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Abstract

Lettuce (Lactuca sativa L.) is a source of beneficial compounds though they are gen-
erally present in low quantities. We used 40K Axiom and 9K Infinium SNP (single
nucleotide polymorphism) arrays to (i) explore the genetic variability in 21 varieties
and (ii) carry out genome-wide association studies (GWAS) of vitamin C content
in21 varieties and a population of 205 plants from the richest variety in vitamin C
(‘Lechuga del Pirineo’). Structure and phylogenetic analyses showed that the group
formed mainly by traditional varieties was the most diverse, whereas the red commer-
cial varieties clustered together and very distinguishably apart from the rest. GWAS
consistently detected, in a region of chromosome 2, several SNPs related to dehy-
droascorbic acid (a form of vitamin C) content using three different methods to assess
population structure, subpopulation membership coefficients, multidimensional scal-
ing, and principal component analysis. The latter detected the highest number of
SNPs (17) and the most significantly associated, 12 of them showing a high link-
age disequilibrium with the lead SNP. Among the 84 genes in the region, some
have been reported to be related to vitamin C content or antioxidant status in other
crops either directly, like those encoding long non-coding RNA, several F-box pro-

teins, and a pectinesterase/pectinesterase inhibitor, or indirectly, like extensin-1-like

Abbreviations: AA, ascorbic acid; AMOVA, analysis of molecular variance; CR, call rate; CWR, crop wild relatives; DHAA, dehydroascorbic acid;

FarmCPU, fixed and random model circulating probability unification; FLD, Fisher’s linear discriminant; H,, observed heterozygosity; HomFLD,
homozygous Fisher’s linear discriminant; GBS, genotyping-by-sequencing; tGBS, tunable genotyping-by-sequencing; GD, gene diversity; GDSL,
glycine-asparagine-serine-leucine; GWAS, genome-wide association study; IBS, identity by state; LD, linkage disequilibrium; MAF, minor allele frequency;
MDS, multidimensional scaling; PCA, principal component analysis; Q, subpopulation membership coefficient; QC, quality control; QQ, quantile-quantile;
SA, salicylic acid; SNP, single nucleotide polymorphism; TAA, total ascorbic acid; UPLC, ultra performance liquid chromatography; UV, ultaviolet; WPP,

tryptophan-proline-proline.
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protein and endoglucanase 2 genes. The involvement of other genes identified within
the region in vitamin C levels needs to be further studied. Understanding the genetic
control of such an important quality trait in lettuce becomes very relevant from a

breeding perspective.

Plain Language Summary

Domestication and breeding have impoverished many crops, like lettuce, in terms of
nutritional value. We have explored the genetic and nutritional diversity in cultivated
lettuces, finding that traditional varieties are richer in both aspects than those that
are commercial. The variety with the highest content in vitamin C, a traditional one,
was self-pollinated to create descendants with high level of vitamin C and genetic
homogeneity. Using this breeding population and the set of diverse varieties men-
tioned above, we have found a region of the lettuce genome associated to the amount
of one of the forms of vitamin C. Among the genes in the region, there are some that
have become strong putative candidates to be involved in vitamin C accumulation as
they play similar roles in other crops, like wheat, tomato, and potato, among others.
Knowing those genes and understanding how they work is challenging, though it will

boost the breeding toward lettuce varieties biofortified in vitamin C and hence more

nutritious.

1 | INTRODUCTION

Global production of lettuce (Lactuca sativa L.), together with
chicory, exceeded 27 million tonnes, with a harvested area
of 1.24 million ha in 2022 (FAOSTAT, 2022). These figures
reflect the high demand among consumers. This makes let-
tuce an ideal candidate crop to start a breeding program aimed
at improving its nutritional value and health properties as it
will certainly have a strong and positive effect on a large
part of the global population. Although lettuce is a source of
a big range of compounds, which confer benefits to human
health, such as vitamins, fiber, and phenolic compounds, they
are generally only present in low quantities (USDA, 2022).
In fact, when compared to other leafy vegetables, especially
spinach, chard, cabbage, or watercress, lettuce is the poorest
in vitamin C (USDA, 2022), which is a key indicator of the
quality of fruit and vegetables. The process of wild Lactuca
spp. domestication, which led to the present cultivated lettuce,
entailed some collateral effects, like a higher susceptibility to
some pathogens and pests, a loss in phytonutrients and bene-
ficial compounds, and a decrease in genetic diversity, among
others, as has also happened in other crops. The last one is par-
ticularly true in lettuce as it is a predominantly autogamous
species. Breeding programs have made use of crop wild rela-
tives (CWR) to introduce disease- and pest-resistance genes
in the crop, but they are underused resources with regard
to the improvement of the nutritional quality (Dempewolf
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et al., 2017). This could result surprising in lettuce, espe-
cially in the light of studies that have compared the content
of vitamin C in different Lactuca spp. and found that the wild
lettuce relatives are generally richer than the cultivated vari-
eties (Medina-Lozano et al., 2021, 2024; van Treuren et al.,
2018). However, linkage drag of undesirable traits linked to
the genes of interest (especially those related to organoleptic
or sensory attributes) could have discouraged their inclusion
in modern breeding programs, in which the flavor has been
prioritized over the nutritional quality in the selection. In this
sense, landraces and traditional varieties have been proposed
as shortcuts when compared to CWR to be used in breeding
programs (Medina-Lozano & Diaz, 2021) as they do not carry
detrimental and/or maladaptive variants and the reproductive
barriers sometimes hindering interspecific crossings between
cultivated and wild forms are avoided. Even if they do not har-
bor as much genetic variability as the wild germplasm, they
are still more diverse than the modern commercial varieties
(Flint-Garcia et al., 2023). Furthermore, in the case of vitamin
C content in lettuce, they have revealed themselves to be also
richer than the commercial varieties tested (Medina-Lozano
et al., 2020, 2021).

