#### Elsevier Editorial System(tm) for Agricultural and Forest Meteorology Manuscript Draft

Manuscript Number:

Title: Microwave L-band (1730 MHz) accurately estimates the relative water content in poplar leaves. A comparison with a near infrared water index (R1300/R1450)

Article Type: Research Paper

Section/Category: Plant physiology, Crop Modelling, water relations including evapotranspiration, WUE, interception

Keywords: L-band, microwaves, near infrared reflectance, plant water status, poplar clones.

Corresponding Author: Dr. Eustaquio Gil-Pelegrín, Ph.D.

Corresponding Author's Institution:

First Author: Domingo Sancho-Knapik

Order of Authors: Domingo Sancho-Knapik; Javier Gismero, Ph.D.; Alberto Asensio, Ph.D.; José Javier Peguero-Pina, Ph.D.; Victoria Fernández, Ph.D.; Tomás Gómez Álvarez-Arenas, Ph.D.; Eustaquio Gil-Pelegrín, Ph.D.

Abstract: In this study the estimation of reflectivity at 1730 MHz (L-band), measured with a microwave digital cordless telephony (DCT) patch antenna, is presented as an easy-to-handle and non-destructive new method to assess the relative water content (RWC) of poplar leaves and filter discs at different levels of dehydration. The accuracy of this new method has been contrasted with the R1300/R1450 index, determined by a portable near infrared (NIR) spectrometer. The close correlations found between RWC and reflectance at a frequency of 1730 MHz, both for filters and leaves, indicate that microwave determinations are rather independent of the physical properties of the material analysed. On the contrary, the differences found between poplar leaves and leaf filters in the relationships established between RWC and the R1300/R1450 index demonstrate a strong influence of the properties of the material in NIR reflectance measurements, specifically as they relate to changes in leaf thickness during dehydration. Subsequently, the absence of changes in the R1300/R1450 index for poplar leaves above turgor loss point prevented its use for the estimation of leaf RWC above this point. Moreover, R-square coefficients were higher for microwaves than for the R1300/R1450 index and data obtained using the microwave technique had not to be corrected in relation to leaf thickness, which is one of the main advantages of this technique versus NIR reflectance. The use of a technologically simple, low cost and portable device, based on a microwave DCT patch antenna, could yield a solid support for the development of a commercial apparatus enabling the determination of plant water status under field conditions.

Suggested Reviewers: Melvin T. Tyree Ph. D. mtyree@ales.ualberta.ca

M. Manuela Chaves Ph. D. mchaves@isa.utl.pt

Hans-Dieter Seelig Ph. D.

hans.seelig@colorado.edu

Hamlyn G. Jones Ph. D. h.g.jones@dundee.ac.uk Dear Sir/Madam:

In this study we present a novel technique for estimating leaf relative water content. This technique is based on the measurement of the reflectivity at 1730 MHz (L-band), using a microwave digital cordless telephony (DCT) patch antenna. Our aim is to develop a commercial portable tool for the determination of plant water status under field conditions. For this reason, the patent of our device is currently in full process.

Thank you very much in advance.

| 1  | Microwave L-band (173                                                                                            | 0 MHz) accurately estimates the relative water                           |  |
|----|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| 2  | content in poplar leave                                                                                          | s. A comparison with a near infrared water                               |  |
| 3  | index (R <sub>1300</sub> /R <sub>1450</sub> )                                                                    |                                                                          |  |
| 4  |                                                                                                                  |                                                                          |  |
| 5  | Domingo Sancho-Knapik <sup>1</sup> ,                                                                             | Javier Gismero <sup>2</sup> , Alberto Asensio <sup>2</sup> , José Javier |  |
| 6  | Peguero-Pina <sup>1</sup> , Victoria Fernández <sup>3</sup> , Tomás Gómez Álvarez-Arenas <sup>4</sup> , Eustaqui |                                                                          |  |
| 7  | Gil-Pelegrín <sup>1,*</sup>                                                                                      |                                                                          |  |
| 8  |                                                                                                                  |                                                                          |  |
| 9  | <sup>1</sup> Unidad de Recursos Fo                                                                               | orestales, Centro de Investigación y Tecnología                          |  |
| 10 | Agroalimentaria, Gobierno de Aragón, 50059, Zaragoza, Spain.                                                     |                                                                          |  |
| 11 | <sup>2</sup> Univ Politecn Madrid, Gr                                                                            | rp Microondas & Radar, Dept Señales Sistemas &                           |  |
| 12 | Radiocomunicac, E-28040 Ma                                                                                       | udrid, Spain.                                                            |  |
| 13 | <sup>3</sup> Plant Nutrition Department,                                                                         | Estación Experimental de Aula Dei, CSIC, PO Box 202,                     |  |
| 14 | ES-50080 Zaragoza, Spain.                                                                                        |                                                                          |  |
| 15 | <sup>4</sup> Departamento de Señales, Si                                                                         | stemas y Tecnologías Ultrasónicas. Instituto de Acústica,                |  |
| 16 | C.S.I.C., 28002, Madrid, Spain                                                                                   | n.                                                                       |  |
| 17 |                                                                                                                  |                                                                          |  |
| 18 | *Corresponding author.                                                                                           | Email: egilp@aragon.es                                                   |  |
| 19 | 2                                                                                                                | Tlf: +34 976 716394                                                      |  |
| 20 | 1                                                                                                                | Fax: +34 976 716335                                                      |  |
| 21 |                                                                                                                  |                                                                          |  |
| 22 |                                                                                                                  |                                                                          |  |

