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A B S T R A C T   

Improving water efficiency in the agricultural sector is essential to ensure sustainable with-
drawals and supply of freshwater in a context of increasing water scarcity and human water 
demand. The water footprint (WF) is an established metric of resource intensity while the drivers 
steering WF over time remain under-researched. To advance this line of research, this paper 
assesses the sign and magnitude of macroeconomic, climatic, and agronomic drivers on the 
agricultural crop WF in 43 countries of the African continent for the period 2002–2016, using 
econometric panel data techniques and considering potential spatial patterns. The results reveal a 
significant spatial dependence in the WF across neighbouring countries. Socioeconomic factors 
are the most important determinant of water productivity, indicating that economic development 
facilitates a falling water requirement per unit of production. A negative impact of the temper-
ature variation on the WF is also found, while the share of total land dedicated to agriculture 
tends to increase the crop WF in the continent. These results support designing adequate agri-
cultural and water management policies to achieve sustainable and resilient food systems capable 
of adapting to anticipated population growth, climate change and other future threats to human 
health, prosperity and environmental sustainability in Africa.   

1. Introduction 

The growth of population, urbanization, and productive activity, together with the effects of climate change, are increasing the 
pressure on water resources, both in quantity and quality terms, pushing humankind beyond the planet’s biophysical limits [1,2]. In 
the agricultural sector, which is responsible of the 70 % of water withdrawals worldwide, growing population poses one of the main 
challenges for food security and associated water demands [3]. 

The international community is aware of the great challenge the world is facing and has consequently developed strategies to tackle 
it. At the European level, the Green Deal [4] aims at transforming the EU’s economy for a sustainable future. Among its objectives are 
the design of fair, healthy and environmentally-friendly food systems, the preservation and restoration of ecosystems and biodiversity 
(including freshwater resources), and the elimination of pollution (including the restoration of the natural functions of ground and 

* Corresponding author. University of Zaragoza, Department of Applied Economics, Faculty of Social Science and Social Work, Violante de 
Hungría 23, 5009, Zaragoza, Spain. 

E-mail address: p_gracia@unizar.es (P. Gracia-de-Rentería).  

Contents lists available at ScienceDirect 

Water Resources and Economics 

journal homepage: www.elsevier.com/locate/wre 

https://doi.org/10.1016/j.wre.2024.100248 
Received 9 November 2023; Received in revised form 25 June 2024; Accepted 5 July 2024   

mailto:p_gracia@unizar.es
www.sciencedirect.com/science/journal/22124284
https://www.elsevier.com/locate/wre
https://doi.org/10.1016/j.wre.2024.100248
https://doi.org/10.1016/j.wre.2024.100248
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wre.2024.100248&domain=pdf
https://doi.org/10.1016/j.wre.2024.100248
http://creativecommons.org/licenses/by-nc/4.0/


Water Resources and Economics 47 (2024) 100248

2

surface water). At the global level, the Sustainable Development Goals (SDGs) proposed by the United Nations provide an interna-
tionally recognisable series of targets to be achieved by 2030 with a view toward coordinating policy initiatives across economic, 
social, and environmental domains. Among these targets, Goal 6 aims at ensuring the availability and sustainable management of 
water and sanitation for all and highlights the need of substantially increase water-use efficiency across all sectors [5]. In the agri-
cultural sector, improved water-use efficiency may be achieved through shifts to less water intensive crops, improved agricultural 
practices, or the use of virtual water trade displacing the production of more water demanding crops to regions with lower water 
scarcity problems [3]. 

These examples illustrate how water efficiency could ensure sustainable withdrawals and supply of freshwater in a context of 
increasing water scarcity and human water demands. The water footprint (WF) has emerged as a relevant metric to measure efficiency 
in the use of water. The WF refers to the direct and indirect usage of water within a production process and reflects the cumulative 
consumption of said resource through the entire supply chain [6]. This concept has contributed to a growing body of empirical ac-
ademic literature. Some relevant papers focus on the drivers of agricultural virtual water trade [7,8], or on the impact of food con-
sumption patterns (diet changes and food loss reduction) on water usage [9,10]. Another strand of the literature uses an ex-ante 
approach to establish water use projections under different socio-economic pathways [11–13], climate change scenarios [14,15], or 
consumption patterns [16]. 

A common denominator of the previous literature is the assumption that the WF remains constant over time (or varies at an 
assumed rate). Therefore, relatively scant attention has been paid to the drivers of the WF, as pointed by Gracia-de-Rentería et al. [17], 
which offer an overview at worldwide level of the economic and environmental drivers of the crop WF. The latter work also high-
lighted some research lines with scope for improvement such as the analysis of the heterogeneity existing within each continent or the 
consideration of the spatial relationships and dependences between countries. 