Vitamin C or total ascorbic acid (TAA) is composed of
ascorbic acid (AA) and its oxidation product, dehydroascorbic
acid (DHAA). AA is a powerful antioxidant, which con-
tributes to a healthy state by preventing common diseases
(Granger & Eck, 2018) and must be supplemented in the diet
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mainly through fruits and vegetables as humans are unable to
synthesize it. DHAA is also a bioactive compound, which can
be converted into AA in the human body. That is why DHAA
has been suggested to serve as vitamin C reservoir under some
adverse conditions, such as those causing oxidative stress, in
which AA get transformed into DHAA as a consequence of
its antioxidant activity (Medina-Lozano et al., 2021, 2024).

The use of genomic technologies to explore biodiver-
sity and to associate the traits of interest to the genomic
regions responsible for them (genome-wide association stud-
ies [GWASs]) are among the most used tools nowadays in
early stages of crop biofortification. The predominant mark-
ers to assess genomic diversity and genetic structure are SNPs
(single nucleotide polymorphisms), thanks to their abundance
in all species, and the availability of high-throughput SNP
genotyping platforms in many food crops (Medina-Lozano
& Diaz, 2022). At the moment, more than 70K SNP data
are available at the Lettuce Genome Database (LettuceGDB,
https://www.lettucegdb.com). Thousands of SNPs have been
obtained and used to explore Lactuca diversity, mainly among
lettuce cultivars but also including CWR, with different tech-
nologies such as (i) microarrays like Illumina GoldenGate
(S. J. Kwon et al., 2012) or Affymetrix GeneChip (Stoffel
et al., 2012) assays and (ii) next-generation sequencing like
single primer enrichment technology (Tripodi et al., 2023),
genotyping-by-sequencing (GBS) (J. S. Park et al., 2022), tun-
able GBS (tGBS) (S. Park et al., 2021; Simko, 2023), and
even whole-genome resequencing (Wei et al., 2021), which
has rendered 179 million SNPs, as well as other types of vari-
ants. Some of these studies have also inquired into lettuce
domestication history using the diversity panel of 445 Lactuca
accessions firstly characterized by Wei et al. (2021).

There are a substantial number of works on GWAS in
lettuce regarding different types of traits, like those related
to tolerance to biotic or abiotic stress, development, nutri-
ent efficiency use, postharvest behavior, and morphology,
among others. However, GWAS of characters related to let-
tuce health-promoting properties or nutritional value are not
common. Interestingly, one of the few types of metabolites
targeted by GWAS in lettuce, anthocyanins, are bioactive
compounds with antioxidant activity (as it is the case of
vitamin C), though they were originally addressed as mor-
phological traits, either as a qualitative character, leaf color
(L. Zhang et al., 2017), or measuring their content in leaves
(Tripodietal.,2023; Weietal., 2021). Other GWAS have been
carried out to dissect the genetic basis of primary metabolite
content, partly responsible (together with others) for the nutri-
tional value of lettuce (W. Zhang et al., 2020). Information
on both types of compounds, those with positive effects on
human health and nutrients, is actually very helpful to pursue
the biofortification of the crop.

To date, different approaches have been adopted to enhance
vitamin C content in lettuce, either conventional, by supply-

RIGHTS LI L)

Core Ideas

* Lettuce is ideal to be biofortified as it is nutrition-
ally poor (i.e., vitamin C) but highly demanded by
consumers.

e Traditional varieties harbor a great genetic diver-
sity, essential for the breeding of this autogamous
species.

* These are the first genetic associations with dehy-
droascorbic acid content found in lettuce: a 5.1Mb
region in chromosome 2.

* High linkage disequilibrium values were only
found between the lead single nucleotide poly-
morphism (SNP) and other significantly associated
SNPs.

* Some of the candidate genes in the region of inter-
est are involved in vitamin C metabolism in other
Crops.

ing UV (ultra-violet)-B radiation (H. Zhou et al., 2023) or
applying minerals (Dylag et al., 2023) to the plants, or based
on genetic engineering techniques (Guo et al., 2013). Both
present disadvantages such as temporary effects, in the case of
conventional strategies, and legislative issues in some coun-
tries, in the case of modern genetic engineering methods.
However, classic genetic breeding has also limitations, for
instance, only the variability present in plants from sexually
compatible groups can be used.

In this work, we explore and exploit the diversity, both
genetic and nutritional, within the cultivated lettuce, includ-
ing traditional varieties. With the richest accession in vitamin
C, which happened to be a traditional variety, breeding pop-
ulations were built. Those, together with a diversity panel
of commercial and traditional varieties, were used to find a
genomic region associated to vitamin C content and identify
putative candidate genes to boost the breeding toward lettuce
varieties biofortified in vitamin C and thereupon healthier and
more nutritious.

2 | MATERIALS AND METHODS

2.1 | Plant material and trait evaluation
The present study was divided into two different parts: (i)
a genetic diversity analysis and (ii) a GWAS of vitamin C
content.

First, a total of 21 lettuce accessions were used in the
genetic diversity analysis (Table 1). These included 10
commercial varieties (4 green and 6 red) and 11 Spanish
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traditional varieties (7 green and 4 semi-red), representing
six types of lettuce attending to their morphology: Batavia,
Butterhead, Cos, Frisée d’Amérique, Gem, and Lollo (UPOV,
2021).

Second, for the GWAS, the plant material originally
included target populations coming from a breeding program
aimed at enhancing the vitamin C content in lettuce. The
plant with the highest vitamin C content according to a previ-
ous study with Lactuca germplasm, these 21 lettuce varieties
(among others) and some wild relatives, belonged to the tra-
ditional variety ‘Lechuga del Pirineo’ (Medina-Lozano et al.,
2021). From this one, three populations were analyzed, the
original variety population (SO) made up of 205 plants (pre-
sumably coming from seeds of different plants supplied by a
germplasm bank, BGHZ, Table 1), and two self-pollination
generations, S1 and S2, composed of 239 and 179 plants,
respectively, obtained by selfing the plant with the high-
est vitamin C content in each generation to increase both
the metabolite concentration and the genetic homogeneity
(Table 1). As lettuce is a predominantly autogamous species,
the genetic variability was already negligible in S1 and, obvi-
ously, in S2 (Table S1), so they were not used in association
analysis. To increase GWAS’s power, the needed heterozy-
gosity was incorporated by using the 21 varieties mentioned
above from the diversity panel (Table 1), as recommended by
Hamazaki et al. (2020).

