

Densidad aparente

La **densidad aparente** es la cantidad de partículas sólidas contenidas en un volumen de suelo; por tanto, informa acerca del grado de compactación del suelo: a menor valor de densidad aparente, el suelo está menos compactado. Además, refleja la capacidad del suelo para proporcionar soporte, ya que la compactación disminuye la estructura del suelo y la capacidad de las raíces para profundizar y extenderse, resultando en un bajo desarrollo vegetativo de los cultivos. En suelos compactados (Figura 1), el flujo del agua y nutrientes, así como la aireación, fauna del suelo y actividades microbianas se encuentran restringidos o limitados. Esta propiedad se puede modificar con las prácticas de manejo del suelo.

Figura 1. Ejemplo de suelo agrícola con problemas de compactación (https://proain.com/blogs/notas-tecnicas/impacto-de-la-compactacion-del-suelo-agricola).

Protocolo de medida

Existen diferentes metodologías para determinar la densidad aparente del suelo, pero en esta ficha se expondrá solamente el método del cilindro, la técnica empleada más habitualmente.

- Clava un anillo metálico de diámetro conocido (imprescindible para realizar los cálculos) directamente en la superficie horizontal del suelo o verticalmente después de abrir un pequeño agujero, lo suficientemente amplio como para llenar totalmente el anillo.
- 2) Después de retirar el anillo con suelo, transfiere este a una bandeja o contenedor de peso conocido (puede ser una bolsa, por ejemplo). Anota el peso del suelo húmedo.
- 3) Coloca la muestra de suelo en un horno a 105 ºC durante 24 horas, o mantenlo expuesto a temperatura ambiente durante 3 − 4 días hasta que esté completamente seco y pésalo nuevamente. Alternativamente, puedes utilizar un microondas, poniendo la muestra para secar a máxima potencia en ciclos de 4 minutos. Entre cada ciclo, abre la puerta del microondas durante 1 minuto para permitir la ventilación. Una forma de saber si la muestra está seca es anotar el peso de la muestra después de un ciclo de secado y

Sos · suelo

- comparar con el peso del siguiente ciclo. En el momento en que no se produzca un cambio de peso entre ciclos sucesivos, la muestra se considera seca.
- 4) Realiza los siguientes cálculos:
- 5) Peso de la bandeja o contenedor donde se depositó la muestra de suelo, se denomina M1 (en gramos, g).
- 6) Peso de la bandeja con la muestra de suelo seca, se denomina M2 (g).
- 7) Peso del suelo seco, se denomina M3 y se calcula como M2 M1 (g).
- 8) Volumen (V) de la muestra (contenido de suelo presente en el interior del anillo de muestreo), se calcula: $V = \pi \times r^2 \times h$ (cm³), siendo r el radio del anillo en cm, y h la altura del anillo en cm.
- 9) La densidad aparente se calcula como la división del peso seco del suelo contenido en el anillo, entre el volumen de este: M3 / V (g/cm³). Clasifica el resultado según lo indicado en la Tabla 1.

Tabla 1. Clasificación de las observaciones de capacidad de almacenamiento de agua en el suelo.

Pobre	Moderado	Bueno	Muy bueno
0	1	2	3
> 1,66 g/cm ³	1,60 - 1,65 g/cm ³	1,40 - 1,49 g/cm ³	1,50 – 1,59 g/cm ³
Suelos compactados,	Suelos con una	Suelos con niveles de	Suelos con niveles de compactación
que no permiten un	compactación	compactación bajos, que	adecuados para el crecimiento
desarrollo adecuado	media	permiten un buen	radicular ya que contienen la
de las raíces		desarrollo radicular	proporción adecuada de poros de
			diferentes dimensiones

Referencias consultadas

Arshad, M.A., Lowery, B., Grossman, B. 1996. Physical tests for monitoring soil quality, in: Doran, J.W., Jones, A.J. (eds.) Methods for Assessing Soil Quality. Soil Science Society of America Special Publication nº 49. SSSA, Madison, WI, USA. pp. 123-142.

FAO. 2020. Soil testing methods – Global Soil Doctors Programme – A farmer-to-farmer training programme. Food and Agriculture Organization of the United Nations (FAO). Roma, Italia. 100 págs. https://openknowledge.fao.org/handle/20.500.14283/ca2796en

Govindakrishnan, P.M., Ganeshamurthy, A.N., Pawar, M., Agrawal, I., Beggi, F., Rana, J.C., Krishna Kumar, N.K. 2020. A Field Manual for Soil Health Assessment by Farmers. Bioversity International. Rome, Italy. 29 p. https://cgspace.cgiar.org/bitstream/handle/10568/111274/FIELDMANUAL SOILHEALTH.pdf?sequence=1

United States Department of Agriculture (USDA). 1999. Bulk Density, in: Soil Quality Test Kit Guide. Agricultural Research Service. Natural Resources Conservation Service. Soil Quality Institute. Auburn, AL, USA. pp. 9-13. https://efotg.sc.egov.usda.gov/references/public/WI/Soil Quality Test Kit Guide.pdf

Promovido y financiado por Iniciativa impulsada por:

Autores: En la elaboración de esta ficha han participado Emily Silva Araujo y José Manuel Mirás Avalos, investigadores del departamento de Sistemas Agrícolas, Forestales y Medio Ambiente del Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) y de la Misión Biológica de Galicia (MBG-CSIC), respectivamente.

Creado dentro del **Plan Complementario de Agroalimentación AGROALNEXT** en el marco del **Plan de Recuperación, Transformación y Resiliencia** y financiado por la **Unión Europea – NextGenerationEU**