Of special interest is the consideration of the spatial dependence that, in the case of WF, may be due to shared hydrogeological 
conditions and/or to imitation of neighbouring countries’ behaviour [18,19]. On the one hand, hydrogeological dimension refers to 
the existence of spatial correlation on soil geology and agricultural production capability since neighbouring countries usually share 
land conditions. Moreover, the existence of share bodies of water (both surface and groundwater) may lead to a similar water 
availability in neighbouring countries sharing these water resources [20]. On the other hand, mimicry implies that countries tend to 
observe their neighbouring countries’ behaviour related to aspects such as the type of crops produced, the production volume, or the 
policies aimed at improving water efficiency, and reacts consequently thereby resulting in a ‘spillover’ effect on the WF indicator. 
According to Zhi et al. [18], this may be especially due to the influence of neighbouring countries on the economic development level 
[21] and on agricultural production behaviours [22]. Moreover, interactions between countries are especially relevant when analysing 
the WF, since international trade also implies a virtual water trade that drives the water usage of countries [23]. This contrasts with the 
scarcity of studies on these spatial patterns (see Long et al. [24] as an exception that applies a spatial econometric model to analyse the 
relationship between water scarcity and water use efficiency). 

This paper focuses on the African continent as a relevant case study with a two-fold interest. First, the performance of the agri-
cultural sector plays a crucial role for eradicating hunger and improving food security in Africa, and heavily influence economic 
growth and employment. Second, the availability of water resources strongly conditions agricultural production and crop productivity, 
especially in the African continent with a higher drought occurrence and a larger dependence on rain-fed agriculture than other re-
gions in the world [25]. 

Therefore, the assessment of the drivers of crop WF in the African continent could provide valuable information about how a series 
of macro-level variables affect African crop water use. This information is important for the design of adequate agricultural and water 
resource management policies with the aim of achieving sustainable and resilient food systems capable of adapting to population 
growth, climate change (and specially, to its consequences in water resources) and other potential risks and future threats to human 
health, prosperity, and environmental sustainability. 

Moreover, the consideration of geographical patterns may inform the spatial relationships and dependences between African 
countries. This could provide helpful information to assess the impact that the African Continental Free Trade Agreement (AfCFTA), 
which is expected to increase intra-Africa trade of agricultural commodities [26], or Africa’s Agenda 2063 may have on water re-
sources. Moreover, this global component of the WF also implies that the study of the African continent can also help to guide the 
agricultural and trade policy of other regions of the world [23]. As an example, according to Eurostat [27], the European Union was the 
largest trade partner for Africa in 2020, with 28 % of both exports and imports (a higher share than for intra-Africa exports and 
imports, which account for 23 % and 13 % respectively). 

With this motivation, the aim of the paper is to assess the sign and magnitude of a series of drivers related to the agricultural 
performance, as well as the socioeconomic and environmental conditions, on the agricultural crop water footprint in the African 
continent. Using econometric panel data techniques and accounting for spatial dependence across countries, the objective is to obtain 
elasticities that could serve as a guide for water and agricultural policies. 

After this Introduction, Section 2 presents the database for the African continent, Section 3 describe the methodological approach, 
Section 4 present the main results and Section 5 concludes. 

2. Data 

Data for the water footprint (WF) required to produce crop products comes from the database developed by Mekonnen and 
Hoekstra [6], which was modified to be time-variant according to the approach by Tuninetti et al. [28]. The original database provides, 
for several specific products and countries, information about the blue WF, the green WF and the grey WF in m3 of water per ton of 
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production averaged over the period 1996–2005. In this paper, the WF is considered as the sum of both the green and blue WF and 
defined as the ratio between evapotranspiration (in m3 per hectare) and crop yield (in ton per hectare). Note that the blue WF refers to 
the consumption of surface and groundwater resources through e.g. irrigation, while the green WF refers to the consumptive use by 
crops of rainwater stored in the soil. The grey WF refers to the volume of freshwater that would be required to assimilate the load of 
pollutants given natural background and existing ambient water quality standards [29]. As it is not a real water withdrawal but a 
hypothetical one, the grey WF is excluded from the analysis. 

To introduce some time variability to this WF metric, the approach proposed by Tuninetti et al. [28] was used, as in other relevant 
papers [17,30–32], assuming that evapotranspiration remains stable over time and WF changes are only driven by yield variations: 

WFp,c,t =WFp,c
Yp,c

Yp,c,t
(1)  

where p,c,t are the product, country and year, respectively; WFp,c,t is the annual crop WF; WFp,c is the average WF for the period 
1996–2005 from Mekonnen and Hoekstra [6]; Yp,c is the average crop yield for the period 1996–2005 and Yp,c,t is the annual crop yield. 
Information about the crop yield was extracted from the Food and Agriculture Organization (FAO) [33]. 