For both analyses, genetic diversity (21 varieties) and
GWAS (21 varieties and 205 individuals of ‘Lechuga del Piri-
neo’ SO), plants were grown in pots (30 X 25 cm and 11.7 L
volume) with a mix of black and blonde peat (1:1) in a green-
house at Agrifood Research and Technology Centre of Aragon
(CITA, Zaragoza, Spain). Plants for the diversity study were
cultivated in winter 2018/2019, and SO, S1, and S2 ‘Lechuga
del Pirineo’ populations were cultivated in winters 2020/2021,
2021/2022, and 2022/2023, respectively. After a period rang-
ing from 2.5 to 4 months, depending on the accession and the
population, leaves were harvested as described in the next sec-
tion and immediately frozen with liquid nitrogen and kept at
—80°C.

For the GWAS, the two forms of vitamin C, AA and
DHAA, as well as the total content, TAA, were quantified in
samples consisting of both inner and outer leaves from 644
plants (205 S0, 239 S1, 179 S2, and 21 varieties) by UPLC
(ultra performance liquid chromatography) according to the
method described by Medina-Lozano et al. (2020). Briefly,
the extraction was conducted using 50 mg of finely powdered
lyophilized samples with 5 mL of a solution of 8% acetic
acid (v/v), 1% meta-phosphoric acid (w/v), and 1 mM EDTA
(ethylenediaminetetraacetic acid). The mixture was vortexed
for 5 s, shaken for 10 min at 2000 rpm, and then sonicated
for 20 min at room temperature, and centrifuged at 4000 X g
for 10 min at 4°C. The supernatant was filtered through a
0.22-um regenerated cellulose filter (Agilent). The filtrate
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(Extract 1, E1) contained both AA and DHAA. Two 200-uL
aliquots of E1 were used to determine (i) AA directly and (ii)
TAA by reducing DHAA to AA adding 200 uL of a reduc-
tion solution (40 mM DTT [dithiothreitol] with 0.5 M Tris
pH 9.0) and stopping the reaction after 30 min with 200 uL
of 0.4 M sulfuric acid to obtain Extract 2 (E2). This last
step is needed because DHAA absorptivity in the UV range
of the spectrum is too low to be measured directly. A vol-
ume of 5 L of E1 and E2 diluted with ultrapure water (1:4
v:v) was injected in a liquid chromatographer UPLC H-Class
with an HSS T3 column (150 mm X 2.1 mm X 1.8 um).
The total running time was 3 min and the temperature of the
samples and the column was programed at 5°C and 30°C,
respectively. The wavelength of the Acquity UPLC Photodi-
ode Array el detector was set at 245 nm. The mobile phase
consisted of 2% methanol and 98% ultrapure water pH 2.0
acidified with formic acid at a flow rate of 0.3 mL min~! in
isocratic mode. For quantification of AA and TAA contents,
a calibration curve from 0.5 to 25.0 ug mL~! of the com-
mercial L-ascorbic acid (>99.9% purity, Sigma-Aldrich) was
built. DHAA content was calculated by subtracting AA from
TAA.

Effects of the generation (SO, S1, and S2) on vitamin C
content (AA, DHAA, and TAA) were tested with an anal-
ysis of the variance by Kruskal-Wallis test and post hoc
Dunn’s test for mean comparison using a Bonferroni corrected
a=0.017.

2.2 | DNA extraction, SNP genotyping, and
quality control

DNA was extracted from young leaves of 644 plants (205 SO,
239 S1, 179 S2, and 21 varieties) as described in Doyle and
Doyle (1990) with the following modifications (Diaz et al.,
2017): 0.2% p-mercaptoethanol was added together with the
2% CTAB (hexadecyltrimethylammonium bromide) buffer,
the washing buffer consisted of 76% ethanol and 10 mM
ammonium acetate, and 0.2 pL. of 10 mg X mL~! RNAse
A (Invitrogen) was added to 30 uL of milliQ water to dis-
solve the pellet. DNA quality control (QC) was carried out via
electrophoresis in 1% agarose gels. DNA concentration was
measured fluorometrically using a Quantiflour-ST (Promega
GmbH).

DNA sample genotyping was performed using the let-
tuce 40K Axiom and 9K Infinium arrays developed by the
SGS Institut Fresenius GmbH TraitGenetics Section, contain-
ing 41,975 and 9,381 SNPs, respectively. Axiom array was
scanned with a GeneTitan Scan Instrument (Thermofisher
Scientific) followed by data analysis with Axiom Analy-
sis Suite software v5.1.1.1 (Thermofisher Scientific) using
the default settings. SNPs were filtered by values of call
rate (CR) >90%, Fisher’s linear discriminant (FLD) >5,
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and homozygous FLD (HomFLD) >10. Infinium array was
scanned with an iScan system (Illumina) followed by data
analysis with GenomeStudio 2.0 (Illumina).

Several QC steps were undertaken with the whole set of
markers to be used in both studies, diversity and GWAS.
After compiling all data with GenomeStudio software, sample
clustering was manually optimized, and SNP markers were
filtered by values CR >90%. To improve the data quality, a
comparison between common markers from both arrays that
met the QC criteria just described was carried out. The mark-
ers rendering incongruous genotypes were discarded. Another
quality filter was applied by discarding the markers with spu-
rious genotypes according to the pedigree in the ‘Lechuga
del Pirineo’ populations. Then, only polymorphic SNPs in the
corresponding set of samples for each analysis were selected:
13,026 markers in the genetic diversity study and 9,242 in the
GWAS (Tables S1 and S2).

