UNIVERSIDAD POLITECNICA DE MADRID

ESCUELA TECNICA SUPERIOR DE INGENIEROS AGRONOMOS

INFLUENCIA DE LA TECNICA DE MANTENIMIENTO DE SUELO
EN LA EVOLUCION DE LA HUMEDAD DEL SUELO, EL
CRECIMIENTO Y LA PRODUCCION EN PERAL
(Pyrus communis L.)

1. TESIS DOCTORAL

Presentada por

Vº Bº
El Director de la Tesis

D. JOAQUIN GOMEZ APARISI
Ingeniero Agrónomo

D. MANUEL CARRERA MORALES
Dr. Ingeniero Agrónomo
U. Fruticultura S.I.A. D.G.A.
Campus Aula Dei (Zaragoza).

MADRID, SEPTIEMBRE 1.991
AGRADECIMIENTOS

Esta tesis es el resultado de un Proyecto de Investigación realizado en equipo, iniciado en el CRIDA 03- INIA hoy Servicio de Investigación Agraria, de la Diputación General de Aragón (Campus de Aula Dei). A todos los participantes mi más sincero agradecimiento.

Especial mención para el Dr. M. Carrera Director de esta tesis y demás miembros de la Unidad de Fruticultura del SIA.

Al Dr. F. Gil-Albert Velarde y demás miembros del Departamento de Fitotecnia de la ETSIA de Madrid, por sus consejos en la finalización de este trabajo.

Al Dr. E. Carbonell del IVIA por su ayuda y consejos en el tratamiento estadístico de los datos.

A los Dres. C. Zaragoza y J. Aibar del equipo de Malerbología de la Unidad de Protección Vegetal del SIA.

Al Laboratorio Regional Agrario por la realización de los análisis foliares y de suelos.

Al Servicio de Extensión Agraria por sus facilidades de impresión.

Al SIA en general y especialmente a los Servicios de Biblioteca e Informática.

Al extinto Comité Conjunto Hispano Norteamericano para la Cooperación Técnica Científica y Tecnológica que financió el Proyecto que dio origen a esta tesis.
INDICE GENERAL

RESUMEN ... 5
RESUMEN ... 6
SUMMARY ... 7
INDICE DE CUADROS .. 8
INDICE DE FIGURAS .. 10
1.- INTRODUCCION ... 20
1.1. Evolución de las técnicas de mantenimiento 21
1.2. Sistemas de mantenimiento de suelo
 empleados en fruticultura 25
 1.2.1. Laboreo.. 25
 1.2.2. No laboreo: aplicación de herbicidas 27
 1.2.3. Cubierta vegetal permanente 29
 1.2.4. Acolchados ("mulching") 29
1.3. Efectos de los sistemas de mantenimiento
 del suelo sobre factores que influyen en
 el desarrollo del frutal 30
 1.3.1. Características físicas del suelo: compactación
 e infiltración .. 30
1.3.2. Estado hídrico del suelo.......................... 33
1.3.3. Temperatura del suelo............................. 34
1.3.4. Elementos nutritivos del suelo..................... 37
 1.3.4.1. Nitrógeno.................................... 37
 1.3.4.2. Fósforo..................................... 38
 1.3.4.3. Potasio.................................... 39
 1.3.4.4. Calcio y magnesio.......................... 39
1.4. Efecto de los sistemas de mantenimiento de suelo sobre la nutrición: contenido mineral en hoja 40
1.5. Efecto de los sistemas de mantenimiento de suelo sobre la producción.............................. 41
1.6. Efecto de los sistemas de mantenimiento de suelo sobre las características de los frutos................................. 43
1.7. Objetivos de la Tesis.................................. 46
2.- MATERIAL Y METODOS 48
2.1. Características de los ensayos......................... 48
 2.1.1. Características climáticas........................ 49
 2.1.2. Características edafológicas...................... 50
 2.1.3. Material vegetal................................ 50
 2.1.4. Agua de riego................................ 53
 2.1.5. Calendario de riegos............................ 54
2.2. Protocolo experimental................................ 55
2.2.1. Tratamientos experimentales ... 55
2.2.2. Diseño estadístico .. 56
2.2.3. Medidas del estado hídrico del suelo:
 tensiómetros, sonda de neutrones .. 57
2.2.4. Evolución de la flora arvense ... 59
2.2.5. Infiltración del agua en el suelo .. 60
2.2.6. Compactación superficial .. 60
2.2.7. Temperatura del suelo ... 61
2.2.8. Desarrollo vegetativo: evolución del crecimiento del tronco 61
2.2.9. Producción y calidad. ... 61
2.2.10. Nutrición mineral. .. 62
 2.2.10.1. Análisis foliar .. 62
 2.2.10.2. Análisis de suelo ... 63
3.- RESULTADOS .. 64
4.- DISCUSIÓN .. 168
4.1. Suelo .. 168
 4.1.1. Propiedades químicas ... 168
 4.1.1.1. C.E. .. 168
 4.1.1.2. pH .. 170
 4.1.1.3. Materia Orgánica ... 171
 4.1.1.4. Nutrientes ... 173
 4.1.2. Propiedades físicas. ... 174
4.1.2.1. Compactación .. 175

4.1.2.2. Infiltración .. 176

4.1.3. Temperatura : Efecto ambiente 179

4.2. Riegos .. 181

4.2.1. Calendario de riegos: incidencias climáticas 181

4.2.2. Perfil hídrico del suelo 184

4.3. Sistemas de mantenimiento de suelo 186

4.3.1. Efectos herbicidas y evolución de la flora arvense 187

4.4. Desarrollo vegetativo: evolución del crecimiento de tronco 189

4.5. Nutrición mineral : Análisis foliares 191

4.6. Producción y calidad de fruta 193

5. CONCLUSIONES ... 197

6. BIBLIOGRAFIA ... 204
INFLUENCIA DE LA TECNICA DE MANTENIMIENTO DE SUELO EN LA EVOLUCION DE LA HUMEDAD DEL SUELO, EL CRECIMIENTO Y LA PRODUCCION EN PERAL (**Pyrus communis** L.)

RESUMEN

Se han estudiado los efectos de cuatro sistemas de mantenimiento de suelo en una plantación de peral ("Passe Crassanne" y 'Général Leclerc') sobre membrillo A, entre 1983 y 1989, comparando el laboreo tradicional (LT), el no-laboreo a base de tratamientos herbicidas a la totalidad del suelo (HT), laboreo en las calles con tratamiento herbicida en las líneas (LH) y cubierta vegetal segada periódicamente en las calles con tratamientos herbicidas en las líneas (HH).

A lo largo de este periodo, se ha seguido la evolución de las distintas especies infestantes presentes en otoño-invierno y primavera-verano en cada sistema. Se ha medido la evolución el estado hídrico del perfil del suelo (0-120 cm) como base para el establecimiento del calendario real de riegos. Se ha seguido la evolución anual del crecimiento vegetativo de los árboles, el estado de nutrición foliar, la producción y su calidad.

Al final de la experiencia se ha procedido al análisis químico del suelo, así como a las medidas de infiltración y compactación superficial y del perfil para los distintos sistemas. Así mismo se han realizado medidas de la temperatura del ambiente, de la superficie del suelo y a 15 cm de profundidad en los sistemas LT y HT durante el periodo de heladas de 1989.

La flora arvense, principalmente anuales dicotiledóneas, fue controlada satisfactoriamente con tratamientos herbicidas, residuales y sistémicos, aplicados a bajo volumen. Al final de la experiencia algunas especies se mostraron bien adaptadas a HT escapando de los tratamientos herbicidas, mientras que otras proliferaron en los suelos labrados y algunas se mostraron bien adaptadas a cualquier sistema.

La evolución del estado hídrico del suelo, muestra el rápido agotamiento del horizonte superficial (0-45 cm) lo que condiciona el calendario real de riegos, que ha sido muy variable a lo largo del periodo considerado, influido por una climatología muy cambiante y el escaso volumen de suelo explorado por las raíces.

La infiltración del agua en el suelo ha reflejado la gran influencia de los distintos sistemas, destacando el alto valor medido en el sistema HH
frente a todos los demás y la influencia que el aumento de la humedad del suelo tiene en el descenso de la infiltración en el caso del sistema LT, probablemente debido a la presencia de una suela de labor.