The next step in data management is to aggregate the WF of the different crop products. For this purpose, the average crop WF 
weighted by the value of production was calculated to obtain the WF of the whole crop production of each country. Information about 
the value of production in constant dollars was obtained from FAO [33] and represents the importance of each product on total 
agricultural production. With this, we have information about the crop WF of 43 African countries1 for the period 2002–2016, that 
represent around 80 % of the countries of the continent, 85 % of the total agricultural land of the continent and more than 90 % of the 
total agricultural production value according to FAO data [33]. The period analysed is the same as in Gracia-de-Rentería et al. [17], 
facilitating the comparability of results, and was mainly conditioned by data availability of the WF drivers. 

Obtaining data for relevant crop WF drivers for the African continent was one of the main challenges addressed by this study. The 
spatial econometric approach of the present analysis requires a perfectly balanced panel, so the dataset cannot contain missing data for 
any country or any year of the sample. After revising the drivers of WF and water productivity used in the previous literature, three 
main categories of drivers were identified: agronomic factors, such as input yields (production quantity per input unit) or intensities 
(input quantity per hectare), agricultural area by m3 of water available [e.g., [17,34–36]; socioeconomic drivers like GDP, population, 
agricultural population density [e.g., [17,36,37]; and environmental variables like temperature, precipitation, solar radiation or water 
availability [e.g., [17,24,34–37]. 

For the African case study, information about input yields or intensities is especially incomplete (for example, FAO [33] does not 
offer input use data by product while the time coverage for some countries is very limited). Hence, agricultural performance of 
countries was proxied by the percentage of agricultural land with respect to the total area of the country, giving an idea of the 
importance of agriculture and the existence of a more intensive or extensive agricultural system. This variable was extracted from FAO 
[33] and its definition includes three components: arable land, permanent pasture, and under permanent crops. The per capita GDP 
was used as a socioeconomic variable to measure the level of development of countries, whose information was taken from the World 
Bank [38]. Regarding the environmental conditions, the temperature variation and the water stress index were considered as the 
relevant factors. However, these two variables are highly correlated, so the temperature variation variable was finally used to avoid the 
potential endogeneity problems that the use of a water related variable may cause in the econometric models. Temperature has also 
been included in previous relevant studies [17,34,35] as a variable that reflects the effects of climate change on water availability 
conditions and yield performance, which directly condition the crop WF. Specifically, the selected variable measures the annual 
temperature variation (in ◦ C) of each year with respect to the baseline period 1951–1980 and was extracted from FAO [33]. 

Table 1 presents a description of the variables used in this study, as well as a descriptive statistic. The data reveal that during the 
period analysed (2002–2016) the crop WF has been reduced by 12.70 %, while the per capita GDP, the percentage of agricultural land 
and the temperature variation increased by 26.13 %, 5.11 % and 55.43 %, respectively. However, these trends are not homogeneous 
and significant differences emerge among the diverse countries. Fig. 1 shows the percentage of variation of WF over the period 
analysed by country, evidencing this heterogeneous trend, with some countries that have experienced a decrease in WF of by more 
than 40 % (Cameroon, Lesotho, and Madagascar), while others have increased their WF by over 20 % (Morocco, Democratic Republic 
of the Congo, and Mozambique). 

3. Methodology 

3.1. Exploratory Spatial Data Analysis 

Exploratory Spatial Data Analysis provides an insight into patterns and geographical associations in data to confirm whether the 
water footprint (WF) variable exhibits a spatial autocorrelation. Fig. 2 presents the average crop WF of production for the African 

1 Countries included in the study are: Algeria, Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Chad, Comoros, Congo, Côte 
d’Ivoire, Democratic Republic of the Congo, Egypt, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Libya, 
Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Sao Tome and Principe, Senegal, Sierra Leone, 
South Africa, Togo, Tunisia, Uganda, United Republic of Tanzania, Zambia, Zimbabwe. 
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countries considered for the year 2016.2 A first visual inspection reveals the presence of similar values in neighbouring countries, 
suggesting the existence of spatial correlations. We observe the existence of clusters of countries with a higher WF in West African 
countries, as well as in southern Eastern Africa/northern Southern Africa countries. 

To confirm whether the general behaviour of the WF variable exhibits global spatial autocorrelation, the Moran’s I test [39] was 
applied to test the null hypothesis that data exhibit no spatial association. Table 2 presents the results of the test for the endogenous 
variable (WF) for each year of the sample, confirming the rejection of the null hypothesis. This result indicates that the WF shows 
positive autocorrelation with spatial clusters around similar values, so neighbour countries tend to exhibit similar WF values. 

This positive spatial autocorrelation is also presented in Fig. 3, where the Moran’s scatterplot [40] for 2016 illustrates a measure of 
local spatial autocorrelation.3 In particular, the figure illustrates a positive relationship between the WF of each country (horizontal 
axis) and the WF of nearby countries (vertical axis). Therefore, countries located in the upper-right quadrant are those with WF values 
above the mean and that the average of its neighbour countries is also above the mean. On the contrary, countries in the lower-left 
quadrant have WF values below the mean and the average of its neighbour countries is also below the mean. 