### 23 Abstract

24 In this study the estimation of reflectivity at 1730 MHz (L-band), measured with a 25 microwave digital cordless telephony (DCT) patch antenna, is presented as an easy-to-26 handle and non-destructive new method to assess the relative water content (RWC) of poplar leaves and filter discs at different levels of dehydration. The accuracy of this new 27 28 method has been contrasted with the  $R_{1300}/R_{1450}$  index, determined by a portable near 29 infrared (NIR) spectrometer. The close correlations found between RWC and 30 reflectance at a frequency of 1730 MHz, both for filters and leaves, indicate that 31 microwave determinations are rather independent of the physical properties of the 32 material analysed. On the contrary, the differences found between poplar leaves and leaf 33 filters in the relationships established between RWC and the  $R_{1300}/R_{1450}$  index 34 demonstrate a strong influence of the properties of the material in NIR reflectance 35 measurements, specifically as they relate to changes in leaf thickness during 36 dehydration. Subsequently, the absence of changes in the  $R_{1300}/R_{1450}$  index for poplar 37 leaves above turgor loss point prevented its use for the estimation of leaf RWC above 38 this point. Moreover, R-square coefficients were higher for microwaves than for the 39 R<sub>1300</sub>/R<sub>1450</sub> index and data obtained using the microwave technique had not to be 40 corrected in relation to leaf thickness, which is one of the main advantages of this 41 technique versus NIR reflectance. The use of a technologically simple, low cost and 42 portable device, based on a microwave DCT patch antenna, could yield a solid support 43 for the development of a commercial apparatus enabling the determination of plant 44 water status under field conditions.

45

Key words: L-band, microwaves, near infrared reflectance, plant water status, poplar
clones

- 49 Abbreviations: DCT, digital cordless telephony; NIR, near infrared; PLT, percentage
- 50 of loss of thickness; R, reflectance; RWC, relative water content.

51

## 53 **1. Introduction**

54

55 Poplars can be considered one of the main agro-forestry resources for biomass 56 production (Meiresonne et al., 1999) and carbon sequestration (McKenney et al., 2004). Specifically, these species have been widely planted and cultivated in southern Europe 57 58 (Sixto et al., 2007). The existence of atmospheric drought prevailing during the 59 vegetative period in many arid or semi-arid regions of the world, increase significantly 60 the rate of water consumption by the plant (Tognetti et al., 2009). Therefore, many 61 commercial tree plantations are frequently irrigated in order to maintain the 62 physiological activity and achieve a good production (Migliavacca et al., 2009). To 63 prevent excessive water consumption in a global scene of decreased water availability, 64 several methods has been developed to maximize the water use efficiency in agricultural 65 and horticultural crops, highlighting the need for new methods of accurate irrigation 66 scheduling and control (Jones, 2004). It has been suggested that the use of plant "stress 67 sensing" including both water status and plant response measurements are the main 68 approaches to implement adequate irrigation scheduling, rather than only estimating the 69 soil moisture status directly (Jones, 1990a, 2004, 2007).

70 Assessment of plant water status can be achieved via measuring the energy status 71 (e.g., water potential) or by monitoring the amount of water (i.e., relative water content) 72 (Jones, 2007). On the other hand, direct estimation of plant stress sensing can be carried 73 out by evaluating physiological parameters based on stomatal closure, such as by 74 porometry (Vilagrosa et al., 2003), by thermal imaging (Grant et al., 2006; Suarez et al. 75 2009), or by assessing the development of energy dissipation mechanisms which induce 76 spectral reflectance changes around the green part of the spectrum (Peguero-Pina et al., 77 2008; Suarez et al. 2009).