La compactación del suelo está muy influida por su grado de humedad y mientras que en condiciones de humedad del suelo del 20% se aprecian diferencias entre sistemas (menor compactación en sistemas con laboreo), cuando el suelo se seca hasta un 14% la compactación aumenta en todos sin detectarse diferencias significativas. El paso de la maquinaria es un factor importante de la compactación del suelo.

Las temperaturas medidas en el suelo reflejan una mayor conductividad térmica en el sistema HT frente al LT, permitiendo una mayor acumulación de calor de el suelo que al ser cedido más fácilmente, en el caso de una fuerte helada de irradiación supuso una diferencia de temperatura ambiente de 1°C a favor del sistema HT.

Los sistemas han influido de manera significativa en las características químicas del suelo, habiéndose detectado diferencias significativas en salinidad, pH, materia orgánica, fósforo y potasio. En cambio los análisis foliares solamente han mostrado diferencias significativas para dos oligoelementos: hierro (mayor en HH) y manganeso (mayor en LT).

El crecimiento vegetativo, refleja las diferencias existentes entre ambas variedades así como una detención del crecimiento en HT probablemente debido a la toxicidad por herbicidas en los primeros años de la experiencia, y si bien se recuperó luego el ritmo de crecimiento, no se han llegado a alcanzar los crecimientos de los otros sistemas.

La producción anual muestra una oscilación característica, más acusada en 'G. Leclerc' que es más vecera y productiva. La producción acumulada al final de la experiencia muestra claramente el efecto del sistema de mantenimiento. Así, para 'P. Crassanne' el mejor sistema es el HH, mientras que para 'G. Leclerc' el sistema significativamente inferior es el LT. Para ambas variedades ha destacado el sistema HH en cuanto a rendimiento productivo, lo que unido a sus ventajas de orden agronómico, lo hacen recomendable para las explotaciones frutales.

Los resultados de los análisis de los parámetros de calidad de fruto no muestran diferencias significativas entre los sistemas.
INFLUENCE DE LA TECHNIQUE D’ENTRETIEN DU SOL SUR L’ÉVOLUTION DE L’HUMIDITÉ DU SOL, DE LA CROISSANCE ET DE LA PRODUCTION EN POIRIER (Pyrus communis L.)

RÉSUMÉ

Entre 1983 et 1989 on a étudié les effets de quatre systèmes d’entretien du sol dans un verger de poirier (‘Passe Crassanne’ et ‘Général Leclerc’) sur cognassier A, on a comparé la culture traditionnelle (LT), la non-culture à base de traitements herbicides sur la totalité du sol (HT), la culture réduite aux interlignes avec du traitement herbicide en bandes sous les arbres (LH) et couverture végétale moissonnée périodiquement aux interlignes avec traitement herbicide en bandes sous les arbres.

Tout au long de cette période, on a suivi l’évolution des différentes espèces adventices présentes en automne-hiver et printemps-été à chaque système. L’évolution du stade hidrique du profil du sol (0-120 cm) a été mesuré comme base pour l’établissement du calendrier réel d’irrigation. On a suivi l’évolution de l’accroissement végétatif des arbres, l’état de nutrition des feuilles, la production et la qualité des fruits.

La flore adventice, surtout composée de dicotylédones annuelles, a été assez bien contrôlée par les traitements herbicides, résiduels et systémiques appliqués à bas volume. A la fin de l’expérience certaines espèces se sont montrées bien adaptées à la non culture (HT), en échappant aux traitements herbicides, tandis que d’autres ont proliféré sur les sols labourés, et d’autres, finalement, se sont montrées bien adaptées à tout système quel qu’il soit.

L’évolution de l’état hidrique du sol, montre le rapide épaissement de l’horizon superficiel (0-45 cm) qui conditionne le calendrier réel d’irrigation, qui a été très variable par ailleurs au long de ces années, très influencé d’une part par une climatologie très changeante et d’autre part par le petit volume de sol exploré par les racines absorbantes.

L’infiltration de l’eau dans le sol a montré la grande influence des différents systèmes, le système HH ayant obtenu les meilleurs valeurs face aux autres, et l’influence que l’augmentation de l’humidité du sol
exerce sur la diminution de l'infiltration au système LT, probablement du à la présence d'une semelle de labour.

La compaction du sol est aussi très influencée par son degré d'humidité, tandis qu'en condition d'humidité du 20 % on apprécie des différences entre systèmes (moins compaction avec systèmes avec labour), lorsque le sol se désèche jusqu'au 14 % la compaction augmente pour tous et on n'arrive pas à détecter des différences significatives. Le trafic des machines est un facteur important de la compaction du sol.

Les températures mesurées dans le sol montrent une plus grande conductivité thermique du système HT face au LT, permettant une plus grande accumulation de chaleur dans le sol, susceptible d'être libérée plus facilement, en cas d'une forte gelée d'irradiation, on a eu une différence de température de 1°C favorable au système HT.

Les systèmes ont eu une influence significative sur les caractéristiques chimiques du sol, ayant trouvé des différences significatives en salinité, pH, matière organique, phosphore et potassium. Par contre les analyses foliaires ont montré des différences significatives seulement pour deux oligoéléments: fer (plus élevé en HH) et manganèse (plus élevé en LT).

La croissance végétative, reflète les différences existantes entre les deux variétés, ainsi qu'un arrêt de la croissance en HT probablement dû à la toxicité par herbicides eu dans les premières années de l'expérience, et si bien après on a récupéré le rythme de croissance, on n'est pas arrivé à atteindre les croissances des autres systèmes.

La production annuelle montre une oscillation caractéristique, plus accusée chez 'G. Leclerc' qui est plus alternative et productive. La production accumulée à la fin de l'expérience montre clairement l'effet du système d'entretien. Ainsi, pour 'P. Crassanne' le meilleur système est celui du HH, tandis que pour 'G. Leclerc' le système significativement inférieur est celui du LT. Pour les deux variétés se détache le système HH s'est distingué par son rendement productif, ce que joint à ses avantages d'ordre agronomique, le font le plus recommandable pour les exploitations fruitières.

Les résultats des analyses des paramètres de qualité du fruit ne montrent pas des différences significatives entre les systèmes.
INFLUENCE OF SOIL MANAGEMENT SYSTEM IN THE EVOLUTION OF SOIL HUMIDITY, GROWTH AND PRODUCTION IN PEAR (Pyrus communis L.)

SUMMARY

Four soil management systems were studied during 1983-1989 in a pear orchard of 'P. Crassanne' and 'Général Leclerc' on quince A rootstock. These systems included traditional tillage (LT), non tillage with chemical weed control (HT), tillage on the alleys with herbicide applications on the lines (LH), and grass cover periodically sowed in the alleys and herbicide applications on the line (HH).

The evolution of the weed flora in fall-winter and spring-summer was followed for each soil management system during this period. The evolution of the water content in the soil profile of 0-120 cm was measured for the establishment of a real irrigation schedule. Also the vegetative growth, the foliar nutrient status, the production and its quality were measured yearly.

At the end of the trial, the soil has been analyzed chemically and its infiltration measured, as well as the superficial and profile compaction in the different systems. Also the temperatures at 1m, at the soil level and at 15 cm underground for the LT and HT systems during the 1989 frost period have been measured.

Weed flora, mainly annual dicotyledons, were satisfactorily controlled by low-volume residual and systemic herbicide treatments. At the end of the trial some weed species proved to be well adapted to HT, enduring the effect of herbicide treatments, while some others were showing up in tilled soils and others showed to be well adapted to any system.

The evolution of the soil water content showed a quick depletion of the water in the superficial level (0-45 cm) what stipulates the real irrigation calendar, which has been very variable along the considered period, and influenced by a very diverse climate and the scarce soil volume explored by the efficient roots.

The water infiltration was greatly dependent on the soil management system, standing up the the high average value in the HH system as compared to the others and also that the increase in the soil water content decreases the water infiltration rate in the LT system probably due to a soil pan.
The soil compaction is highly dependent on its water content. With a 20% soil water content clear differences are shown among systems (less compaction in tillage systems) but when the soil dries up until 14%, compaction increases in all systems and no appreciable differences are found among them. The traffic of machinery is an important factor on soil compaction.

The soil temperature shows a higher thermal conductivity in the HT system as compared to the LT one, allowing a higher heat accumulation in the soil. This heat is transferred more easily, and during an irradiation frost this accounted for a difference of 1°C favouring the HT system.