3.2. Econometric model 

The exploratory analysis of Section 3.1 confirmed the presence of spatial dependence in WF. Therefore, the econometric model has 
to take into account this spatial pattern to avoid biased results, as highlighted in Section 4 below. The popularity of spatial econometric 
models in the recent literature contrast with the scarcity of studies considering the existence of spatial patterns in the WF metric. Note 
that, as aforementioned, Long et al. [24] is the unique previous study that applies these models to analyse water efficiency. 

In this paper, a spatial econometric model is used to consider the dependence among observations across space by means of the so- 
called spatial weight matrix W that describes the relationship of the spatial units of the sample. Given that the country sample en-
compasses islands, we opt for the inverse distance criterion as the basis for our W matrix, as it is more suitable than other alternative 
specifications in such cases. The inverse distance W matrix is defined as: 

wij =

⎧
⎪⎨

⎪⎩

1
dij

ifi ∕= j

0 if i = j
(2)  

where dij is the geographical distance between the centroids of countries. Note that this matrix is assumed to be constant over time and 
has been normalised to allow the comparison between spatial parameters of the models. 

To select the most adequate spatial model among the existing alternatives, we start from the General Nesting Spatial Model (GNS) 
that includes all possible types of interaction effects: 

ln(WFit) = α0 + ρW ln(WFit) + Xitβ + WXitθ + uit
uit = λWuit + εit

(3)  

where α0 is the constant term; ρ is the spatial autoregressive coefficient associated with the nonnegative N × N weights matrix W, 
providing information about the intensity of spatial dependence in the dependent variable. X represents the TN × K matrix of 
explanatory variables that are described in Table 1; β is the K × 1 vector of coefficients; θ is an array of dimension K× 1 associated with 
the N × N weights matrix W that contains the parameters that determine the marginal effect of the explanatory variables from 
neighbouring observations on the WF; and uit includes the spatial autocorrelation coefficient (λ) associated with the interaction effects 
among the disturbance term of the different units (Wu), as well as the error term (ε). Country fixed effects are also included to capture 
additional country heterogeneity. 

From this GNS model, a set of derived models can be obtained by imposing restrictions on one or more parameters. Therefore, the 
next step is to test these restrictions to select the most suitable spatial model to be estimated. First, the LM test is used to test the null 
that θ = 0 and results indicate that the null cannot be rejected (χ2(3) = 5.38; p − value = 0.15), so the Spatial Autoregressive Com-
bined Model (SAC) is more adequate. Second, when the SAC model is estimated, the parameters ρ and λ are statistically significant (see 
Table 3), confirming the suitability of the SAC model in comparison with the spatial lag model (SAR) or the non-spatial OLS model. 

Table 1 
Descriptive statistics of variables.  

Variable Description Average 2002–2016 2002 2016 

WF Crop water footprint of production (m3/ton) 2141.77 (1294.81) 2309.84 (1375.49) 2016.44 (1255.06) 
GDPpc Per capita GDP (constant US$) 2171.91 (2479.66) 1861.52 (2223.53) 2348.01 (2520.17) 
Agriland Agricultural land/Total area (%) 43.88 (19.97) 42.63 (20.09) 44.81 (20.25) 
TempVar Temperature variation with respect to 1951–1980 (◦C) 0.99 (0.39) 0.92 (0.30) 1.43 (0.35) 

Note: The data represents the average value and the standard deviation (in parentheses). 

2 Results for other years of the sample exhibit a very similar pattern.  
3 Similar results are obtained for the other years of the sample. 
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Fig. 1. WF variation over the period 2002–2016 by country.  
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Therefore, the final specification of the estimated SAC model is the following: 

ln(WFit) = α0 + ρW ln(WFit) + Xitβ + uit
uit = λWuit + εit

(4)  

4. Results 

Table 3 presents the results of estimation of the Spatial Autoregressive Combined (SAC) model specified in equation (4), in 
comparison with the non-spatial OLS panel model. The result ρ = 0.38, which is a highly significant spillover effect (as also found in 
Long et al. [24]), implies that the water footprint (WF) in a certain country will increase, on average, around 3.8 % in that country if 
there is an increase of 10 % in the WF of its neighbouring countries. Moreover, the coefficient λ is also statistically significant at 10 %, 
so the SAC model is preferred in comparison with the SAR or the non-spatial model, which is also supported by the AIC criterion of both 
models. 

Fig. 2. Average crop water footprint (m3/ton) in 2016.  

Table 2 
Moran’s I test for the endogenous variable (WF).  