2.3 | Genetic and genomic analyses
2.3.1 | Population structure and genetic
diversity and relationships

The population structure of the varieties in the diversity panel
was analyzed carrying out a simulation using the Bayesian
algorithm and the admixture model in STRUCTURE v2.3.4
(Pritchard et al., 2000). A burn-in period of 100,000 cycles
followed by 100,000 Markov chain Monte Carlo iterations
was tested with a number of subpopulations (K) set from one
to six. Ten independent runs per K value were performed. The
optimal number of K was inferred applying the AK method
(Evanno etal., 2005). The analysis was repeated with the same
parameters for K = 2 and K = 3. Data were plotted using the
web application Structure Plot v2.0 (Ramasamy et al., 2014).

Alternatively, both a principal component analysis (PCA)
and a multidimensional scaling (MDS), also known as princi-
pal coordinate analysis, were performed to visualize patterns
of diversity using TASSEL v5.2 (Bradbury et al., 2007) and
the software JMP v17.2 for Windows (SAS Institute Inc.) was
used to plot the results.

To explore the genetic relationships between the 21 vari-
eties included in the diversity study, a matrix of genetic
distances was created from the genotypic data using the IBS
(identity by state) method in TASSEL v5.2 software. A phy-
logenetic network was built based on the genetic distance
matrix with the NeighborNet method using the SplitsTree
App v6.3.12 software (Huson & Bryant, 2000).

The genetic differentiation was assessed based on the num-
ber of distinct populations obtained in the genetic structure
analysis (K = 3). Wright’s fixation index Fg¢; among pop-
ulations was calculated. An analysis of molecular variance
(AMOVA) was conducted to detect genetic variation among
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and within populations, as well as within individuals. Sum-
mary statistics including gene diversity (GD) and observed
heterozygosity (Hg) were calculated for each subpopula-
tion. All the above statistical analyses were performed using
PowerMarker 3.25 software (K. Liu & Muse, 2005).

2.3.2 | Linkage disequilibrium, GWAS, and
identification of candidate genes

In the GWAS subset of markers, SNPs were filtered for minor
allele frequency (MAF) >0.01. This value was not arbitrar-
ily chosen but justified by the nature of the samples. Since
most plants belonged to the same variety, ‘Lechuga del Piri-
neo’ (205 SO plants out of 226, Table 1), minor alleles present
in that accession were overrepresented and vice versa, the
frequency of non-rare alleles in the 21 varieties diversity
panel was diluted in the whole set of samples. With the con-
ventional threshold MAF >0.05, a variant should have to
be present in more than 11 samples for not being filtered
out, which means to be in more than half of the samples of
the diversity panel, which obviously is not a minor allele.
MAF >0.01 ensures that only variants appearing less than
twice were eliminated. Chromosomal and physical SNP posi-
tions were determined based on lettuce reference genome
Lsat_Salinas_v11 (GCF_002870075.4).

Linkage disequilibrium (LD) between SNPs on each chro-
mosome was calculated through pairwise correlation coef-
ficients (r?) with an LD window size of 50 sites around
each marker. LD decay was determined by plotting r> values
against the physical distance of the SNPs and then plotted in
Rstudio (Rstudio Team, 2020).

Multi-locus GWAS was conducted using GAPIT3 (Wang &
Zhang, 2021) in Rstudio. Fixed and random model Circulat-
ing Probability Unification (FarmCPU) was used considering
both kinship and structure of the samples (X. Liu et al., 2016).
Kinship was assessed with GAPIT3 package. Three differ-
ent methods of measuring the structure were used: a PCA
performed with TASSEL v5.2 software, an MDS analysis
also conducted in TASSEL v5.2 from the genetic distance
matrix calculated using the IBS method, and subpopulation
membership coefficients (Q) obtained with STRUCTURE
software using the linkage model at K = 3 and the rest of
the settings as described earlier. The threshold p-value and
—log;y(p-value) were determined using the Bonferroni cor-
rection with genome-wide significance level of a@ = 0.05
and taking into account the total number of SNPs (9,242)
as follows: p = 0.05/9,242 = 5.41 x 107 and —log;((5.41
x 107%) = 5.27. Manhattan and quantile—quantile (QQ) plots
for GWAS results were obtained using CMplot package (Yin
et al., 2021) in Rstudio.

A local LD block analysis was conducted in the region
of associated SNPs using the LDBlockShow software (Dong
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et al., 2021) in Linux environment. The most significantly
associated SNP in the GWAS analysis was set as the lead SNP.
Finally, putative candidate genes for vitamin C content
(AA, DHAA, and TAA) in the region were identified in the
annotated version of L. sativa genome (Lsat_Salinas_v11,
GCF_002870075.4) available at the NCBI database.

3 | RESULTS AND DISCUSSION

3.1 | Assessment of population structure and
genetic diversity and relationships

A total of 13,026 polymorphic SNPs were used to analyze the
population structure of a panel of 21 lettuce varieties as well
as the genetic diversity and relationships.

The best K estimated by calculating AK using the method
described by Evanno et al. (2005) indicated that the opti-
mal number of subpopulations for the 21 lettuce varieties
was three, corresponding to the highest peak in the AK
plot (Figure 1A; Figure S1). The first population (Pop. 1)
grouped five varieties, consisting of red commercial lettuces
exclusively, that came from the Netherlands and Italy. Most
red commercial lettuces were entirely assigned to Pop. 1,
except for ‘Revolution’ that still showed a Q1 of 0.69. The
second population (Pop. 2) was the largest and the most
diverse group, including 12 lettuce varieties. It comprised
both commercial and traditional varieties, which were mainly
green and semi-red (there was only one red commercial vari-
ety), most of them coming from Spain. Finally, the third
population (Pop. 3) consisted of four green traditional vari-
eties native from a small geographic region (Figure S2).
Among them, three out of four were 100% assigned to Pop.
3. The other one (‘Lengua de Buey’) showed a high level
of admixture with a high Q2 value (0.41). Except for two
commercial varieties, one red and one green, both from Euro-
pean countries other than Spain, Pop. 2 members were closer
to Pop. 3 than to Pop. 1, especially some of the traditional
varieties. This, together with the fact that Pop. 3 was com-
posed exclusively of traditional varieties, suggests that Pop.
3 could really be a subgroup of Pop. 2. Indeed, when two
populations were assumed (K = 2), all the varieties of Pop.
3 became part of Pop. 2 (close genetic relatedness between
these two subgroups), whereas Pop. 1 remained unchanged
(Figure 1A).

