pro-

duction of forest reproductive material, including also a higher number of endangered popula-

tions (S4 Table).

When comparing the SPA pool richness in Europe, there were large differences among

countries (Figs 3 and 4), with a higher number of species and higher number of SPA in south-

ern countries, but the variability among countries within a region was still quite high.

Discussion

We compared the effects of the potential genetic diversity (proxied by the number of suitable

and available basic materials) of two alternative local seed sourcing strategies for 40 species in

Spain.

Table 2. Regression analysis for the increment of richness for different seed sourcing pools (strict-sense local and Wide-sense local) per deployment zone and cli-

matic variables. Variables retained after a stepwise selection model starting with the eight standardized variables.

Analysis of variance

Estimate Std. Error t-value Pr(>|t|) M. Squares F-value Pr(>F)

Species pool
ALT -23.642 0.9222 -2.564 0.014025 31.276 7.1488 0.010640

P 19.680 0.5541 3.551 0.000961 42.224 9.6509 0.003387

MXHM -39.996 0.7162 -5.585 1.57e-06 42.865 9.7974 0.003175

MNCM -59.040 11.896 -4.963 1.20e-05 107.765 24.6316 1.2e-05

Genetic pool
P -14.999 7.379 -2.033 0.04801 1080 0.9254 0.341203

SP -17.473 9.397 -1.859 0.06952 12337 10.5714 0.002179

TM -76.989 11.677 -6.593 4.09e-08 47407 40.6211 8.696e-08

FRO -29.741 9.189 -3.237 0.00227 12225 10.4754 0.002273

Available Genetic pool
P -9.846 3.645 -2.702 0.00976 1671.1 6.3874 0.015161

TM -67.208 21.459 -3.132 0.00309 17157.3 65.5788 2.918e-10

FRO -11.473 4.402 -2.606 0.01245 2188.7 8.3658 0.005923

ALT: Altitude, P: rainfall, TM: Mean annual Temperature, SP: Summer Precipitation, FRO: Frost period, MXHM: Maximum temperature of the hottest month;

MNCM: Minimum temperature of the coldest month. Arid Period was not retained for any case

https://doi.org/10.1371/journal.pone.0278866.t002
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Our analysis is based on deployment zones and regions of provenance in contrast with

other studies that work at a finer scale, i.e. the population level (e.g. [26, 53]), because we need

to consider the scale at which genetic variation has implications in the use of genetic resources.

Regions of provenance are defined using different criteria among and within countries [54],

usually within genetic groups defined by neutral markers [55–57]. These regions are in the

same order of magnitude as deployment zones. For autochthonous or indigenous populations

(if the origin is known), region of provenance can be considered as that of populations within

gene-flow distance and therefore suitable for local seed-sourcing. This is in agreement with the

results on the response curves of different species which show a range where the populations

are close to an optimum [13]. Accordingly, we can assume that the scale at which we define

the separate genepools and the deployment zones are adequate for sustainable forestry and res-

toration activities.

We found that the Strict-sense local species pool was quite high in most of the deployment

zones (mean value of 22), with wide genetic pools for those species. We assumed that climate

prediction is a good estimate for the performance of the material when we considered Wide-

sense local seed sourcing in our study, that is, that the material from more ecologically similar

procurement zones would be preferred for a given deployment zone [see 58,59]. This is a more

generalized local seed sourcing method than can be implemented easily for many different

species. By using this strategy, the number of basic materials expected to be adapted to the

local conditions increased from an average of 1.4 per species and deployment zone to 2.3. This

strategy is still rather conservative, discarding recommendations of climatically distant basic

materials for a given deployment zone.

We found an expectable climatic trend in the richness increment of the pools, associated

with higher annual rainfall (or reduction of drought period) and temperatures. This is a gen-

eral trend for species diversity, where annual precipitation and mean annual temperature play

key favorable roles [60]. The species pool seems large enough for most of the goals of the

Fig 2. Biplot of the two first components of a CCA analysis on variables related to the seed sourcing pools and variables related to the use of

reproductive material for each of the 40 studied species.

https://doi.org/10.1371/journal.pone.0278866.g002
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plantations (restoration, revegetation, afforestation), allowing the establishment of mixed for-

ests with species differing in functional traits [61] in order to obtain multifunctional forests

[62], something particularly relevant in the Mediterranean region.