Year Moran’s I test 

2002 0.09 (0.00) 
2003 0.04 (0.03) 
2004 0.04 (0.03) 
2005 0.07 (0.00) 
2006 0.05 (0.01) 
2007 0.07 (0.00) 
2008 0.04 (0.04) 
2009 0.03 (0.09) 
2010 0.06 (0.00) 
2011 0.08 (0.00) 
2012 0.08 (0.00) 
2013 0.09 (0.00) 
2014 0.08 (0.00) 
2015 0.11 (0.00) 
2016 0.18 (0.00) 

Note: p-value is shown in parentheses. 
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Another notable result is that in the case of the non-spatial OLS model the coefficients in Table 3 can be interpreted as marginal 
effects. On the contrary, in the spatial model, some transformation is required to obtain the marginal effects presented in Table 4 [41]. 
The direct effect of a kth explanatory variable is obtained as the diagonal elements of (I − ρW)

− 1βk, and measures the impact of a 
change in the exogenous variables in a given country on the WF in the country itself; whereas the indirect (or spillover) effect is 
obtained as the off-diagonal elements of (I − ρW)

− 1βk, and measures the impact of a change in the exogenous variables in a given 
country on the WF of the neighbouring countries. Note that the differences between the direct effects and the coefficients of the 
non-spatial model indicate that lack of consideration of the spatial component may lead to biased results [42]. Moreover, the direct 
effects obtained in Table 4 are different from the estimated main coefficients in Table 3 due to the so-called feedback effect that is 
transmitted to neighbouring countries and back to the country itself again. This feedback effect, which is also shown in Tables 4 and is 
obtained as the difference between the direct effect and the main coefficient estimated, showing very limited feedback effects that 
represents around 1.43 % of the indirect effect and 0.86 % of the direct effect. 

Based on these marginal effects of the SAC model, one can observe that the level of development of a given African country has a 
negative and significant impact on the WF of this country. Specifically, an increase of a 1 % in the per capita GDP variable leads to a 
reduction of a 0.35 % in the WF of the same country. This result is in line with the previous literature [17,24,43], suggesting that 
economic development facilitates a falling water requirement per unit of production due to technological improvements, a better 
infrastructural capacity, or more stable economic and political conditions. The indirect effect is also negative and statistically sig-
nificant, indicating that the WF is reduced by 0.213 % given a 1 % increase of the per capita GDP of neighbouring countries, indicating 
that the aforementioned economic factors that can influence the WF are spread in space from one country to neighbouring ones. 

For the percentage of agricultural land, a positive and significant direct effect is obtained, so an increase of a 1 % in the percentage 
of agricultural land of a given country leads to an increase of a 0.01 % in the WF of this country. This result, although much more 
limited than that obtained for the per capita GDP, suggest that a greater presence of the agricultural sector or a more extensive 
agricultural sector increases the water needs per unit of production. The higher WF of more extensive agricultural systems is due to the 

Fig. 3. Moran’s scatterplot for 2016.  

Table 3 
Results of estimation.  

Variables SAC OLS panel estimation 

ln(GDPpc) − 0.349 (0.000) − 0.417 (0.000) 
Agriland 0.011 (0.001) 0.003 (0.005) 
TempVar − 0.029 (0.045) − 0.043 (0.011) 
ρ 0.382 (0.045) – 
λ − 0.481 (0.070) – 
Wald test of spatial terms 9.3 (0.010) – 
AIC − 786.997 − 785.0435 
Observations 645 645 

Note: p-values are shown in parentheses. 

Table 4 
Direct and indirect marginal effects.   

Direct effect Indirect effect Feedback effect 

lGDPpc − 0.352 (0.000) − 0.213 (0.028) − 0.0030 
Agriland 0.011 (0.001) 0.007 (0.132) 0.001 
TempVar − 0.029 (0.044) − 0.018 (0.092) − 0.003 

Note: p-values are shown in parentheses. 
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lower yields associated to these extensive systems that, according to the literature, could lead to a lower efficiency in the use of water 
resources [17,34–37]. However, the indirect effect, although positive, seems not to be statistically significant. 

Finally, a reduction in the WF of African countries is observed given an increase of the temperature variation of the given country 
(direct effect of − 0.029) or the nearby countries (indirect effect of − 0.018). The previous evidence regarding the influence of climatic 
conditions on the WF is diverse, with some studies obtaining a positive relationship [34] and others a negative one [17,35]. In general, 
the latter studies argue that higher average temperatures lead to a greater aridity that incentivise a more efficient use of water re-
sources. Since temperature change is a consequence of climate change, this result highlights how climate change adaptation policies 
have been implemented to compensate for the lack of effective mitigation policies capable to minimize the water related impacts of 
climate change. In any case, as pointed out by Gracia-de-Rentería et al. [17], the effect of climatic conditions is usually weaker than the 
impact of the socioeconomic and agronomic factors. 

At this point, it should be mentioned that some additional estimations of equation (4) have been run as a robustness check. These 
results are not presented for simplicity, although authors would make them available upon request. First, the model has been re- 
estimated including the percentage of arable land instead of the percentage of agricultural land, leading to very similar results than 
those presented in Table 4. Second, the model has been also estimated including only continental countries to explore whether spatial 
spillovers transcend geographical boundaries reaching also island territories. Again, results are very similar that those of Table 4, 
reinforcing the idea of spillover effects that can cross seas. 