The different systems have affected significantly the chemical soil characteristics, with significant differences measured in salinity, pH, organic matter, phosphorous and potassium. Folliar analysis, on the other hand, have shown only significant differences for two microelements: iron (higher in HH) and manganese (higher in LT).

The vegetative growth shows the vigor differences between the two cultivars. There is also a lower growth in the HT system, probably due to herbicide toxicity during the first years. Even if the growth rate increased later in this system, the trees never reached the growth level as in the other systems.

The annual production shows a characteristic oscillation, mainly for 'G. Leclerc', a more productive and alternate bearing cultivar. The total production at the end of the trial shows clearly the effect of the soil management system. Thus, for 'P. Crassanne' HH is the best system while for 'G. Leclerc' LT is the worst system. For both cultivars HH has been a good system as related to productive efficiency, making it recommendable for commercial orchards due to its agronomical advantages.

The result of the different parameters of fruit quality do not show significant differences among the systems.
INDICE DE CUADROS

1. Características físicas iniciales del suelo en 1979. 50

2. Composición química media de las aguas de riego utilizadas en el período 1984-1989. 54

3. Ajuste estadístico de las curvas de infiltración del agua en el suelo para los sistemas de mantenimiento usados: Herbicida total (HT), Laboreo total (LT), Hierba con herbicida en la calle (HHC) y en la fila (HHF), para dos condiciones (14% y 20%) de humedad del suelo. 70

4. Calendario real de riegos en el período 1984-1989. 70

5. Tratamientos herbicidas en el período 1984-1989. 71

6. Labores y aperos utilizados en el año 1987 representativos de los normalmente usados en el año agrícola. 72

7. Características físicas finales del suelo en 1989. 73

8.1. Registro de temperaturas (°C) de suelo en superficie y a 15 cm de profundidad durante los periodos de heladas de 1989. 74

8.2 Registro de temperaturas (°C) de ambiente a 1m de altura durante las heladas de 1989. 75

10.1. Influencia del sistema de mantenimiento de suelo en los parámetros de la calidad del fruto de 'G. Leclerc' en 1989: pH, sólidos solubles (° Brix) y acidez (g/l de ácido mático).

10.2. Influencia del sistema de mantenimiento de suelo en los parámetros de la calidad del fruto de 'P. Crassanne' en 1989: pH, sólidos solubles (° Brix) y acidez (g/l de ácido mático).
INDICE DE FIGURAS

1. Curva de los coeficientes de cultivo (Kc) en peral. 79

2.1. Parcela agrometeorológica del Servicio de Investigación Agraria. 79

2.2. Aspecto general de los cuatro sistemas de mantenimiento de suelo aplicados: Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH). 81

3.1.1. Variación de la conductividad eléctrica (CE) con la profundidad del perfil del suelo. (Medias con letras diferentes difieren significativamente (p<0,01)). 83

3.1.2. Influencia del sistema de mantenimiento en la conductividad eléctrica (CE) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)). 83

3.2.1. Variación del pH con la profundidad del perfil del suelo. 85
3.2.2. Influencia del sistema de mantenimiento de suelo en el pH del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)).

3.3.1. Variación del contenido en materia orgánica (MO) con la profundidad del perfil del suelo.

3.3.2. Influencia del sistema de mantenimiento de suelo en el contenido en materia orgánica (MO) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)).

3.4.1. Variación del contenido en fósforo (P) con la profundidad del perfil del suelo. (Medias con letras diferentes difieren significativamente (p<0,01)).

3.4.2. Influencia del sistema de mantenimiento de suelo en el contenido en fósforo (P) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)).
3.5.1. Variación del contenido en potasio (K) con la profundidad del perfil del suelo. (Medias con letras diferentes difieren significativamente (p<0,01)).

3.5.2. Influencia del sistema de mantenimiento de suelo en el contenido en potasio (K) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)).

4.1. Medida de la infiltración del agua en el suelo usando anillos infiltrómetros.

4.2. Infiltración acumulada en suelo seco (14% de humedad) para los sistemas de mantenimiento de suelo. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.

4.3. Infiltración acumulada en suelo húmedo tras un riego (20% de humedad) para los sistemas de mantenimiento de suelo. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.

4.4.1. Velocidad de infiltración (mm/min) en suelo seco (14% de humedad) para los sistemas de mantenimiento de suelo. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.
4.4.2. Velocidad de infiltración (mm/min) en suelo húmedo (20% de humedad) tras un riego. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.

5.1.1. Compactación (KPa) superficial en suelo seco (14% de humedad) para los sistemas Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

5.1.2. Compactación (KPa) superficial en suelo húmedo tras un riego (20% de humedad) para los sistemas Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

5.2.1. Compactación (Nw/cm2) del perfil del suelo en dos condiciones distintas de humedad (14% y 20%) para los cuatro sistemas de mantenimiento de suelo (1) Herbicida total (HT), (2) Laboreo total (LT), (3) Hierba con herbicida (HH) y (4) Laboreo con herbicida (LH).

5.2.2. Efecto del sistema de mantenimiento de suelo Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH) en la compactación (Nw/cm2) del perfil del suelo húmedo (20% de humedad).

5.2.3. Efecto del sistema de mantenimiento de suelo Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH) en la compactación (Nw/cm2) del perfil del suelo seco (14% de humedad).
5.3.1.1. Efecto del tráfico de maquinaria en la compactación (Nw/cm²) del perfil del suelo en el sistema Laboreo total (LT) en la calle y bajo la rodada del tractor.

5.3.1.2. Efecto del tráfico de maquinaria en la compactación (Nw/cm²) del perfil del suelo en el sistema Hierba con herbicida (HH) en la calle, en la línea y bajo la rodada del tractor.

5.4. Evolución de la compactación (Nw/cm²) del suelo en el sistema Laboreo total (LT) entre dos laboreos con cultivador.

6. Detalle del corte transversal de la costra superficial del suelo.

7.1. Evolución del potencial matricial del suelo medido con tensiómetros como indicador del momento del riego.

7.2. Evolución diaria de la temperatura de suelo superficial y a 15 cm de profundidad para los sistemas Laboreo total (LT) y Herbicida total (HT) en periodo de heladas en febrero de 1989.

7.3. Evolución diaria de la temperatura de suelo superficial y a 15 cm de profundidad para los sistemas Laboreo total (LT) y Herbicida total (HT) en periodo de heladas en marzo de 1989.
8.1.1.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema de Laboreo total (LT) en 1985.

8.1.2.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema Herbicida total (HT) en 1985.

8.1.2.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema herbicida total (HT) en 1987.

8.1.3.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema Hierba con herbicida (HH) en 1985.

8.1.3.2 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema Hierba con herbicida (HH) en 1987.

8.1.4. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema Laboreo con herbicida (LH) en 1985.

8.2.1.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo total (LT) en 1985.

8.2.1.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo total (LT) en 1987.
8.2.2.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Herbicida total (HT) en 1985.

8.2.2.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Herbicida total (HT) en 1987.

8.2.3.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Hierba con herbicida (HH) en 1985.

8.2.3.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Hierba con herbicida (HH) en 1987.

8.2.4.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo con herbicida (LH) en 1985.

8.2.4.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo con herbicida (LH) en 1987.

9.1. Evolución del crecimiento de troncos en el período 1984-1989 en 'Passe Crassanne' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH). (Medias con letras diferentes difieren significativamente $(p<0.05)$).
9.2. Evolución del crecimiento anual de troncos en el período 1984-1989 en 'Général Leclerc' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH). (Medias con letras diferentes difieren significativamente (p<0.05)).

10.1.1. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): N₂.

10.1.2. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): P.

10.1.3. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): K.

10.1.4. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Na.

10.1.5. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général
Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Ca.

10.1.6. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Mg.

10.1.7. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Fe.

10.1.8. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Cu.

10.1.9. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Mn.

10.1.10. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): Zn.

11.1.1. Evolución de la producción anual media por árbol en el periodo 1984-1989 en 'Passe Crassanne' para los cuatro
sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

11.1.2. Producción anual media por árbol en el periodo 1984-1989 en 'Général Leclerc' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

11.2.1. Evolución de la producción acumulada por árbol en el periodo 1984-1989 en 'Passe Crassanne' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

11.2.2. Producción acumulada media por árbol en el periodo 1984-1989 en 'Général Leclerc' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).
1. INTRODUCCION
1. INTRODUCCION

El cultivo del peral (*Pyrus communis* L.) en España ocupa una extensión superior a las 35.000 ha, habiendo duplicado su extensión desde 1950, con un aumento más sensible desde 1970. La producción media del último decenio oscila en torno a las 500.000 toneladas, de las cuales un 92% van destinadas al mercado fresco y el 8% restante se destina a la industria. Actualmente se exportan aproximadamente 32.000 toneladas (CARRERA, 1990).