To evaluate genetic relationships, a phylogenetic network
was obtained from genetic distances calculated using the IBS
method (Figure 1B). The most clearly differentiated cluster
comprised the five red commercial varieties from Pop. 1 in the
structure analysis (Figure 1A,B). The four green traditional
varieties of Pop. 3 also clustered together in the phylo-
genetic network, again with three varieties closely related
and ‘Lengua de Buey’ a bit apart from them (Figure 1B).
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This cluster was not as distant from Pop. 2 as the one
formed by the varieties of Pop. 1, as previously observed
in the genetic structure studies. Within varieties of Pop. 2,
some clustered together in a similar way as they did in the
structure analysis like ‘Red Sails’ and ‘Begofia’ or ‘Win-
ter Crop’, ‘Lechuga del Valle de Tena’ and ‘Dolomiti G12’
(Figure 1A,B). Overall, the phylogenetic network was in
agreement with the genetic population structure. The results
from STRUCTURE were also validated with a PCA and an
MDS analysis (Figure 1C,D). The first two components were
represented in the PCA, explaining 20.07% and 12.36% of
the variation, respectively. Likewise, the first two dimensions
were represented in the MDS analysis, capturing 40.74% and
23.31% of variation, respectively. In both analyses, the 21
varieties were divided in three groups, as observed before. The
red commercial varieties of the Pop. 1 were clearly grouped
separately from the rest by the PC1 and Dim1 from the PCA
and MDS, respectively (Figure 1C,D). The green traditional
varieties of Pop. 3 were completely separated in the PCA
(Figure 1C), whereas in the MDS, they clustered together but
overlapped completely with the 95% confidence ellipsis of
Pop. 2 (Figure 1D), reflecting the proximity between these
two populations.

The results from the four approaches to assess the pop-
ulation structure were highly consistent. Taking all of them
together, we could conclude that the 21 lettuce varieties con-
sisted of three main groups. On the one hand, Pop. 1 was
the most distinguishable population in all cases, as expected,
since all the varieties belonging to similar types have the same
leaf color and come from a common geographical region in
Europe (Table 1). On the other hand, Pop. 2 was the most
diverse group and results suggested that Pop. 3 could be
a subgroup of Pop. 2, as mentioned above. This reinforces
the idea of traditional varieties harboring a great diversity
(Medina-Lozano & Diaz, 2021), being separated in different
subpopulations, even when they all come from a small area,
as it is the case of all the traditional varieties in Pop. 2 and the
whole Pop. 3 (Figure S2). In previous studies carried out to
assess the genetic variability of Lactuca spp., diversity pan-
els were mainly composed of commercial varieties, advanced
breeding lines and breeding populations, like recombinant
inbred lines, and lettuce wild relatives (J. S. Park et al., 2022;
Peng et al., 2022). Our results suggest that traditional vari-
eties might be an important source of genetic variability in
future breeding programs as selection has had a detrimental
effect on the crop diversity (J. S. Park et al., 2022). Other
studies on genetic structure and phylogenetic relationships
conducted in different lettuce accessions found that varieties
could group together according to their morphological type
(S.Kwonetal.,2013; S. Park et al., 2021; Tripodi et al., 2023).
We observed something similar for Pop. 1, composed mainly
of Lollo lettuces, as well as for Pop. 3, consisting exclusively
of Cos varieties (Table 1; Figure 1). Pop. 2 also included
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FIGURE 1 Genetic structure and relationships of 21 lettuce varieties genotyped with 13,026 single nucleotide polymorphisms (SNPs). (A)

Sample membership to each of the clusters obtained with the STRUCTURE software (K = 2, 3). (B) Network built using the NeighborNet method.
(C) Representation of the first two axes from a principal component analysis (PCA) and (D) a multidimensional scaling (MDS) analysis. Confidence

ellipses at 95% are drawn.

Cos lettuces, what again supports the idea of Pop. 3 being a
subgroup of Pop. 2. Nevertheless, more factors seemed to be
influencing the population structure in our study, such as the
geographical origin, especially in the case of the traditional
varieties (Figure S2).

To assess the genetic variation among the populations
obtained from the structure analysis, pairwise F ¢ values were
calculated, with higher Fgr values indicating stronger differ-
entiation (Weir & Hill, 2002). The lowest F¢r values were
observed between Pop. 1 and Pop. 2, followed by Pop. 2 and
Pop. 3 (0.36 and 0.43, respectively) (Table 2). This could be
explained by the fact that the sort of accessions in common
in Pop. 1 and Pop. 2 are less diverse (commercial varieties),
whereas the shared type of accessions between Pop. 2 and
Pop. 3 are those with greater diversity (traditional varieties).

RIGHTSE LI MN iy

TABLE 2 Pairwise Fg; values for population differentiation.

Population F¢; (Pop. 1) F ¢, (Pop. 2) F g (Pop. 3)
Fgr (Pop. 1) 0.00

Fgr (Pop. 2) 0.36 0.00

Fg; (Pop. 3) 0.63 0.43 0.00

So, Pop. 2 occupied an intermediate position which agrees
with being the group with more admixture (Figure 1), includ-
ing varieties of all colors, types, and origins. The highest
differences were obtained between Pop. 1 (exclusively formed
by red commercial varieties) and Pop. 3 (only composed by
green traditional varieties) (F ¢y = 0.63) (Table 2), as expected
since both groups were quite homogeneous and did not share
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TABLE 3

Source of variation

Among populations

Within populations Pop. 1
Pop. 2
Pop. 3
Within individuals Pop. 1
Pop. 2
Pop. 3
Total

Genetic variation at population (Pop.) and individual levels.