In order to illustrate the effect that the marginal effects presented in Table 4 would have on future African WF, we carried out a 
simple foresight analysis combining the obtained marginal effects with projected increases in drivers for the period 2016–2030. We 
focus on the effect of per capita GDP (ceteris paribus the other drivers) because it is the driver with the greatest effect on the WF and 
due to the greater availability of projected data. To do so, projections of per capita GDP of each county of our sample were used based 
on data from the SSP database [44,45], according to the SSP2 scenario (middle-on-the-road scenario) for the OECD model. The growth 
rate of per capita GDP from 2016 to 2030 was combined with the obtained marginal effect (direct and indirect) from Table 4 to obtain 
the growth rate of WF for this period. 

Results reveal that the WF in Africa would be reduced by 34 % during the period 2016–2030 due to an expected increase of a 60 % 
in per capita GDP in this period. Consequently, the WF in the continent would decrease from 2016.44 m3/ton in 2016 to 1338.15 m3/ 
ton in 2030. All the countries would reduce their WF but with heterogeneous intensities. In this sense, some countries like Angola or 
Gabon would experience a reduction close to a 10 % while other countries would reduce their WF by a half (Guinea, Sao Tome and 
Principe, Democratic Republic of the Congo, Côte d’Ivoire) (See Fig. 4, panel a). In panel b of Fig. 4, the projected WF for 2030 is 
represented showing a very similar spatial pattern compared with that of 2016. 

5. Conclusions 

Considering the changes in the agricultural crop water footprint (WF) in 43 countries between 2002 and 2016, this paper assessed 
the sign and magnitude of a set of drivers of water use efficiency in the African continent and its spatial pattern. The application of 
spatial econometrics to this field of study is novel and the resulting coefficients of this estimation allow measuring the relation between 
the WF and the considered drivers over time after controlling for spatial dependence. 

Africa is characterised by the extremes of having the highest number of least developed countries (32) of which 16 are land-locked 

Fig. 4. Reduction of the WF (%) in the period 2016–2030 driven by changes in per capita GDP (panel a) and projected average crop WF (m3/ton) in 
2030 (panel b). 
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[46]. The results highlight a set of economic, environmental, and agronomic drivers influencing the crop WF common to all African 
countries. Among these factors, per capita GDP has the greatest effect on the WF indicating that economic development facilitates a 
reduction of water requirement per unit of production. The importance of the per capita GDP for water use efficiency is particularly 
policy relevant as, among all continents, Africa and, notably, the Sub-Saharan region is expected to have the highest increase in both 
population [46] and GDP per capita in the coming century [45]. The results also indicate a negative relationship between the WF and 
the temperature variation, while the WF is positively influenced by the percentage of agricultural land with respect to the area of a 
country. 

The results also reveal a strong spatial dependence on the crop WF in the African continent. This finding highlights the need for 
coordinated cross-border policies oriented towards a more efficient use of water at the same time that a sustainable economic 
development is promoted. These results thus complement the literature highlighting the benefits of increased international cooper-
ation on the management and use of water resources [45,47–50]. The importance of the spillover effects could further justify a focus on 
water user performance under the Agenda 2063, the main platform through which the fifty-five African countries share a Panafrican 
vision on economic development and sustainability. 

The study provides valuable information for the design of adequate agricultural and water management policies to achieve sus-
tainable and resilient food systems capable of adapting to future population growth and climate change. The elasticities obtained in 
this study are very helpful for the estimation of future WF under diverse scenarios by means of an ex-ante analyses, by introducing 
some degree of time variability to the WF metric. These type of studies could help elucidate the undetermined future direction of the 
crop WF and crop water demand given the opposing effects on WF of per capita GDP and the temperature variation on one hand, and 
the expected increase in the percentage of agricultural land on the other. Climate change adds further uncertainty regarding the di-
rection of water demand in crop production. The occurrence of extreme weather events already manifested through prolonged 
droughts and changes in rainfall patterns could render a drastic decrease in productivity of agricultural land [51,52]. The positive 
effect of higher CO2 concentrations on yields and crop water productivity could partially offset these negative impacts under low 
climate change scenarios but could also be cancelled under severe climate change [53]. Furthermore, even if the undetermined effect 
would point to a reduction in WF, it remains to be investigated whether that reduction will be enough to feed a growing population in 
the context of scarce water resources. These complex interlinkages between socioeconomic and biophysical systems necessitate the 
integration of modelling capabilities from different fields. 