78 Alternative methods for plant stress sensing based on the response of the plant 79 material to a certain stimulus have also been proposed, since the physical properties of 80 plant tissues have been found to vary according to the degree of hydration. In this way, 81 Gómez Álvarez-Arenas et al. (2009) and Sancho-Knapik et al. (2010) suggested that 82 ultrasound resonances are sensitive to leaf microstructure and water content, and they 83 provided evidence that changes in leaf relative water content and water potential can be 84 accurately estimated by the corresponding changes in the acoustic properties of the leaf. 85 A more classical approach is based on the study of near infrared reflectance (NIR) and, specially, the so-called water bands. Carter (1991) and Carter and McCain (1993) 86 87 found that a decrease in leaf water content was generally associated with an increase in 88 reflectance throughout the 400 to 2500 nm wavelength range spectrum. Since then, 89 several authors employed different techniques concerning infrared frequencies (e.g. 90 Peñuelas et al., 1993; Seelig et al., 2008a, 2008b; Sims and Gamon, 2003). More 91 recently, Wu et al. (2009) used normalized indices based on reflectance (R) at 1200, 92 1450 and 1950 nm and related them to the vegetation water content at the leaf scale. 93 Following a similar procedure, Seelig et al. (2009) obtained a correlation for the ratio of 94 reflectances between 1300 and 1450 nm (R<sub>1300</sub>/R<sub>1450</sub> index) and the relative water 95 content (RWC) of cowpea and bean leaves. Although Seelig et al. (2009) concluded that 96 the  $R_{1300}/R_{1450}$  index may be used as feedback-signal in precision irrigation control, they 97 pointed out that IR reflectances are influenced by leaf thickness, which implies that this 98 should be taken into account during the measurements. Recent advances in infrared 99 technologies may lead to the widespread of this technique as a tool to measure leaf 100 water status. Stemming from the complex and fairly expensive equipment mainly 101 designed for laboratory use, nowadays there are available some portable and more

affordable models that allow working at same range under field conditions (Zimmer etal., 2004).

104 Lower electromagnetic frequency ranges for measuring plant water status have also 105 been tested (Jördens et al. 2009). A time domain reflectometry (TDR) method to 106 estimate leaf disk water status was implemented by Martínez et al. (1995). 107 Measurements were carried out on the X-band (7 to 12 GHz) using a complex and 108 expensive laboratory equipment. The low dynamic margin of an oscilloscope may limit 109 the application of the method, since lower magnitudes cannot be accurately determined. 110 More recently, Menzel et al. (2009) described a non-invasive technique based on 111 measuring dielectric properties changes in a microwave cavity resonator induced by the 112 plant material inserted inside the system. Such method enabled measuring the water 113 content of the whole plant, but it involved certain drawbacks associated with the 114 complexity of the experimental set up and its low portability, which disable this 115 technique to measure dynamic changes in single leaves and to be used under field 116 conditions.

117 In spite of the good results obtained by Martínez et al. (1995) and Menzel et al. 118 (2009) relating to the use of microwaves to estimate plant water status, the complexity 119 of the experimental set up proposed prevents the applicability of such methods for the 120 development of practical tools to characterize plant water status under field conditions. 121 Therefore, the main objective of this study was to combine the potential effectiveness of 122 the frequency range of microwaves in a technologically simple and portable device. For 123 this purpose a microwave digital cordless telephony (DCT) patch antenna, commonly 124 used in mobile phone technology has been employed to measure the reflectivity at a 125 frequency of 1730 MHz (L-band) of poplar leaves at different RWC. As a second

- 126 objective the accuracy of the new method was compared with the  $R_{1300}/R_{1450}$  index for 127 the same materials, as measured by a portable NIR spectrometer.
- 128

## 129 **2. Materials and methods**

130

| 131 | 2.1. | Plant | material |
|-----|------|-------|----------|
|     |      |       |          |

132

133 Measurements were performed on mature Populus x euramericana (Dode.) Guinier 134 leaves. In the early morning, branches were collected from the north side of the trees, 135 placed in plastic bags and carried out to the laboratory. Once there, leaf petioles were 136 re-cut under water to avoid embolism and kept immersed until full leaf rehydration during 24 hours at 4° C. Special care was taken to prevent leaf oversaturation, by 137 detecting eventual water outflow from the sample when water potential ( $\Psi$ ) was equal to 138 139 zero (Kubiske and Abrams 1991). After rehydration, one set of ten leaves was destined 140 for the measurement with the microwave technique and other set of ten leaves used for 141 NIR measurements. Leaves were weighed and measured at constant time intervals at 142 different levels of RWC, starting at full saturation (turgid weight, TW). Leaf dry weight 143 (DW) was estimated after keeping the plant material in a stove (24h, 60°C). The RWC 144 was then calculated following the expression: RWC = (FW-DW)/(TW-DW), being FW 145 the sample fresh weight at any moment.