Sum of squares Variation (%)
50,660.71 28.97
17,142.40 9.80
93,025.33 53.20

6,469.75 3.70
2,176.00 1.24
5,168.00 2.96
233.00 0.13
174,875.19 100.00

Note: Analysis of molecular variance (AMOVA) using the genotyping data coming from 21 lettuce varieties.

TABLE 4

the populations (Pops.) obtained by the structure analysis and measured

Genetic variability of 21 lettuce varieties grouped in

as mean genetic diversity (GD) and observed heterozygosity (H,).

Population GD H,

Pop. 1 0.148a 0.033a
Pop. 2 0.314ab 0.033b
Pop. 3 0.064c 0.004¢

any common characteristics between them, such as leaf color,
type, or geographical origin.

The genetic differentiation at both population and individ-
ual levels was also analyzed conducting an AMOVA. The
results indicated that 28.97% of the genetic variation was
observed among populations, 66.70% within populations, and
4.33% within individuals (Table 3). Of the three populations,
the highest percentage of variation was found within Pop. 2
(53.20%), followed far behind by Pop. 1 (9.80%), and then
by Pop. 3 (3.70%) (Table 3). Within individuals, the same
pattern as within populations was obtained, the highest vari-
ation was observed within individuals of Pop. 2, followed by
those of Pop. 1 and Pop. 3 with values of 2.96%, 1.24%, and
0.13%, respectively (Table 3). These results confirmed that
Pop. 2 was the most diverse group and that varieties within
Pop. 3 exhibited a strong similarity among them, consistently
with the structure and phylogenetic analyses. In the same way,
GD was higher in Pop. 2 (0.314), followed by Pop. 1 (0.148),
and then by Pop. 3 (0.064) (Table 4). Finally, Hy was 0.033
in both Pop. 1 and Pop. 2, and 0.004 in Pop. 3 (Table 4).
These low Hy values shown by the three populations could
be explained by the fact that lettuce is a predominantly auto-
gamous crop, so homozygous genotypes are very common.
Tripodi et al. (2023) also obtained average Hg, values below
4% for the groups of lettuce varieties included in their study.
Despite those GD and H(, values, we observed substantial
genetic variability within the set of 21 lettuce varieties, espe-
cially in the subset of traditional varieties, which is of great
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importance in breeding programs aimed at developing new
varieties with desired traits.

3.2 | LD and association analyses, and
identification of putative candidate genes

LD, defined as the nonrandom association of alleles at dif-
ferent loci in a given population, plays an important role in
association studies. Therefore, LD was estimated between
pairs of SNPs along all chromosomes. The LD decay to half
12 ranged from 8.84 to 21.79 Mb, with a global average value
of 14.92 Mb (Figure S3). Although differences among the
chromosomes were observed, LD decay was overall slow,
as expected in a predominantly autogamous species like L.
sativa. Similarly, a long average value of LD decay (9.6 Mb)
has been previously reported in lettuce (Simko et al., 2022).
In general, autogamous species have lower recombinant rates
than those that are allogamous and show slower LD decay.
Genetic breeding could be favored from this LD extension, as
trait-marker associations could be more probably identified
than in the case of species with faster LD decay, in which the
regions in LD are shorter and hence could contain a lower
number of markers (Flint-Garcia et al., 2003).

In the current study, a total of 9,242 markers were used
for carrying out a GWAS of vitamin C content in lettuce.
‘Lechuga del Pirineo’ was selected to obtain breeding pop-
ulations since a plant belonging to this traditional variety was
the richest in vitamin C in a previous study carried out within
our group (Medina-Lozano et al., 2021). Vitamin C content
(AA and DHAA) was measured in three ‘Lechuga del Piri-
neo’ populations, the original S0, and two generations coming
from self-fecundation of the plant with the highest content in
vitamin C, S1 and S2 (Table S3; Figure S4). The differences
were highly significant (p < 0.001) when the average contents
of AA (H: 154.38), DHAA (H: 364.97), and TAA (H: 120.73)
were compared among generations. Interestingly, even though
TAA was lower in S2, the content of the most active
form of vitamin C (AA) increased with the two rounds of
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selfing (Figure S4). Genetic homogeneity was already reached
at S1 for our set of markers, so polymorphisms were only
detected in SO (Table S1). Due to the limited genetic variabil-
ity of the target population (S0), a diversity panel consisting
of 21 lettuce varieties was included in the GWAS, as recom-
mended by Hamazaki et al. (2020). In this way, the whole set
of samples consisted of subpopulations with different genetic
backgrounds (Figure 1A), which is desirable to detect new
variants, and provides the necessary genetic variability and a
better genome coverage with polymorphic markers. The vari-
ability in terms of vitamin C content was also a bit higher
in the diversity panel (152424 mg x 100 g~!) when com-
pared to ‘Lechuga del Pirineo’ SO population (184-424 mg X
100 g~1) (Table S3).

To search for marker associations with the vitamin C con-
tent in lettuce, the GWAS was performed on DHAA, AA,
and TAA contents using the FarmCPU model. FarmCPU is
a multi-locus method able to control false positives incor-
porating both population structure and kinship, preventing
overfitting by the estimation of the associations through fixed
and random effect models (X. Liu et al., 2016). Control-
ling population structure effects is essential in GWAS (Tibbs
Cortes et al., 2021), as such, different approaches have been
undertaken in the present study. Three different methods were
used to assess population structure: obtaining Q from the
analysis with STRUCTURE software, MDS, and PCA. Sev-
eral significantly associated SNPs to DHAA content were
found in the same region of chromosome 2 using the three
methods to elucidate the aforementioned population structure
(Figure 2A), though no significant associations were obtained
with either AA or TAA (Figures S5 and S6). Based on the con-
servative Bonferroni correction, genome-wide threshold was
set at 5.27 [—log,((5.41 x 1079)], as explained earlier. The
highest number of significantly associated SNPs was obtained
using the PCA method, with a total of 17 SNPs (Figure 2A;
Table 5). Using Q values and MDS, five and four associated
SNPs were identified, respectively. Not only the number of
associated SNPs but also the significance levels were higher
using PCA, that ranged from 4.30 x 1076 to 7.48 x 10712,
in comparison with the Q values and MDS (2.42 x 107° to
1.81 x 1077 and 4.33 x 107 to 7.92 x 1077, respectively).
Despite the differences, results from the three approaches
were consistent given that the significant SNPs found when
using Q values and MDS were among the most significant
SNPs obtained using PCA, including the lead SNP, which is
the most significant one (Table 5). In a previous study carried
out on baby leaf lettuce for postharvest and developmental
traits, a higher number of significant associations were also
reported when the PCA structure was used compared to Q
coefficients (Sthapit Kandel et al., 2022).