Another avenue for future research is the consideration of different regions and crop products, or the differentiation between 
rainfed and irrigated crop production, enabling such differentiation would allow for more targeted interventions. For this purpose, 
more data about agronomic factors of specific products is needed, as well as the availability of more complete databases for the African 
continent. In fact, data constraints are the main limitation of this study, preventing the inclusion of relevant variables that may have an 
impact on crop WF. Data availability also restricted the consideration of the WF only as an aggregate, therefore, the more detailed 
drivers of change (switching crops or irrigation practices) were not covered. Future studies going into specific irrigation practices 
within each country could also reveal some spatial patterns and specific spillovers [54], as well as exploring whether these spillovers 
may be influenced by hydrogeological aspects, like the existence of shared water resources or common soil characteristics. 
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[17] P. Gracia-de-Rentería, G. Philippidis, H. Ferrer-Pérez, A.I. Sanjuán, Living at the water’s edge: a world-wide econometric panel estimation of arable water 

footprint drivers, Water 12 (2020) 1060, https://doi.org/10.3390/w12041060. 
[18] A. Marbler, Water scarcity and local economic activity: spatial spillovers and the role of irrigation, J. Environ. Econ. Manag. 124 (2024) 102931, https://doi. 

org/10.1016/j.jeem.2024.102931. 
[19] Y. Zhi, F. Zhang, H. Wang, T. Qin, J. Tong, T. Wang, Z. Wang, J. Kang, Z. Fang, Agricultural water use efficiency: is there any spatial correlation between 

different regions? Land 11 (1) (2022) 77, https://doi.org/10.3390/land11010077. 
[20] N. Brozovic, D.L. Sunding, D. Zilberman, On the spatial nature of the groundwater pumping externality, Resour. Energy Econ. 32 (2010) 154–164, https://doi. 

org/10.1016/j.reseneeco.2009.11.010. 
[21] W. Jingxue, L. Yalin, Y. Huajun, J. Ge, S. Wu, L. Liu, Estimation and influencing factors of agricultural water efficiency in the Yellow River basin, China, J. Clean. 

Prod. 308 (2021) 127249, https://doi.org/10.1016/j.jclepro.2021.127249. 
[22] W. Fengting, Y. Chang, X. Lichun, Y. Chang, How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis, Resour. Conserv. 

Recycl. 145 (2019) 411–418. 
[23] P. D’Odorico, J. Carr, C. Dalin, J. Dell’Angelo, M. Konar, F. Laio, L. Ridolfi, L. Rosa, S. Suweis, S. Tamea, Global virtual water trade and the hydrological cycle: 

patterns, drivers, and socio-environmental impacts, Environ. Res. Lett. 14 (2019) 053001, https://doi.org/10.1088/1748-9326/ab05f4. 
[24] K. Long, B.C. Pijanowski, Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales, 

Land Use Pol. 69 (2017) 502–511, https://doi.org/10.1016/j.landusepol.2017.09.055. 
[25] OECD/FAO, OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris, 2020, https://doi.org/10.1787/agr_outlook-2016-en. 
[26] A. Simola, O. Boysen, E. Ferrari, V. Nechifor, P. Boulanger, Economic integration and food security – the case of the AfCFTA, Global Food Secur. 35 (2022) 

100651, https://doi.org/10.1016/j.gfs.2022.100651. 
[27] Eurostat, International trade in goods - a statistical picture. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_trade_in_goods_-_ 

a_statistical_picture. (Accessed 21 September 2022). 
[28] M. Tuninetti, S. Tamea, F. Laio, L.A. Ridolfi, Fast Track approach to deal with the temporal dimension of crop water footprint, Environ. Res. Lett. 12 (2017) 

074010, https://doi.org/10.1088/1748-9326/aa6b09. 
[29] A.Y. Hoekstra, A.K. Chapagain, M.M. Aldaya, M.M. Mekonnen, The Water Footprint Assessment Manual – Setting the Global Standard, Earthsan, London, 2011. 
[30] R. Duarte, V. Pinilla, A. Serrano, The effect of globalisation on water consumption: a case study of the Spanish virtual water trade, 1849–1935, Ecol. Econ. 100 

(2014) 96–105, https://doi.org/10.1016/j.ecolecon.2014.01.020. 
[31] R. Duarte, V. Pinilla, A. Serrano, Understanding agricultural virtual water flows in the world from an economic perspective: a long term study, Ecol. Indicat. 61 

(2016) 980–990, https://doi.org/10.1016/j.ecolind.2015.10.056. 
[32] I. Soligno, A. Malik, M. Lenzen, Socioeconomic drivers of global blue water use, Water Resour. Res. 55 (2019) 5650–5664, https://doi.org/10.1029/ 

2018WR024216. 
[33] FAO, Faostat Database, 2022. http://www.fao.org/faostat/es/#home. (Accessed 21 September 2022). 
[34] C. Levers, V. Butsic, P.H. Verburg, D. Müller, T. Kuemmerle, Drivers of changes in agricultural intensity in Europe, Land Use Pol. 58 (2016) 380–393, https:// 

doi.org/10.1016/j.landusepol.2016.08.013. 
[35] X. Li, X. Zhang, J. Niu, L. Tong, S. Kang, T. Du, S. Li, R. Ding, Irrigation water productivity is more influenced by agronomic practice factors than by climatic 

factors in Hexi Corridor, Northwest China, Sci. Rep. 6 (2016) 37971, https://doi.org/10.1038/srep37971. 
[36] D. Tilman, J. Fargione, B. Wol, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W.H. Schlesinger, D. Simberlo, D. Swackhamer, Forecasting agriculturally 

driven global environmental change, Science 292 (2001) 281–284, https://doi.org/10.1126/science.1057544. 
[37] K. Neumann, P.H. Verburg, E. Stehfest, C. Müller, The yield gap of global grain production: a spatial analysis, Agric. Syst. 103 (2010) 316–326, https://doi.org/ 