In addition, all the measurements described in this study were also performed on filter papers (homogeneous cellulosic material; Whatman 3; diameter 125mm; thickness 0.39mm). Three millilitres of DI water were added to each filter in order to achieve a full water saturation state. Immediately after, filters were introduced in a watersaturated atmosphere at room temperature. Twenty four hours later, one set was measured by the microwave technique while the other was assessed by IR following exactly the same procedure as described above for plant leaves. The disc weight after saturation (SW), the disc weight at any moment (FW) and the overdried disc weight (after 24h, 60°C) were used for the calculation of a RWC equivalent to that calculated for leaves.

156

157 2.2 The microwave digital cordless telephony (DCT) patch antenna technique:
158 Experimental set-up and procedure

159

160 The set up consisted of a microwave generator (oscillator) which injected its output 161 in the antenna through a splitter device (3 dB hybrid coupler). The splitter allows to 162 obtain at its output two identical signals in power (half of the input power), but with a 163 phase difference of  $90^{\circ}$  (Fig. 1). The following basic properties of this splitter must be 164 taken into consideration:

# The generator is always loaded with the same impedance what means it always delivers the same power to the splitter-antenna set.

- Power injected into the antenna through the two output branches of the splitter is
   ideally radiated (ideal situation in which the antenna is perfectly matched to the
   splitter) using a 50 Ω reference impedance.
- Possible power reflections of the antenna back to the splitter in ports 2 and 3
  (Fig.1) (due to a defective design or, in our case, due to a dielectric material over
  the antenna) are fully routed to port 4, what allows to detect it in a quantitative
  manner, for instance with a rectifier diode.

In practice, elements inside the dashed box (Fig. 1) are an integral part of a typical
microwave instrument: a vector network analyzer (VNA; E8364A 45MHz - 50GHz,

PNA Series, Agilent Technologies Inc., Santa Clara, USA). This instrument injects microwave energy into port 1 and allows to simultaneously measure both the power reflected in port 1 (splitter matching) and the power flowing in port 4 (power reflected by the antenna). In a first calibration process, it was checked that the antenna was working properly at the desired frequency which implied that both powers must be low enough (i.e., the generator delivers its power and there is no reflection).

Water containing samples covered by a polystyrene layer were placed on top of the microwave patch antenna. When a strange media is introduced between the antenna and the surrounding air, it is expected to modify the matching conditions of the ideal antenna. The antenna is subsequently no longer well matched so part of the incident power is reflected back to the port 4 where it is measured.

187

#### 188 2.3. Measured parameters

189

190 The  $R_{1300}/R_{1450}$  index ( $R_{1300}/R_{1450}$ ), which was used as NIR parameter, measures the 191 proportion of light that is reflected from leaves, i.e., leaf reflectance at the spectral 192 region around 1450 nm with respect to the spectral region at approximately 1300 nm 193 (Seelig et al., 2009). These reflectances were obtained by measuring the spectral 194 reflectance region from 930 to 1690 nm using a Polychromix DTS NIR Spectrometer 195 (Polychromix, USA). On the other hand, the parameter  $R_{1730}$ , which was determined by 196 the microwave DCT patch antenna technique, is the reflectance coefficient at 1730 197 MHz, frequency commonly used in DCT antennae (see the experimental set-up 198 described above for details).

199 The possible influence of the sample thickness on the  $R_{1300}/R_{1450}$  index (Seelig et al. 200 2009), both in leaves and filter discs, was estimated by measuring the thickness through 201 the dessication process by using a digital contact sensor GT-H10L coupled to an 202 amplifier GT-75AP (GT Series, Keyence Corporation, Japan). This ultra-low force 203 sensor (having a measuring force of 0.2 N when installed facing up) applies a clamp 204 pressure of 7 kPa, which is ca. 10 times lower than the one used by Zimmermann et al. 205 (2008) for similar purposes. Thereby, it is ensured that leaf thickness measurements 206 were not disturbed due to an excess of pressure over the leaf. Leaf thickness was 207 standardized calculating the percentage loss of thickness (PLT) per sample, expressed as 208 the ratio between the thickness measured for every particular RWC and the thickness 209 determined at full turgor.