El peral se cultiva en zonas de valle, en terrenos aluviales de calidad media a buena utilizando como patrón el peral franco (15%) y el membrillero (*Cydonia oblonga* L.) (85%). Los membrilleros generalmente pertenecen al grupo Angers (CARRERA, 1990).

En las condiciones normales del cultivo frutal intervienen una gran serie de factores que determinan su productividad, tales como la variedad, el patrón, la disponibilidad de agua y nutrientes, el clima, las técnicas de cultivo y las propiedades físicas y químicas del suelo.
El óptimo aprovechamiento del medio productivo en el que vegeta la plantación incluye la máxima exploración y utilización del suelo y de las disponibilidades de agua (de lluvia o de riego) y nutrientes del mismo, por el sistema radicular. El sistema de mantenimiento del suelo influye en esta optimización del uso de recursos de modo muy importante.

El mantenimiento del suelo como técnica de cultivo para su aplicación en fruticultura presenta múltiples aspectos y variaciones. No sólo se debe considerar la eliminación de las malas hierbas para evitar su indeseable competencia con los árboles, sino también los efectos derivados de esta operación. El suelo está siendo explorado permanentemente por el sistema radicular de los árboles, por lo que todo trabajo en el mismo entraña el peligro de lesionar raíces.

El laboreo, así como el no-laboreo o el mantenimiento de una cubierta vegetal o inerte en la calle de forma temporal o permanente, son medios de control total o parcial de la competencia indeseada de la mala hierba, tanto desde un punto de vista de utilización de recursos (agua y nutrientes), como de sus efectos en el cultivo, al considerar otros aspectos paralelos: alteración del sistema radicular, incidencia en plagas, enfermedades, heladas, conservación de suelos y control de la erosión.

1.1. EVOLUCION DE LAS TÉCNICAS DE MANTENIMIENTO DE SUELO.

Durante miles de años, sucesivas civilizaciones en su lucha por la supervivencia han ocupado nuevas tierras para su explotación agrícola, empobreciendo junto con el cultivo las reservas acumuladas de agua y
nutrientes cuando los suelos no se han manejado correctamente. Esto ha llevado al agotamiento, degradación y posterior abandono de las tierras y a la desaparición de más de 30 civilizaciones identificadas a lo largo de los últimos 6000 años de la historia de la Humanidad, que se ha caracterizado por marchar a través de la tierra dejando desiertos a su paso (CARTER y DALE, 1974). El mundo actual demanda la búsqueda urgente de soluciones alternativas.

Los fruticultores conocen muy bien el efecto depresivo de las malas hierbas sobre el crecimiento de los árboles, efecto que aparece poco después de la plantación. La aireación del suelo y el almacenamiento del agua son argumentos suplementarios para que el trabajo del suelo constituya una operación habitual y generalizada en los huertos frutales.

Desde el invento del arado por los sumerios (3.500 años a. de C.) y sus posteriores y decisivas mejoras por los romanos (200 años a. de C.), el laboreo se utilizó en la agricultura de las antiguas civilizaciones. El invento de la cobertera y la herradura en la alta edad media, y el perfeccionamiento de los aperos de labranza, generalizaron su empleo usando tracción animal, caballar, o vacuna, sobre todo en el siglo XVIII con las mejoras introducidas por ingleses y holandeses. No existe documentación consistente sobre el control de las malas hierbas en el suelo de los huertos frutales anterior al siglo XX. No obstante y aunque muy poco conocida se puede encontrar referencias al control de las malas hierbas en viñedos y olivos (HERRERA, 1539; MATAS COSCOLL, 1786).

Antes de la Primera Guerra Mundial, los huertos se cultivaban para controlar la vegetación superficial, sin embargo, mientras el laboreo
total se consideraba como la técnica más adecuada para el mantenimiento del suelo, paralelamente, se estaban investigando otras técnicas. Así, en Gran Bretaña, en los años 20, el empleo de la técnica del *enherbado permanente* aumentaba a medida que se desarrollaban las segadoras de hierba (ROBINSON, 1983). Al mismo tiempo, un programa de investigación en la Estación de East Malling demostraba que los efectos de la siega frecuente de una cubierta vegetal eran beneficiosos en muchos casos, por mantener o aumentar el contenido de materia orgánica del suelo y mejorar la estructura del mismo y la penetración del agua (GREENHAM, 1953). También se puso en evidencia la reducción en la erosión del suelo y la mejor coloración de los frutos (FISHER, 1976).

Tras la Segunda Guerra Mundial la mecanización creciente desplazó de forma sistemática a la tracción animal. Probablemente, en Europa, el mantenimiento del suelo no constituía un problema real hasta la transición de la fruticultura existente entonces a la actual, con patrones enanizantes que permiten plantaciones más intensivas donde el principal objetivo lo constituyen la obtención de fruta homogénea y de buena calidad, uso eficiente de recursos y abaratamiento de costes de producción (HOGUE y NEILSEN, 1987), a la vez que, en la década de los 50, aparecen en el mercado una serie de productos herbicidas que permiten un control efectivo de la vegetación.

Una de las primeras experiencias para examinar el efecto de la hierba en una plantación empezó en 1902 en Massachusetts (FAUST, 1979), a la vez que otra en Missouri, para comparar el efecto de una cubierta de paja con "otros métodos comúnmente usados en el
mantenimiento del suelo" de las plantaciones (SHAW y SOUTHWICK, 1936).

Actualmente, el fruticultor puede utilizar diferentes medios mecánicos, químicos, físicos o biológicos para cuidar el suelo de sus parcelas, según emplee el laboreo, la escarda química, el enherbado (cubierta vegetal) o las coberturas inertes ("mulching" plástico, paja, etc.). Puede optar por el uso exclusivo de una de estas técnicas o por el empleo combinado de varias en el espacio o en el tiempo (ZARAGOZA, 1988; BEURET y NEURY, 1989).

Considerando que las producciones hortícolas están por término medio entre tres y siete veces por debajo de su capacidad potencial y que el 90% de estas pérdidas potenciales son atribuibles al impacto medioambiental negativo y a la competencia de las malas hierbas, el manejo integrado de los cultivos constituye uno de los ocho objetivos prioritarios de investigación propuesto por la Sociedad Americana de Ciencias Hortícolas (FAUST, 1986) con el fin de reducir costes de producción, determinar el uso más eficiente de energía, agua y fertilizantes, y así obtener productos de calidad óptima con la mínima alteración del medio ambiente (GREENWOOD, 1989).

A continuación se van a revisar los sistemas de mantenimiento de suelo más utilizados: laboreo mecánico, cubierta vegetal permanente, escarda química con herbicidas y algunas de sus posibles combinaciones. Se resumen los efectos de cada sistema tanto en el suelo como en el cultivo: cambios físicos y químicos producidos en las propiedades del suelo, los efectos sobre el crecimiento, así como sobre nutrición del árbol, y en la producción de fruta y su calidad.
1.2. SISTEMAS DE MANTENIMIENTO DE SUELO EMPLEADOS EN FRUTICULTURA.

1.2.1. Laboreo.

El laboreo consiste en el movimiento mecánico del suelo para mejorar las condiciones del mismo de cara a un rendimiento más eficaz de los cultivos. Ha sido el método tradicionalmente empleado para mantener el suelo mullido, y al mismo tiempo controlar su humedad y el crecimiento de las malas hierbas en las plantaciones frutales. El laboreo puede consistir en labores periódicas a lo largo del año o bien derivar a sistemas de mínimo laboreo solos o combinados con cubiertas herbáceas anuales. En cualquier caso, actualmente se pueden complementar las labores con aplicaciones puntuales de herbicidas de contacto o sistémicos (BEURET y NEURY, 1989).

Como otras muchas técnicas tradicionales, la labranza de los suelos se ha desarrollado en el campo de forma básicamente empírica, fundamentada en la experiencia acumulada a lo largo de muchos años.

Los objetivos del laboreo son esencialmente el control de las malas hierbas, del agua (por acumulación o drenaje) y de la temperatura en el suelo, así como el enterrado de los abonos y restos vegetales. Es un sistema muy sencillo que no requiere grandes conocimientos técnicos y que por otra parte puede proporcionar una mayor disponibilidad de NO3-N para los árboles (WHITE y GREENHAM, 1967) con una correcta ejecución de las labores de eliminación de las malas hierbas.