Fig 3. Basic material in the EU for the 40 analyzed species. SPA: harmonic mean of number of seed production areas by country; BM_improved: harmonic

mean of number of basic material for qualified and tested categories. Color triangles: Proportional representation of different source categories of forest

reproduction material (yellow triangles are identified, green ones are selected, pink ones are qualified and blue ones are tested). Source of basic material: www.

forematis.eu. Political map of Europe: https://es.m.wikipedia.org/wiki/Archivo:Political_Map_of_Europe-en.svg. CC BY 4.0.

https://doi.org/10.1371/journal.pone.0278866.g003
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Despite the widespread use of Strict-sense local seed sourcing in many countries and

regions, there are relevant concerns about this strategy. Local is not always the best option, for

different reasons: the absence of native forest species in the deployment zone is a first obvious

one. Moreover, low performance or bad adaptation of the local material has also been reported

in some cases [63–66], deriving from reduced population size [67], poor seed crops, low

genetic diversity (neutral or adaptive), or unfavorable genetic correlations due to trade-offs

among traits in highly contrasting ecosystems [68].

Our study also indicates how relevant the availability–linked to the existence of previously

approved SPA–can be a limiting factor decreasing the potential richness of genetic pools.

Despite the important effort made in Europe for approving SPA for many important forest

species, not all the regions of provenance are listed in the national registers. This drawback

makes often ecosystem restoration activities to be often constrained by a lack of the desired or

suitable basic material [33], legal restrictions for seed collection in endangered populations

and species [69], and biological constraints such as masting, conservation of seeds and fruits

and reduced population size.

The implementation of alternative seed sourcing strategies (eg. assisted migration, admix-

ture, climate-adjusted) to maximize the future adaptation and resilience of our forests [19, 66,

70, 71] is not feasible in the short term for most of the species under consideration in this

study because we lack precise information about the ecological and evolutionary implications

derived from the movement of genetic resources in the landscape [72–74]. Furthermore, many

local populations will not be in suitable areas in the future, as in the case of Southern popula-

tions of Scots pine [66] or in Maritime pine or Aleppo pine [59], and they do not have any

source from southern populations with similar expected future conditions. On one hand, an

integrative approach aimed at developing suitable restoration materials for a given area [75]

based on their out-planting performance requires well designed field experiments with repre-

sentative planting stock quality [34, 76]. On the other hand, the rapid development of genomic

Fig 4. Comparison of basic material in EU regions. SP_Forematis: number of species for each country with approved

basic materials; SP_SPA: number of species for each country with basic materials included in this study; SPA:

harmonic mean of number of SPA; SP_improved: number of species for each country with approved basic material for

the production of qualified and tested reproductive material (excluding clones and parent of families), BM_improved:

harmonic mean of number of basic material for the production of qualified and tested reproductive material. Anova F-

test and significance level (α) is included for each of the variables analyzed. Source www.forematis.eu. CC-BY 4.0.

https://doi.org/10.1371/journal.pone.0278866.g004
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research can contribute to optimizing seed sourcing strategies by increasing our knowledge of

local adaptation and of the main drivers determining the patterns of variation. The existing

genetic characterization by molecular markers and/or field trials (comparative common gar-

dens) is clearly insufficient to improve seed sourcing strategies for most of the species. Obtain-

ing this information is costly in money and time (particularly if it involves robust field

experimental settings with multiple sites) since fitness assessment in forest tree species requires

long-term experimentation [77].

A growing realization about the importance of SPA for producing reproductive material is

the general trend in Europe, where it already represents 84% of the basic materials approved.

In Nordic and Central East European countries other basic materials (for producing improved

materials) have more importance for some of the studied species, and the election of planting

stock has to be based on improved /cultivar seed sourcing strategies [26, 78–80] not considered

in our study. SPA could provide material for restoration and sustainable forestry [81] and res-

toration [7]. In order to improve the SPA network, it would be necessary to improve the infor-

mation on the characteristics of the SPA, as the actual information is mostly limited to the

location, and to extend to define deployment zones for the different materials based in strate-

gies aimed to sustainable use and restoration to facilitate the election by users.

Conclusions

Local seed sourcing strategies should be the basis for sustainable forestry until more scientifi-

cally contrasted information is available. Strict-sense local and Wide-sense local seed sourcing

strategies provide sufficient species and provenance pools for deployment zones. These pools

show a climatic gradient associated with higher annual rainfall and temperatures. The avail-

ability of SPA from specific sources reduces the pools for the different deployment zones,

despite the huge efforts done in approving SPAs in Spain in particular and the EU in general.

Therefore, it will be necessary to increase planning efforts and offer reproductive materials

from specific regions to meet demand.
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