10.1016/j.agsy.2010.02.004. 
[38] World Bank, World development indicators. https://datacatalog.worldbank.org/dataset/world-development-indicators, 2022. (Accessed 21 September 2022). 
[39] P.A.P. Moran, Notes on continuous stochastic phenomena, Biometrika 37 (1950) 17–23. 
[40] L. Anselin, Spatial Econometrics: Methods and Models, Kluwer, Boston, 1988. 
[41] J.P. Elhorst, Spatial econometrics. From cross-sectional data to spatial panels. Springer Briefs in Regional Science, Springer, New York, Dordrecht, London, 

2014. 
[42] G.K. Ekpe, A.A. Klis, Spillover effects in irrigated agriculture from the groundwater commons, Environ. Resour. Econ. 86 (2023) 469–507, https://doi.org/ 

10.1007/s10640-023-00801-6. 
[43] X. Cai, D. Molden, M. Mainuddin, B. Sharma, M.D. Ahmad, P. Karimi, Producing more food with less water in a changing world: assessment of water 

productivity in 10 major river basins, Water Int. 36 (2011) 42–62, https://doi.org/10.1080/02508060.2011.542403. 
[44] S. Kc, W. Lutz, The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100, Global 

Environ. Change 42 (2017) 181–192, https://doi.org/10.1016/j.gloenvcha.2014.06.004. 

P. Gracia-de-Rentería et al.                                                                                                                                                                                          

https://doi.org/10.1126/science.1259855
https://wedocs.unep.org/handle/20.500.11822/27539
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&amp;format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&amp;format=PDF
https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf
https://doi.org/10.5194/hess-15-1577-2011
https://doi.org/10.1016/j.ecolecon.2014.10.010
https://doi.org/10.1016/j.ecolecon.2018.10.012
https://doi.org/10.1016/j.envint.2013.09.011
https://doi.org/10.1016/j.envint.2013.09.011
https://doi.org/10.1080/02508060.2018.1515571
https://doi.org/10.1016/j.envint.2013.11.019
https://doi.org/10.1016/j.wre.2017.09.003
https://doi.org/10.5194/gmd-9-175-2016
https://doi.org/10.1016/j.heliyon.2019.e01266
https://doi.org/10.1016/j.heliyon.2019.e01266
https://doi.org/10.1111/gcb.13008
https://doi.org/10.1016/j.resconrec.2021.105460
https://doi.org/10.3390/w12041060
https://doi.org/10.1016/j.jeem.2024.102931
https://doi.org/10.1016/j.jeem.2024.102931
https://doi.org/10.3390/land11010077
https://doi.org/10.1016/j.reseneeco.2009.11.010
https://doi.org/10.1016/j.reseneeco.2009.11.010
https://doi.org/10.1016/j.jclepro.2021.127249
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref22
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref22
https://doi.org/10.1088/1748-9326/ab05f4
https://doi.org/10.1016/j.landusepol.2017.09.055
https://doi.org/10.1787/agr_outlook-2016-en
https://doi.org/10.1016/j.gfs.2022.100651
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_trade_in_goods_-_a_statistical_picture
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_trade_in_goods_-_a_statistical_picture
https://doi.org/10.1088/1748-9326/aa6b09
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref29
https://doi.org/10.1016/j.ecolecon.2014.01.020
https://doi.org/10.1016/j.ecolind.2015.10.056
https://doi.org/10.1029/2018WR024216
https://doi.org/10.1029/2018WR024216
http://www.fao.org/faostat/es/#home
https://doi.org/10.1016/j.landusepol.2016.08.013
https://doi.org/10.1016/j.landusepol.2016.08.013
https://doi.org/10.1038/srep37971
https://doi.org/10.1126/science.1057544
https://doi.org/10.1016/j.agsy.2010.02.004
https://doi.org/10.1016/j.agsy.2010.02.004
https://datacatalog.worldbank.org/dataset/world-development-indicators
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref39
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref40
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref41
http://refhub.elsevier.com/S2212-4284(24)00012-4/sref41
https://doi.org/10.1007/s10640-023-00801-6
https://doi.org/10.1007/s10640-023-00801-6
https://doi.org/10.1080/02508060.2011.542403
https://doi.org/10.1016/j.gloenvcha.2014.06.004


Water Resources and Economics 47 (2024) 100248

11
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