Uno de los inconvenientes más graves del laboreo es el incremento de la degradación del suelo y de la erosión, sin mencionar el alto
consumo de energía. Se puede considerar que más del 53.4 % de la superficie total española ha sufrido procesos de erosión moderados o graves (con pérdidas de al menos el 75 % del horizonte A) y es particularmente intensa en algunas regiones (M.O.P.U., 1984). El laboreo abusivo ha fomentado esta erosión.

Si bien las raíces profundas se benefician de los efectos positivos del laboreo para desarrollarse, las raíces superficiales, por el contrario, son cortadas sistemáticamente y periódicamente, lo que en suelos poco profundos puede resultar negativo.

Otra desventaja del laboreo la constituye el mayor consumo de materia orgánica, especialmente grave en el caso de los suelos españoles generalmente muy pobres en ella. Unido ésto a la compactación producida por el tráfico de la maquinaria, resulta en una pérdida de estructura y por tanto de la fertilidad del suelo, difícilmente recuperables en estas condiciones.

En general, se puede considerar que el laboreo a corto o medio plazo produce golpes y heridas en los troncos, y también afecta a las raíces eliminándolas en mayor o menor grado en función de la profundidad de la labor y del tipo de apero empleado, provocando en algunos casos la proliferación de rebrotes procedentes de los cortes de las raíces (CARRERA, 1988a). El uso repetido de labores mecánicas, especialmente con aperos rotativos, puede inducir la formación de suelas de labor (PASTOR, 1989) totalmente indeseables para el correcto desarrollo de las raíces en el suelo.
1.2.2. No laboreo: aplicación de herbicidas.

La introducción, en la década de los 50, de productos químicos capaces de controlar a bajas dosis el crecimiento de malas hierbas facilitó al fruticultor un eficaz instrumento para controlar la vegetación arvense de sus huertos. En huertos con marcos de plantación amplios, se suele aplicar herbicida solamente en la zona de goteo de los árboles, mientras que en plantaciones de más alta densidad es más conveniente aplicar herbicida en bandas continuas en las líneas de los árboles. Desde los años 60, en que se demostró el efecto beneficioso de la hierba segada, las calles de la plantación se mantienen controlando periódicamente su altura (von ENGEL, 1968). Posteriormente, el mantenimiento del suelo completamente limpio de malas hierbas con herbicidas se ha venido practicando particularmente en plantaciones de alta densidad en Europa (ROBINSON, 1974), mientras que en EE.UU. se sigue manteniendo la calle con hierba (CRABTREE y WESTWOOD, 1976).

En cuanto a la problemática particular del empleo de herbicidas, se pueden destacar (ZARAGOZA, 1988):

1) La calidad defectuosa de las aplicaciones, que es un problema general de la escarda química.

2) La proliferación de especies arvenses resistentes a los productos aplicados.

3) Acumulación de residuos que pueden afectar a los cultivos siguientes en caso de levantar la plantación, añadiendo un nuevo factor de contaminación ambiental.
4) La fitotoxicidad de los herbicidas residuales en suelos ligeros o pedregosos.

5) La compactación del suelo especialmente en los de texturas más finas.

6) La "peor imagen" de los huertos no labrados.

7) La variabilidad de la eficacia herbicida.

8) Es necesario cierto nivel tecnológico del fruticultor.

En las particulares condiciones edafológicas españolas, entre las principales ventajas del sistema de suelo desnudo tratado con herbicidas cabría destacar el mantenimiento de las raíces más superficiales, que proliferan en la zona más rica en elementos fosfóricos y potásicos, y que a la vez que elimina totalmente la competencia de las malas hierbas al permitir un mejor calentamiento del suelo, se consigue una mejor protección en el caso de heladas ligeras de irradiación en primavera (Hamer, 1975; Jordan y Jordan, 1984).

La aplicación de herbicidas en las plantaciones se ha convertido por sí sola en una técnica cultural. Es económicamente interesante pero debe practicarse de modo racional para limitar los problemas de resistencia y de modificaciones de la flora (Baudry, 1990). Así son necesarios:

1) Un buen conocimiento botánico de las hierbas a destruir.

2) Una elección juiciosa de las materias activas.

3) Una buena calidad del tratamiento.
1.2.3. Cubierta vegetal permanente.

El uso de una cubierta vegetal permanente es uno de los sistemas de mantenimiento de suelo más generalmente usados y se emplea continuamente como referencia en ensayos comparativos con otros sistemas de cultivo. Las especies usadas como cubierta vegetal son muchas y comprende tanto gramíneas como leguminosas (BUTLER, 1986). El control del crecimiento de esta cubierta vegetal se consigue mediante siegas periódicas, aunque es práctica corriente combinar este sistema con acolchados ("mulching") o aplicaciones de herbicidas en las filas de los árboles.

El sistema de cubierta vegetal permite una mejora substancial de las propiedades estructurales del suelo, aumenta la materia orgánica y disminuye la esorrentia, reduciendo al mismo tiempo los problemas de compactación (GOMEZ de BARREDA, 1981).

Como inconvenientes: la mayor necesidad de fertilizantes y de agua, para evitar la competencia de la cubierta vegetal con los árboles.

1.2.4. Acolchados ("mulching").

En fruticultura se ha empleado una gran variedad de materiales orgánicos e inorgánicos para el acolchado de las plantaciones (HOGUE y NEILSEN, 1987) y sus efectos sobre las propiedades del suelo han sido estudiados ampliamente para las zonas de cultivo de frutales caducifolios (JACKS et al., 1955).
Aunque en algunos casos se ha recubierto toda la superficie del huerto, en muchos casos se ha restringido su uso solamente a la línea de los árboles. El acolchado se ha usado también en combinación con otras técnicas de mantenimiento de suelo y se han utilizado pajas (ROBINSON y O’KENNEDY, 1978) o hierbas secas y polietileno combinado con herbicidas (LORD et al., 1968)

1.3. EFECTOS DE LOS SISTEMAS DE MANTENIMIENTO DE SUELO SOBRE FACTORES QUE INFLUYEN EN EL DESARROLLO FRUTAL.

1.3.1. Características físicas del suelo: Compactación e infiltración.

Uno de los cambios más importantes que se producen al dejar de labrar es el aumento de la compactación y disminución de la porosidad de las capas superficiales del suelo. Ello conlleva una limitación del intercambio gaseoso y sobre todo, de la infiltración del agua.

La resistencia a la penetración es un parámetro que nos da una idea aproximada de las dificultades que pueden encontrar las raíces en su crecimiento. Está relacionada con la humedad del suelo (SCIENZA y VALENTI, 1983) y en las mismas condiciones de humedad, la resistencia del terreno labrado es menor (VAN HUYSSTEEN y WEBER, 1980a; SANCHEZ-GIRON, 1986).

La medida de la resistencia mecánica del suelo usando penetrómetros sobreestima entre dos y ocho veces la resistencia al crecimiento de las raíces (BENGOUGH y MULLINS, 1990) pero sigue siendo el mejor método de medida, ya que proporciona las mejores
estimaciones de la resistencia al crecimiento radicular, aunque hay que ser muy cuidadosos al interpretar los resultados que estarán siempre en función del tipo de suelo (JAMIESON et al., 1988; OUSSIBLE, 1988).

Los resultados obtenidos son variables debido a las diferencias entre especies y tipos de suelos, y probablemente a las temperaturas a las que se realizan las medidas (GREACEN, 1986) y a las posibles interacciones entre raíces vecinas, así como a la posibilidad del ápice radicular para cambiar de dirección y adaptarse al suelo (GREACEN et al., 1969; NEY y PILET, 1981).

Aunque se puede observar limitación en el crecimiento de las raíces a partir de 240 kPa de resistencia en algunos suelos ligeros y 480 kPa en suelos pesados, en otros suelos es necesario llegar a 1500 kPa para observarlo y a 2000 kPa para obtener reducción en los rendimientos (AGÜERA, 1986). Sin embargo, existen evidencias de que el crecimiento radicular se redujo un 50 % para una resistencia aproximada de 300 kPa (BENGOUGH y MULLINS, 1990).