- 210
- 211 2.4. Statistical analysis
- 212

For leaves and filters, RWC was plotted both against  $R_{1300}/R_{1450}$  and  $R_{1730}$  values. Data were fitted to models and regression analyses were performed with the statistical programme SAS version 8.0 (SAS, Cary, NC, USA). The correction with the leaf thickness (Seelig et al., 2009) was made by multiplying the  $R_{1300}/R_{1450}$  of each value by the PLT obtained from the relation between RWC and PLT.

218

#### 219 **3. Results**

220

In Figure 2 data concerning the relationships between RWC against NIR  $R_{1300}/R_{1450}$ (Fig. 2A) and against microwave  $R_{1730}$  (Fig. 2B) for the filter paper discs are presented. Data were fitted to an exponential model for the filters measured by NIR and to a linear model for the results derived from the microwave technique. 225 Values from poplar leaves measured by NIR were fitted to a linear segmented model 226 because it explained the variability of the measured data better than a simple model 227 (Fig. 3A). On the other hand, those values obtained by the microwave technique were 228 subjected to a linear model (Fig. 3B). The segmented model in Fig. 3A is a non-linear 229 model that fit a curve compound of two lineal models with different slopes. The point at 230 which the switch between the two functions occurs is called a joint-point (Schabenberger and Pierce, 2002). In this case the RWC value of the joint-point 231 232 calculated was  $0.917 \pm 0.022$ . From this value to a value of RWC = 1, the slope of the 233 lineal model was approximately zero while the slope of the other lineal model (from 234 RWC 0.917 to 0.250) was different to zero.

235 Figure 4 shows the relationship between RWC and the PLT of samples (either 236 leaves or filter paper discs). Both for filter papers and leaves, it was observed that the PLT decreased as a result of a decrease in RWC. For filter papers, the PLT decreased 237 238 linearly ranging from 1 to 0.9 for a decrease in RWC between 1 to approximately 0.25. 239 However, such correlation was not linear for leaves, being adjusted to a polynomial 240 square function which enabled the estimation of PLT values resulted from the RWC-241  $R_{1300}/R_{1450}$  relationship. For the same RWC range indicated above, the decrease in PLT 242 varied between 1 and 0.72.

The relationship between RWC- $R_{1300}/R_{1450}$  corrected by the PLT is shown in Figure 5. In this case and similar to the results obtained for non-corrected filter papers (Fig. 2A), the correlation obtained was better adjusted by an exponential model. Linear models for the near infrared RWC- $R_{1300}/R_{1450}$  relationship indicated that the residuals were heterocedastic, while the exponential models presented homocedastic residuals (data not shown). In addition, the values corrected by the PLT of  $R_{1300}/R_{1450}$  for filter paper discs did not differ significantly from the raw data (data not shown).

250 To complement such information the regression coefficients of the relationships 251 established for filter papers and leaves are presented in Table 1. For filters, the R-252 squared ( $\mathbb{R}^2$ ) obtained for NIR is 0.96 (p<0.0001) (Fig. 2A), while the resulting  $\mathbb{R}^2$  for 253 the data recorded by the microwave technique (Fig. 2B) is 0.99 (p<0.0001). For leaves, the  $R^2$  recorded by NIR once data was corrected by the thickness (Fig. 5), was 0.96 254 (p<0.0001) while the R<sup>2</sup> for the data recorded by the microwave method (Fig. 3B) was 255 256 0.98 (p<0.0001). In addition, results indicate that for the microwave technique higher F-257 ratios and lower standard errors (SE) of the estimation were recorded in contrast to the 258 NIR method.

259

#### 260 **4. Discussion**

261

In this investigation, an easy-to-handle and non-destructive microwave-based technique to estimate the water content of a material was developed, with special regard to plant leaves. An experimental set up chiefly composed by a standard DTC antenna and a network vector analyser was used to estimate the water content of an homogeneous (filter paper discs) and an heterogeneous (*Populus x euramericana* leaves) material, contrasting the results with those obtained after applying the  $R_{1300}/R_{1450}$  index.

The method assessed the dielectric behaviour of the two materials analysed and established very good correlations between RWC and reflectance at a frequency of 1730 MHz, both for filters and leaves. Although leaves are more heterogeneous than filters, the accuracy of microwaves for the estimation of RWC was almost the same for both materials (Table 1). The small differences found could be attributable to the irregular structure of plant leaf, in contrast to the structural homogeneity of the commercial filters used in this study. In spite of this fact, the technique may be considered quiteindependent of the physical properties of the material.