All the significant SNPs were not only located on chro-
mosome 2, but in a particular region of the chromosome, as
mentioned earlier. Therefore, LD was analyzed in detail in
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FIGURE 2
disequilibrium (LD) for dehydroascorbic acid (DHAA) content in
lettuce samples (21 varieties and 205 plants of ‘Lechuga del Pirineo’

Genome-wide association study (GWAS) and linkage

S0) genotyped with 9,242 single nucleotide polymorphisms (SNPs).
(A) Manhattan and quantile—quantile (QQ) plots using the Fixed and
random model Circulating Probability Unification (FarmCPU)
considering both kinship and the structure of the samples measured
with three methods: subpopulation membership coefficients (Q)
obtained with STRUCTURE software using the linkage model and

(Continues)
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TABLE 5 SNP (single nucleotide polymorphism) markers significantly associated with DHAA (dehydroascorbic acid) content in 226 lettuce

plants using three approaches to assess the population structure: PCA (principal component analysis), MDS (multidimensional scaling) and

STRUCTURE software.

p-value

SNP Chromosome Position (bp) PCA MDS Structure
AX-546097527 2 18,549,215 1.21 x 1077 - -
AX-546203454 2 18,553,852 2.09 x 10~° - -
AX-546195535 2 18,908,075 1.81 x 1077 - -
AX-546191713 2 19,764,398 1.03 x 1078 - -
AX-546192899 2 19,772,368 2.26 x 1076 - -
AX-546186085 2 21,502,354 2.10 x 10710 - -
AX-546186113 2 21,564,067 4.08 x 10~ - -
AX-546186176 2 21,628,199 223 x 1070 - 242 x 1070
AX-546187526 2 21,628,541 4.12 x 107! 1.73 x 1076 1.81 x 1077
AX-546186184 2 21,629,055 2.23 x 10~ - 2.42 x 107°
AX-546186188 2 21,629,299 2.23x 107 - 2.42 % 1076
AX-546186226 2 21,672,408 7.48 x 10712 7.92 x 1077 2.00 x 1077
AX-546185962 2 21,825,828 2.48 x 10710 4.33x 1076 -
AX-546200493 2 22,812,807 327 x 1078 - -
AX-546191437 2 23,533,970 430 x 107° - -
AX-546191457 2 23,557,223 2.52x 10710 - -
AX-546192691 2 23,557,727 2.55 x 107! 2.58 x 1076 -

FIGURE 2 (Continued) LD values (Figure 2B). One reason to explain this might be

K =3, MDS (multidimensional scaling) analysis, and PCA (principal
component analysis). Statistical significance threshold is shown with
the horizontal line (—log;(0.05/9242) = 5.27). Chr: chromosome; N:
marker density. (B) Zoom of the region harboring the significantly
associated SNPs to DHAA and the squared correlation coefficients (%)
of each marker with the lead SNP. LD patterns for the 17 SNPs
significantly associated to DHAA are shown. Triangle plot depicts the
LD structure of the associated region.

the region harboring the associated SNPs that covered from
18.5 to 23.6 Mb. Among them, 12 markers showed a high LD
with the lead SNP (1> > 0.5) (Figure 2B). Interestingly, high
LD values of the lead SNP with the rest of the SNPs present
in that region were exclusively found among the significant
ones. Nevertheless, a higher significance in the set of asso-
ciated SNPs did not necessarily imply a higher LD with the
lead SNP. To illustrate this, the second most significant SNP,
and the ones following it, did not show a sequentially decreas-
ing LD with the lead SNP (Figure 2B). These differences in
the LD values observed for the most significant SNPs among
the associated ones might mean that there is more than one
polymorphism responsible for (or linked to) the mutation that
influences DHAA content. This makes sense because vita-
min C content is a complex trait controlled by multiple genes.
Similarly, the associated SNPs that were physically closest to
the lead SNP were not necessarily the ones with the highest

RIGHTS L

that the breeding for a phenotype of a particular trait, which
is controlled by more than one locus, may have resulted in
the selection of variants in those loci, which will then be in
high LD although they can be physically distant (Flint-Garcia
et al., 2003). In addition, the significantly associated SNPs
might not be within the gene responsible for the phenotypic
variation observed but be in high LD with it. For this reason,
genes that are in this region must be explored to find candi-
dates related to changes in lettuce DHAA content, as not all
genes were covered with SNPs.

A total of 84 genes were found in the region comprised
between 18.5 and 23.6 Mb of chromosome 2 (Figure 3;
Table 6). The 17 significant SNPs were within the sequence
of 12 of those genes. In particular, the lead SNP was
located in the uncharacterized gene of a long non-coding
RNA (IncRNA) (LOC111920743), which is a class of RNA
molecules of over 200 nucleotides length with none or lim-
ited coding capacity. They have been intensively studied in
recent years and are known to affect gene expression in
many biological processes in plants, as reviewed by J. Liu
et al. (2015). Therefore, the IncRNA containing the lead
SNP in the current study could be regulating the expres-
sion of genes that participate in DHAA accumulation, as
it is the case of the IncRNAs targeting different genes
related to vitamin C content found in kiwifruit (Deng et al.,
2022). Among the other genes that harbor the associated
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TABLE 6

Function (according to UniProt)

LOC128132010 Uncharacterized IncRNA

Abbreviated
EXTI

Strand Gene name (GFF annotation) name

End

23,464,349 23,466,565

Start

SNP

Gene ID

i,

LOC128132010
Extensin-1-like

+

LOC128132010
LOC128132281

Structural component which strengthens the primary

cell wall

23,488,052 +

23,487,588

FBP of Kelch subfamily that regulates protein
degradation by targeting specific substrates

KFB

- F-box/kelch-repeat protein At3g23880
(A. thaliana F-box and associated

23,533,897 23,535,387

LOC111903668 AX-546191437

interaction domains-containing protein)

LOC111903669

LOC111903669 Uncharacterized protein-coding

+

23,554,314 23,563,321

LOC111903669 AX-546191457,

AX-546192691

Note: Significantly associated SNPs with DHAA content and the genes harboring them are shown in bold.