Los valores de las tasas de evaporación e infiltración del agua en el suelo, pueden ser substancialmente modificados por el sistema de mantenimiento de suelo empleado. Se ha comprobado que el no-laboreo aumenta la estabilidad estructural de los agregados de algunos suelos (VAN HUYSSSTEEN y WEBER, 1980a) y ello puede dar lugar a una mejora de la infiltración (ROJAS, 1982), pero es un hecho comprobado por numerosos autores que manteniendo el terreno sin laboreo y sin vegetación mediante la aplicación de herbicidas, la infiltración en la superficie se reduce significativamente (GRAS y TROCMÉ, 1977; AGULHON et al., 1983a; SCIENZA y VALENTI, 1983;

Tras periodos de lluvias, las cantidades de agua a almacenadas en el suelo en condiciones de laboreo convencional y de no-laboreo suelen ser bastante similares. En algunos casos el volumen de agua fue mayor en suelos no labrados (Van HUYSSTEEN y WEBER, 1980; AGULHON et al., 1983; ROZIER y AGULHON, 1986; PASTOR, 1988), y en otros fue inferior (PASTOR, 1988). Ello puede ser debido a que la evaporación del agua del suelo está muy influída por el laboreo y las condiciones en que se hacen las labores (LINDEN, 1982; PASTOR, 1989) y el cultivo sin laboreo puede reducir las pérdidas de agua por evaporación desde el suelo (GIRALDEZ et al., 1986; PASTOR, 1988) compensando a medio plazo las pérdidas por escorrentía.

El no laboreo reduce la recarga del suelo, especialmente durante las tormentas, al aumentar las pérdidas por escorrentía. Este efecto, que no se detecta bien en parcelas pequeñas de ensayo, es muy importante en grandes superficies no labradas (ZARAGOZA, 1988). Las partículas de suelo en no-laboreo resisten más a ser arrancadas por las aguas de escorrentía, disminuyendo o retrasando la erosión, aunque no garantiza una protección total (MURISIER, 1986).

La reducción de la velocidad de infiltración en los suelos desnudos se produce por formación de costra superficial con una estructura en hojaldre, favorecida por el golpeteo de las gotas de lluvia que desmenuzan los agregados (GRAS y TROCMÉ, 1977) y colocan a las partículas en estructuras laminares, paralelas a la superficie del suelo,
con ausencia de poros y canales. Las primeras lluvias sobre suelo seco favorecen la formación de estas costras.

El tráfico de los tractores y aperos también es un factor que contribuye a la degradación de la estructura y aumenta la compactación. En los suelos labrados y pulverizados, sometidos al tráfico de maquinaria, la degradación de la estructura es aún más intensa, produciéndose costra después de las lluvias, lo que requiere una nueva labor para romperla, con lo que vuelve a comenzar el ciclo (PARDO y SUSO, 1986).

El empleo de los aperos de labranza, y en particular la grada de discos, da lugar a las denominadas suelas de labor, en horizontes más o menos superficiales del suelo. Dichas suelas reducen en profundidad la tasa de infiltración (PROEBSTING, 1953; TROCME y GRAS, 1979; Van HUYSSTEEN et al., 1980; EDWARDS, 1982), pudiendo disminuir drásticamente el agua almacenada en horizontes más profundos. Cuando se deja de labrar, tras un periodo de tiempo tiende a desaparecer la capa compactada (PROEBSTING, 1953; PASTOR, 1985), por lo que con el tiempo puede aumentar el almacenamiento de agua de lluvia en el perfil del suelo.

1.3.2. Estado hídrico del suelo.

El crecimiento y la producción de los árboles frutales están muy influidos por la variación de las propiedades físicas del suelo. Las características físicas e hidráulicas del suelo varían con la profundidad (OLSSON y ROSE, 1978) y determinan el crecimiento y distribución de
las raíces, así como la disponibilidad de agua para la transpiración (LEUNING et al., 1991).

La eliminación de la competencia de las malas hierbas mediante el laboreo aumenta el contenido en humedad del suelo en relación a la cubierta vegetal permanente (GOODE y WHITE, 1958; DANCER, 1964). Sin embargo, el contenido en humedad de suelos cultivados puede no diferir significativamente de suelos acolchados (GOODE y WHITE, 1958) y puede ser menor que en suelos tratados con herbicidas (ROBINSON, 1974). Por otro lado, el contenido en humedad de suelos cultivados puede mostrar una variación estacional considerable, en función del momento del laboreo y del recrecimiento o nueva emergencia de la hierba (BLACK y MITCHELL, 1970). El laboreo frecuente y profundo de los suelos puede provocar importantes desecaciones debido a la evaporación directa de capas de suelo removidas y expuestas a la radiación solar.

1.3.3. Temperatura del suelo.

La temperatura del suelo depende básicamente del flujo de energía incidente que procede de la radiación solar. Esta varía con la latitud, la pendiente del terreno, el grado de cobertura vegetal y el sistema de mantenimiento de suelo (CORNILLON, 1980; GLEEN y WELKER, 1987).

La temperatura del suelo puede actuar sobre el sistema radicular de las plantas a cuatro niveles: en el metabolismo general, en la absorción y transporte de agua y minerales, en la translocación y en la síntesis de hormonas de crecimiento. Las bajas temperaturas en la zona radicular limitan el crecimiento vegetativo por el efecto directo en la actividad
vegetativa de la parte aérea e indirectamente por la reducción en el aporte de nutrientes a través de las raíces (ENGELS y MARSCHNER, 1990). Sin embargo, en experiencias realizadas en condiciones artificiales, la temperatura del suelo ha influido más en el crecimiento fuera de estación que en el crecimiento primaveral o estival (CHAMPAGNOL, 1984).

La cobertura del suelo, vegetal o inerte, disminuye su temperatura, ya que reduce la cantidad de radiación solar directa que incide sobre el mismo (GORMLEY, et al., 1973), especialmente en días con alta radiación solar incidente (DANCER, 1963), pues reflejan una cierta cantidad a la atmósfera. A ello se une el efecto aislante que se produce, cuya consecuencia directa es una reducción diaria y anual de las temperaturas extremas del suelo (GREENHAM, 1953). Durante el día, la superficie del suelo desnudo absorbe la radiación y el calor llega a las capas profundas. Por la noche, el suelo emite la energía acumulada en forma de radiación (HOGUE y NEILSEN, 1987).

La presencia de malas hierbas en plantaciones de olivar hace disminuir la temperatura del suelo a lo largo del perfil y, especialmente, las temperaturas mínimas diarias (PASTOR, 1988).

Las labores disminuyen la conductividad térmica del suelo y su difusividad, debido a la porosidad de las capas superficiales. Un suelo con la superficie desnuda y compacta tiene mayores conductividad y difusión térmica que un suelo labrado y mullido por lo que aquél se calienta más en profundidad (WELLER, 1969; VAN HUYSTEN et al., 1984, SCIENZA y VALENTI, 1983). Aunque los suelos labrados estén más calientes en la superficie la difusión de calor a capas más
profundas es inferior y, por lo tanto, también lo es su emisión a la atmósfera durante la noche (NEILSEN et al., 1986), con lo que la temperatura ambiente es inferior, habiéndose encontrado diferencias muy marcadas especialmente durante las heladas de radiación en primavera (NEILSEN et al., 1986). Además, la cubierta vegetal del suelo, al tener mayor superficie de radiación, emite el calor más rápidamente (HAYNES, 1980).

Los sistemas de mantenimiento del suelo afectan a las temperaturas del aire, a través del régimen térmico del mismo (FELIPE, 1968), habiéndose demostrado que la temperatura del aire está relacionada con la del suelo a 1 cm de profundidad (GLENN y WELKER, 1987; JORDAN y JORDAN, 1984), y que varía según el tipo de mantenimiento escogido. Ello permite una aceleración en el desarrollo vegetativo a la salida del invierno en no-laboreo (PASTOR, 1988).

Ha sido ampliamente observado para muchos cultivos que en los suelos sin cubierta vegetal, las temperaturas nocturnas son más altas, sobre todo en las noches de helada (TROCMÉ y GRAS, 1979; GARCIA CAMARERO et al., 1980; GOMEZ de BARREDA, 1981; SKROCH y SHRIBBS, 1986; PASTOR, 1988), debido a que el suelo absorbe más calor de día y lo cede a la atmósfera en mayor cuantía por la noche.