277 The frequency employed in this investigation is included in the L-band of the 278 microwave spectrum, which has been previously used for remote sensing studies of the 279 vegetation biomass and soil-moisture content (Ferrazzoli et al., 1992), and more 280 recently for the study of vegetation water content at field level (Notarnicola and Posa, 281 2007). In contrast, this study proved an accurate determination of plant water status at 282 leaf level, using a more simple methodology than the one described by Martínez et al. 283 (1995) and Menzel et al. (2009), for plant leaves and shoots respectively. The use of this 284 simple device has been possible due to recent advances in telecommunications 285 technology, especially as it related to the development of the digital cordless telephony (DCT). Consequently, it is possible that a commercial portable tool for the 286 287 determination of plant water status under field conditions based on our device could be 288 developed and its patent is currently in full process.

289 On the other hand, the accuracy of this new method against the near infrared 290  $R_{1300}/R_{1450}$  index was compared in this investigation. It should be noted that the absence 291 of changes in this index at leaf RWC values above the join point of the segmented 292 model (Fig. 3A) prevents its use for the estimation of leaf RWC above this point. To 293 solve this problem, Seelig et al. (2009), which stated that leaf reflectance is partly a 294 function of the thickness and number of cell walls encountered by light on its path 295 through leaves, proposed the correction of the  $R_{1300}/R_{1450}$  index taking into account the 296 strong changes in thickness during leaf dehydration. The multiplication of this index by 297 the PLT enabled to obtain a relationship between leaf RWC and the  $R_{1300}/R_{1450}$  index 298 (Fig. 5) very similar to that found for filters (Fig. 2A).

299 Although both techniques can be used for the accurate estimation of leaf RWC, the 300 microwave-based procedure show a certain number of advantages. First of all, R-square 301 coefficients were slightly higher for microwaves than for the  $R_{1300}/R_{1450}$  index (Table 302 1). Furthermore, it is not necessary to correct the measured data by leaf thickness, which 303 is one of the main advantages of this technique in relation to near infrared reflectance. 304 For this reason, although near infrared reflectance might be used for plant physiological 305 studies under field conditions, it can also be suitable to assess plant materials under an 306 industrial point of view (e.g. quality control). On the other hand, the amount of energy 307 received by the leaf is only 0.1 mW for the microwave technique, which is very much 308 lower than that applied by the spectrometer used in this study for the measuring of the 309  $R_{1300}/R_{1450}$  index (2.5 W). Therefore, although both procedures are practically non-310 invasive, the microwave technique can be considered much less invasive than the near 311 infrared reflectance.

312

## 313 **5.** Conclusions

314

315 In this study it has been shown that the changes in RWC of poplar leaves can be 316 accurately determined by assessing changes in reflectivity at a frequency of 1730 MHz 317 (L-band). The use of a technologically simple, low cost and portable device, based on a 318 microwave digital cordless telephony (DCT) patch antenna, could yield a solid support 319 for the development of a commercial portable tool for the determination of plant water 320 status under field conditions in the future. This new technique, although tested on a 321 specific poplar clone, can be also applied to other poplar clones and tree species with 322 similar leaf size dimensions. The use of microwaves to estimate changes in leaf water

status in species with smaller leaves would imply the application of other frequencyranges, which demands the development of different types of antennas.

325

## 326 Acknowledgements

327 This study was partially supported by INIA project SUM2008–00004-C03–03
328 (Ministerio de Ciencia e Innovación). Financial support from Gobierno de Aragón (A54
329 research group) is also acknowledged.

330

# 331 **References**

- Carter, G.A., 1991. Primary and secondary effects of water content on the spectral
  reflectance of leaves. Am. J. Bot. 78, 916-924.
- Carter, G.A., McCain, D.G., 1993. Relationship of leaf spectral reflectance to
  chloroplast water content determined using NMR microscopy. Remote Sens. Environ.
  46, 305-310.
- 337 Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon G., Solimini D., Coppo, P., 1992.
- 338 Sensitivity of microwave measurements to vegetation biomass and soil-moisture
  339 content a case-study. IEEE T. Geosci. Remote 30, 750-756.
- 340 Gómez Álvarez-Arenas, T.E., Sancho-Knapik, D., Peguero-Pina, J.J., Gil-Pelegrín, E.,
- 341 2009. Noncontact and noninvasive study of plant leaves using air-coupled
  342 ultrasounds. Appl. Phys. Lett. 95, 193702.
- 343 Grant, O.M., Tronina, L., Chaves, M.M., 2006. Exploring thermal imaging variables for
- 344 the detection of stress responses in grapevine under different irrigation regimes. J.
- 345 Exp. Bot. 58, 815-825.
- Jones, H.G., 1990. Plant water relations and implications for irrigation scheduling. Acta
- 347 Hort. 278, 67-76.