SNPs with DHAA content, different gene products were
identified, like GDSL (glycine-asparagine-serine-leucine)
esterase/lipases (LOC111894682, LOC111892004), FREE1
proteins (LOC111917454, LOC111917451), a diphthine
methyl ester synthase (LOC111920734), the HVA22-like
protein G (LOC111920735), a WPP (tryptophan-proline-
proline) domain-associated protein (LOC111920742), an
anion transporter (LOC111920747), and two F-box pro-
teins (LOC111917627, LOC111903668) (Table 6). Ten more
genes that encode F-box proteins were found in the stud-
ied region (Table 6). These results are interesting because
a gene encoding an F-box protein has been recently pro-
posed as a candidate gene to regulate the ascorbate peroxidase
(APX) activity in a GWAS carried out in barley (Thabet
et al., 2022). The APX catalyzes the conversion of AA to
DHAA (through ascorbate) as part of the reduction of hydro-
gen peroxide to water (Apel & Hirt, 2004). F-box proteins
have been related to antioxidant status in plants in other previ-
ous studies. For example, the overexpression of the TaFBAI
gene that encodes an F-box protein, enhanced the oxidative
stress response through a higher APX activity in wheat (S.
M. Zhou et al., 2015). Therefore, the genes in the region
of interest in the current study encoding F-box proteins are
potential candidates for the control of DHAA content in
lettuce. Another interesting candidate gene is the one that
encodes the pectinesterase/pectinesterase inhibitor (PPE) 47
(LOC128132280) (Table 6). Vitamin C biosynthesis has been
widely studied in plants, being the D-manose/L-galactose or
Smirnoff-Wheeler pathway (Wheeler et al., 1998) the main
route for AA synthesis, though there are at least three alter-
native pathways. PPEs have been previously proposed as
candidate genes involved in the increase of vitamin C con-
tent through the alternative D-galacturonic acid pathway that
starts with the degradation of cell wall pectins (Di Mat-
teo et al., 2010; Ruggieri et al., 2015). In our analysis, we
found markers associated with DHAA instead of AA, the
last being the compound assessed in both studies just men-
tioned. However, AA and DHAA contents are directly related
as they are interconvertible. Plants need to maintain a bal-
ance of antioxidant compounds and DHAA is the product
of the AA oxidation mediated by APX (among others), and
it is recycled to AA by the action of the dehydroascorbate
reductase (DHAR) in the ascorbate-glutathione cycle (Apel &
Hirt, 2004). Two more candidate genes, encoding an endoglu-
canase 2 (EGL2) (LOC111920722) and an extensin-1-like
(EXTT1) protein (LOC128132281), also play a role in the cell
wall remodeling, which could ultimately alter vitamin C con-
tent (Table 6). There are also 39 out of the 84 candidate genes
that have not been characterized yet in lettuce, including 16
IncRNA (Table 6). They may participate in DHAA accumu-
lation, but more efforts in gene annotation are needed to shed
light on their potential functions and contribution to DHAA
content in lettuce.
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FIGURE 3

Physical map of the 5.1 Mb region containing the 17 single nucleotide polymorphisms (SNPs) significantly associated to

dehydroascorbic acid (DHAA) content. Abbreviations of the gene names are described in Table 6.

As far as we know, this is the first GWAS that has
found genetic associations with the DHAA content in lettuce.
GWAS has been used as a powerful approach in searching
for genes or genetic markers associated with different traits
in lettuce. However, most studies have assessed resistance to
biotic stresses (Lu et al., 2014; Simko et al., 2022, 2023) or
agronomic traits like leaf color and morphology, bolting and
flowering times, or shelf life and developmental rate (S. Kwon
et al., 2013; S. Park et al., 2021; Sthapit Kandel et al., 2020;
Wei et al., 2021). In other crops, the regulation of vitamin
C content has actually been analyzed by GWAS. Candidate
genes related to the common biosynthesis pathways have been
reported, such as genes encoding a monodehydroascorbate
reductase, a bHLH transcription factor that regulates genes
of the D-mannose/L-galactose pathway, and also a PPE like
the one identified in our study, what reinforces it as a candi-
date gene (Berdugo-Cely et al., 2023; Sauvage et al., 2014; Ye
etal., 2019). New candidate genes have also been proposed to
have an effect on vitamin C content, like the Fas-associated
factor 1-like (FAFI) and ethylene responsive factor 1 (ERF1)
genes in tomato (Ruggieri et al., 2014) or genes that encode
methionine sulfoxide reductases (MSR) in potato (Berdugo-
Cely et al., 2023). Except for Sauvage et al. (2014), these
studies have evaluated associations exclusively with AA, the
most biologically active form of vitamin C, and have not paid
attention to DHAA. However, DHAA is essential to main-
tain the reduced AA pool through its recycling by the action
of the DHAR, for instance. In addition, DHAA also presents
some biological activity, as mentioned before. Consequently,
identifying candidate genes that modulate DHAA content,
and not only AA, is essential to understand vitamin C reg-
ulation in crops and, in particular, in lettuce. Furthermore,
identification of molecular markers associated to DHAA
content might allow the use of marker-assisted selection in

RIGHTS L1 N Hig

breeding programs aimed at obtaining vitamin C biofortified
lettuce.
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