El suelo explorado por las raíces al calentarse más en no-laboreo, podría acelerar la actividad del sistema radicular de los árboles en primavera. Ello desencadenaría una mayor actividad general del árbol (PASTOR, 1988), aunque existen evidencias sobre el mayor efecto de la temperatura ambiente que la temperatura de la zona radicular en la
salida de latencia y en el desarrollo de las yemas más rápido (HAMMOND y SEELEY, 1978).

El mantenimiento de un suelo desnudo, húmedo y compacto proporciona la mejor reserva de calor para reducir los daños producidos por heladas de radiación a las plantaciones (KREZDORN y MARTSOLF, 1984). Ello es conocido de antiguo por los fruticultores que riegan cuando hay riesgo de heladas de radiación, para aprovechar la mayor inercia térmica del agua.

1.3.4. Elementos nutrientes del suelo.

1.3.4.1. Nitrógeno.

Aunque la cubierta vegetal permanente proporciona grandes cantidades de nitrógeno potencialmente disponible, también utiliza grandes cantidades del mismo a medida que va mineralizándose. Existe un problema particular con la forma en que el nitrógeno está presente en el suelo, ya que su contenido es muy lámil y está muy condicionado por la época de muestreo (SADOWSKI, 1989).

La restitución de nitrógeno al suelo de la plantación, mediante la siega de la cubierta vegetal, se ha estimado entre 400 y 600 Kg/ha al año (HAYNES y GOH, 1980). Como consecuencia de ello, el nitrógeno total en un suelo con sistema de cubierta vegetal es significativamente superior a los sistemas de suelo desnudo con herbicidas y laboreo total. Sin embargo a pesar del enorme aporte de nutrientes en forma orgánica, el NO3-N y el NH4-N asimilables eran más bajos que en suelos cultivados (WHITE y GREENHAM, 1967).
El aumento del nitrógeno en los sistemas con cubiertas orgánicas es bien conocido (HARLEY et al., 1951), así como los cambios de fertilidad a largo plazo (GREENHAM, 1953). Sin embargo, la disponibilidad de NO3-N depende de la relación C:N del material usado; valores menores de 30:1 proporcionan nitrógeno al suelo, mientras que con valores mayores, el nitrógeno asimilable del suelo disminuye (HAYNES, 1980).

Aunque la mineralización acelerada de la materia orgánica y la mayor disponibilidad de NO3-N son consecuencias del laboreo (HAYNES, 1980), el contenido de nitrógeno total del suelo tiende a disminuir en estas condiciones (HAYNES y GOH, 1980).

En suelos tratados con herbicidas, los contenidos de NO3-N en los horizontes más superficiales son mayores que en los suelos con cubierta vegetal (HAYNES y GOH, 1980; ATKINSON et al., 1980).

1.3.4.2. Fósforo.

El fósforo asimilable del suelo no difiere en los sistemas de cubierta vegetal y laboreo total o acolchado ("mulching") (GREENHAM, 1965), aunque los niveles de fósforo aumentan en horizontes más profundos en el sistema de cubierta vegetal (DEIST et al., 1973).

El aporte al suelo de cubiertas orgánicas degradables generalmente aumenta el fósforo del suelo (GOODE y WHITE, 1958; TUKEY y SCHOFF, 1963). La hierba segada de una cubierta vegetal permanente, colocada sobre la banda tratada con herbicidas de la fila de los árboles, a largo plazo multiplicó por seis el contenido de fósforo soluble en agua (DELVER, 1980). No obstante, los efectos del laboreo en los contenidos
de fósforo del suelo son muy contradictorios (HOGUE y NEILSEN, 1987).

En la superficie de suelos tratados con herbicidas, los contenidos de fósforo son mayores que en suelos con cubierta vegetal permanente en las mismas condiciones (HAYNES y GOH, 1980; ATKINSON y WHITE, 1976; ATKINSON y WHITE, 1980).

1.3.4.3. Potasio.

El potasio aumenta en el sistema de cubierta vegetal permanente con aportes comprendidos entre 217 y 608 Kg/ha (HAYNES y GOH, 1980; NEILSEN y HOGUE, 1980). Asimismo, aunque es conocido desde hace muchos años, ha sido recientemente confirmado (DELVER, 1980; SHRIBBS y SKROCH, 1986) el aumento del potasio asimilable producido por los aportes de cubiertas vegetales orgánicas, probablemente debido a una menor fijación cerca de la superficie del suelo.

El potasio se acumula en los horizontes superficiales de suelo en parcelas tratadas con herbicidas (HAYNES y GOH, 1980) y los niveles más altos de potasio parecen ser debidos a un menor movimiento descendente del potasio aplicado, aunque para otros autores, no se producen diferencias (ATKINSON y WHITE, 1976).

1.3.4.4. Calcio y Magnesio.

El calcio y el magnesio aumentan en el suelo no labrado al igual que el potasio. Sin embargo, se encuentran mayores cantidades de calcio y potasio en el complejo de cambio, lo que podría atribuirse a un
menor lavado de éstos en condiciones de cubierta vegetal permanente (HAYNES y GOH, 1980; NEILSEN y STEVENSON, 1983).

Tanto en sistemas de cubiertas vegetales orgánicas, como en sistemas de laboreo, existen informaciones contradictorias sobre la evolución de estos dos elementos. En sistemas de cubiertas vegetales orgánicas, los contenidos minerales originales del suelo y del material de la cubierta vegetal podrían ayudar a interpretar tales contradicciones (HOGUE y NEILSEN, 1987).

Respecto a sistemas de cubierta herbácea, los sistemas con aplicación de herbicidas, presentan valores inferiores de calcio y magnesio (HAYNES y GOH, 1980). Es indudable la relación que existe con el ciclo de estos cationes en el suelo, ya que, como es sabido, la cubierta vegetal reduce el lavado de estos cationes de la superficie del suelo.

1.4. EFECTO DE LOS SISTEMAS DE MANTENIMIENTO DE SUELO SOBRE LA NUTRICION: CONTENIDO MINERAL EN HOJA.

Se considera, en general, que el laboreo aumenta el contenido mineral foliar en nitrógeno a corto plazo, si se compara con sistemas de cubierta vegetal permanente (LJONES, 1958; DANCER, 1963; BOULD et al., 1972; HAYNES, 1981; MILLER y GLENN, 1985; NEILSEN y HOGUE, 1985). Sin embargo, aunque la cubierta vegetal reduce claramente el contenido mineral en hoja los primeros años, no se puede decir que lo aumente consistentemente en los años posteriores (BOULD et al., 1972).
Por el contrario, los niveles foliares de fósforo y potasio resultan menores en los árboles sometidos a laboreo que en los árboles con sistemas de cubierta vegetal (BOULD et al., 1972; NEILSEN y HOGUE, 1985; SHRIBBS y SKROCH 1986) o de acolchados (HOGUE y NEILSEN, 1987). El laboreo disminuye el contenido foliar en fósforo si se compara con la cubierta vegetal cuando no se aporta nitrógeno, mientras que el calcio foliar disminuye con o sin aporte de nitrógeno (GREENHAM, 1965). Por otro lado, existen evidencias de que el laboreo aumenta el contenido foliar en calcio, si se compara con el acolchado (WANDER y GOURLEY, 1943).

En general el efecto del herbicida en el aumento de los niveles foliares de nitrógeno es similar a otros tratamientos como laboreo o acolchado (PROEBSTING, 1958; LORD y VLACH, 1973; MILLER y GLENN, 1985; NEILSEN y HOGUE, 1985)

1.5. EFECTO DE LOS SISTEMAS DE MANTENIMIENTO DE SUELO SOBRE LA PRODUCCION FRUTAL.

Como se ha indicado en otro apartado, los distintos sistemas de mantenimiento de suelo causan cambios en el microclima de la plantación, observándose una mayor temperatura tanto ambiente como de suelo en las parcelas sometidas a tratamientos de no-laboreo, lo que puede afectar al desarrollo y a la productividad de las plantaciones (HAMMOND y SEELEY, 1978; KREZDORN y MARTSOLF, 1984; SCHROCH y SRIBBS, 1986).

Entre las posibles causas se indican: una mayor precocidad en la floración, mejor calidad de flor, un mayor desarrollo vegetativo de los
árboles, mejor calidad de los brotes fructíferos y mayor productividad (PASTOR, 1988).