- Jones, H.G., 2004. Irrigation scheduling: advantages and pitfalls of plant-based
  methods. J. Exp. Bot. 55, 2427-2436.
- Jones, H.G., 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance: J. Exp. Bot. 58, 119-130.
- Jördens, C., Scheller, M., Breitenstein, B., Selmar, D., Koch, M., 2009. Evaluation of leaf water status by means of permittivity at terahertz frequencies. J. Biol. Phys. 35,
- 355 255-264.
- Kubiske, M.E., Abrams, M.D., (1991) Seasonal, diurnal and rehydration-induced
  variations of pressure-volume relations in Pseudotsuga menziesii. Physiol. Plant. 83,
  107-116.
- 359 Martínez, M., Artacho, J.M., Forniés-Marquina, J.M., Letosa, J., García-Gracia, M., Gil,
- E. 1995. Dielectric behaviour by T.D.R. of the water status in a vegetal leaf. OHD
  Biennial Colloquium Digest 13, 330-333.
- 362 McKenney, D.W., Yemshanov, D., Fox, G., Ramlal, E., 2004. Cost estimates for carbon
- 363 sequestration from fast growing poplar plantations in Canada. Forest Policy Econ. 6,364 345-358.
- Meiresonne, L., Nadezhdin, N., Cermak, J., Van Slycken, J., Ceulemans, R., 1999.
  Measured sap flow and simulated transpiration from a poplar stand in Flanders
  (Belgium). Agr. Forest Meteorol. 96, 165-179.
- 368 Menzel, M.I., Tittmann, S., Bühler, J., Preis, S., Wolters, N., Jahnke, S., Walter, A.,
- 369 Chlubek, A., Leon, A., Hermes, N., Offenhäuser, A., Gilmer, F., Blümler, P., Schurr,
- U., Krause, H.J., 2009. Non-invasive determination of plant biomass with microwave
- 371 resonators. Plant Cell Environ. 32, 368-379.

- 372 Migliavacca, M., Meroni, M., Manca, G., Matteucci, G., Montagnani, L., Grassi, G.,
- 373 Zenone, T., Teobaldelli, M., Goded, I., Colombo, R., Seufert, G., 2009. Seasonal and
- 374 interannual patterns of carbon and water fluxes of a poplar plantation under peculiar
- eco-climatic conditions. Agr. Forest Meteorol. 149, 1460-1476.
- Notarnicola, C., Posa, F., 2007. Inferring vegetation water content from C- and L-band
  SAR images. IEEE T. Geosci. Remote 45, 3165-3171.
- Peguero-Pina, J.J., Morales, F., Flexas, J., Gil-Pelegrin, E., Moya, I., 2008.
  Photochemistry, remotely sensed physiological reflectance index and de-epoxidation
- state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia156, 1-11.
- Peñuelas J, Filella I, Biel C, Serrano L, Save R. 1993. The reflectance at the 950-970
  nm region as indicador of plant water status. Int. J. Remote Sens. 14, 1887-1905.
- 384 Sancho-Knapik, D., Gómez Álvarez-Arenas, T., Peguero-Pina, J.J., Gil-Pelegrín, E.,
- 385 2010. Air-coupled broadband ultrasonic spectroscopy as a new non-invasive and non-
- contact method for the determination of leaf water status. J. Exp. Bot. 61, 1385-1391.
- 387 Schabenberger O., Pierce, F.J., 2002. Contemporary Statistical Models for the Plant and
- 388 Soil Sciences, CRC, Boca Raton.
- 389 Seelig, H.D., Adams, W.W., Hoehn, A., Stodieck, L.S., Klaus, D.M., Emery, W.J.,
- 390 2008a. Extraneous variables and their influence on reflectance-based measurements of
- leaf water content. Irrigation Sci. 26, 407-414.
- 392 Seelig, H.D., Hoehn, A., Stodieck, L.S., Klaus, D.M., Adams, W.W., Emery, W.J.,
- 393 2008b. The assessment of leaf water content using leaf reflectance ratios in the visible,
- near-, and short-wave-infrared. Int. J. Remote Sens. 29, 3701-3713.
- 395 Seelig, H.D., Hoehn, A., Stodieck, L.S., Klaus D.M., Adams III, W.W., Emery, W.J.,
- 396 2009. Plant water parameters and the remote sensing R1300/R1450 leaf water index:

- 397 controlled condition dynamics during the development of water deficit stress.
  398 Irrigation Sci. 27, 357-365.
- Sims, D.A., Gamon, J.A., 2003. Estimation of vegetation water content and
   photosynthetic tissue area from spectral reflectance: a comparison of indices based on
- 401 liquid water and chlorophyll absorption features. Remote Sens. Environ. 84, 526-537.
- 402 Sixto, H., Hernández, M.J., Barrio, M., Carrasco, J., Cañellas, I., 2007. Plantaciones del
- 403 género *Populus* para la producción de biomasa con fines energéticos: revisión. Inv.
- 404 Agrar.: Sist. Rec. Forest. 16 (3), 277-294.
- 405 Suarez, L., Zarco-Tejada, P.J., Berni, J.A.J., Gonzalez-Dugo, V., Fereres, E., 2009.
- 406 Modelling PRI for water stress detection using radiative transfer models. Remote
- 407 Sens. Environ. 113, 730-744.
- 408 Tognetti, R., Giovannelli, A., Lavini, A., Morelli, G., Fragnito, F., d'Andria, R., 2009.
- 409 Assessing environmental controls over conductances through the soil-plant-
- 410 atmosphere continuum in an experimental olive tree plantation of southern Italy. Agr.
- 411 Forest Meteorol. 149, 1229-1243.
- 412 Vilagrosa, A., Bellot, J., Vallejo, V.R., Gil-Pelegrin, E., 2003. Cavitation, stomatal
- 413 conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs
- 414 during an intense drought. J. Exp Bot. 54, 2015-2024.
- 415 Wu, C., Niu, Z., Tang, Q., Huang, W., 2009. Predicting vegetation water content in
- 416 wheat using normalized difference water indices derived from ground measurements.
- 417 J. Plant Res. 122, 317-326.
- 418 Wullschleger, S.D., Oosterhuis, D.M., 1987. Electron microscope study of cuticular
- 419 abrasion on cotton leaves in relation to water potential measurements. J. Exp. Bot. 38,420 660-667.

- 421 Zimmer, F., Grueger, H., Heberer, A., Wolter, A., Schenk, H., 2004. Development of a
- 422 NIR micro spectrometer based on a MOEMS scanning grating. MEMS, MOEMS, and
- 423 Micromaching 5455, 9-18.
- 424 Zimmermann, D., Reuss, R., Westhoff, M., Gebner, P., Bauer, W., Bamberg, E.,
- 425 Bentrup, F.W., Zimmermann, U., 2008. A novel, non-invasive, online-monitoring,
- 426 versatile and easy plant-based probe for measuring leaf water status. J. Exp. Bot. 59,
- 427 3157-3167.

429 Tables

430 **Table 1.** Statistical parameters of the relationships between the relative water content 431 and the Near Infrared (NIR) or Microwave, either for filter papers and leaves. *n* is the 432 number of data points observed; *F-ratio* is the ratio of the variance explained by a factor 433 to the unexplained variance ;  $R^2$  is the R-squared; *S.E. of Est.* is the standard error of the 434 estimation.

435

|              | Filter papers |           | Poplar leaves |                  |           |  |
|--------------|---------------|-----------|---------------|------------------|-----------|--|
|              | NIR           | Microwave | NIR           | NIR<br>corrected | Microwave |  |
| n            | 87            | 81        | 137           | 137              | 124       |  |
| F-ratio      | 2289          | 14703     | 728           | 4195             | 7548      |  |
| P-value      | < 0.0001      | < 0.0001  | < 0.0001      | < 0.0001         | < 0.0001  |  |
| $R^2$        | 0.9642        | 0.9951    | 0.9426        | 0.9675           | 0.9849    |  |
| S.E. of Est. | 0.03253       | 0.00651   | 0.0219        | 0.05028          | 0.00394   |  |

436

| 438 | Figure | legends |
|-----|--------|---------|
| 430 | riguit | iegenu  |

440 Fig. 1. Schematic representation of the experimental set-up of the microwave patch441 antenna technique.

442

443 Fig. 2. Relationships between the relative water content (RWC) and (A) the  $R_{1300}/R_{1450}$ 

444 index for NIR and (**B**)  $R_{1730}$  for microwaves measured on filter paper discs.

445

446 Fig. 3. Relationships between the relative water content (RWC) and (A) the  $R_{1300}/R_{1450}$ 

447 index for NIR and (**B**)  $R_{1730}$  for microwaves measured on poplar leaves.

448

449 Fig. 4. Relationship between the relative water content (RWC) and the percentage loss

450 of thickness (PLT) for filter papers and poplar leaves.

451

452 Fig. 5. Relationship between the relative water content (RWC) and  $R_{1300}/R_{1450}$  index

453 corrected with the percentage loss of thickness (PLT) for poplar leaves.



**Fig. 1** 