La temperatura del suelo influye en la actividad biológica del sistema radicular del árbol. Esta actividad se ve incrementada con el aumento de temperatura (TROCME y GRAS, 1979; CORNILLO, 1980; ASHTON y FISHER, 1986; BELDING y YOUNG, 1987). La temperatura del suelo afecta a la fisiología de la raíz influyendo en numerosos procesos básicos: absorción de agua y nutrientes, elongación celular, producción y almacenamiento de carbohidratos, etc. El crecimiento de las raíces no es función lineal de la temperatura del suelo y diferencias de 1º C pueden tener un efecto significativo en el crecimiento de las plantas (GLENN y WELKER, 1987).

El comportamiento de los árboles y de su sistema radicular es variable según el tipo de suelo. La supresión del laboreo no afecta al vigor de los árboles ni a su producción, mientras que por el contrario, disminuye la erosión, el riesgo de helada y la clorosis en suelos calizos, al tiempo que se evita el daño producido a los árboles por el paso de aperos (TAMASI, 1986).

En condiciones de no laboreo, el sistema radicular ocupa todo el perfil del suelo, incluidas las capas más superficiales (TAMASI, 1986) permitiendo así un mejor aprovechamiento de los nutrientes minerales del horizonte más rico, si bien este aspecto puede resultar inconveniente a la hora de aplicar herbicidas por su mayor riesgo de fitotoxicidad.

Los efectos de la competencia de la cubierta vegetal se manifiesta en manzanos jóvenes en la reducción del número de yemas de flor. Incluso con abonado nitrogenado, el desarrollo floral puede ser inferior (NEILSEN y HOGUE, 1985), obteniéndose menores índices de productividad (MILLER, 1983).

Actualmente sigue sin saberse con precisión la cantidad y época de aplicación correctas de nutrientes para compensar el desequilibrio nutritivo producido por la competencia de la cubierta vegetal (HOGUE y NEILSEN, 1987).

1.6. EFECTOS DE LOS SISTEMAS DE MANTENIMIENTO DE SUELO SOBRE LAS CARACTERISTICAS DE LOS FRUTOS.

Existen resultados de numerosos estudios en los que se describen reducciones significativas de cosecha en manzano, peral y melocotonero, acompañados de una disminución de vigor y del contenido foliar de nitrógeno en condiciones de cubierta vegetal permanente (SAIDAK y RUTHERFORD, 1963; COCKCROFT, 1966; BAXTER, 1960; SKROCH, 1970; GORMLEY et al., 1973; LORD y VLACH, 1973; RAEESE, 1977; STOTT et al., 1979). Tanto el número de
frutos como su tamaño son afectados a corto plazo, mientras que a largo plazo la cosecha se reduce debido al menor tamaño de los árboles, por la fuerte competencia de los árboles con la cubierta vegetal, incluso con abonado nitrogenado (NEILSEN y HOGUE, 1985), resultando una disminución de los índices de producción (expresados como kilogramos de fruta cosechada por centímetro cuadrado de área de sección de tronco) (MILLER, 1983). Como se ha indicado anteriormente, no se conoce con precisión la cantidad de fertilizante nitrogenado requerido para compensar la competencia de la cubierta vegetal.

En algunos estudios comparativos, las máximas producciones se han obtenido con sistemas de "mulching" con paja, habiéndose medido mayor densidad de floración, cosecha y tamaño de fruto en plantaciones cultivadas con "mulching", respecto a plantaciones con suelo laboreado, tanto en manzana como en melocotonero (BAXTER, 1970), estas diferencias aumentan en condiciones de suelo adversas (TISDALL et al., 1984; BUTIJN y SCHUURMAN, 1957; WESTWOOD et al., 1964).

La supresión de la competencia de la cubierta vegetal del suelo y las aportaciones directas de nutrientes son factores que contribuyen al aumento de las producciones con sistemas de "mulching". No obstante, las producciones obtenidas con empajado no difieren en algunos casos con las obtenidas con tratamientos herbicidas (BAXTER, 1977) o con cubiertas de plástico negro (NEILSEN y HOGUE, 1985).

Generalmente el laboreo aumenta las primeras producciones comparándolo con cubierta vegetal permanente pero no en el caso de sistemas con tratamientos herbicidas (COCKCROFT, 1966; DANIEL y HARDCASTLE, 1972; LORD y VLACH, 1973; CRABTREE y
WESTWOOD, 1976; MÄGE, 1982; MILLER, 1983; NEILSEN y HOGUE, 1985). En otros casos se han descrito reducciones de cosecha en sistemas de laboreo respecto a sistemas de tratamientos herbicidas (GORMLEY et al., 1982; MISRA et al., 1984; MILLER y GLENN, 1985), quizá debido al efecto de poda de raíces superficiales producidas por el laboreo. No obstante, en los ensayos de larga duración se aprecia que si bien existe una reducción de cosecha en los primeros años productivos de la plantación, las diferencias disminuyen y llegan a eliminarse a largo plazo (HOGUE y NEILSEN, 1987).

Las diferencias en producción observadas entre los sistemas de laboreo y cubierta vegetal parecen ser debidas a algo más que a la disponibilidad de nitrógeno en el suelo, puesto que incluso cuando se añaden grandes cantidades de fertilizante nitrogenado, no se equiparan las producciones (BOLLARD 1957; HILL 1962; BOULD et al. 1972). Aún cuando se elimina la humedad del suelo como factor de variación, se encuentra que el laboreo seguido por cubiertas vegetales invernales, produce mejores cosechas que los sistemas de cubierta vegetal permanente (PROEBSTING 1958) incluyendo leguminosas, atribuyéndose este resultado al aumento de la mineralización del nitrógeno del suelo.
1.7. OBJETIVOS DE LA TESIS.

Dadas las características físico-químicas en los suelos de Aragón, y en las aguas que riegan gran parte de las zonas frutícolas situadas en la Cuenca media del Ebro, aparecen con frecuencia problemas agronómicos y económicos debido a los efectos que tanto sobre el desarrollo vegetativo como sobre la producción produce el empleo inadecuado de algunas técnicas tradicionales de mantenimiento de suelo.

Como consecuencia se plantearon las experiencias para comparar cuatro técnicas de mantenimiento de suelo (laboreo cruzado (LT), suelo desnudo tratado con herbicidas (HT), cubierta vegetal en las calles con tratamiento herbicida en las líneas (HH) y laboreo en las calles con tratamiento herbicida en las líneas (LH)), en un huerto de perales realizadas durante los años 1983 a 1990, con los siguientes objetivos:

1. Estudio de la evolución del estado hídrico del suelo sometido a diversos sistemas de mantenimiento de suelo.

2. Evaluación de algunos cambios producidos en el suelo en cada sistema, tras seis años de aplicación: compactación superficial, infiltración del agua y temperatura.

3. Influencia de la técnica de mantenimiento de suelo en el contenido mineral en las hojas.
4. Evaluación de la influencia de los distintos sistemas de mantenimiento de suelo en la producción y en algunas características de los frutos de dos variedades de peral

5. Conocimiento cualitativo y cuantitativo de la evolución de la flora arvense sometida a la aplicación de herbicidas y al laboreo.
2. MATERIAL Y METODOS
2. MATERIAL Y METODOS

2.1. CARACTERISTICAS DE LOS ENSAYOS.

El dispositivo experimental para la realización de los ensayos se estableció en 1983 en el Campus de Aula Dei, llevándose a cabo en la finca experimental del Servicio de Investigación Agraria (S.I.A.) de la Diputación General de Aragón (D.G.A.) en Montañana (Zaragoza), en una parcela de peral (*Pyrus communis* L.) de las variedades ‘Général Leclerc’ y ‘Passe Crassanne’ injertadas sobre ‘Membrillero A’ (*Cydonia oblonga* L.) de East Malling. Variedades y patrón están libres de virus conocidos. La plantación se realizó en 1977 a un marco de 5x5 m., y se formó en eje central; la poda se realizó siempre en invierno.

La parcela formaba parte del dispositivo experimental utilizado en los proyectos 1895 y 7686 del programa de riegos del Comité Conjunto Hispano Norteamericano (C.C.H.N.). En esta parcela se instaló un sistema de riego por aspersión fija sobre follaje y las zanjas realizadas para la instalación del sistema de riego se utilizaron para realizar un
muestreo exhaustivo del suelo en sus diferentes horizontes que permitieran conocer perfectamente el suelo de la parcela experimental.

El abonado habitual de las parcelas se realizó de acuerdo con un plan inicial de fertilización de los frutales consistente en una aplicación total de 120-50-70 unidades fertilizantes por hectárea de potasio, fósforo y nitrógeno respectivamente. La mitad del nitrógeno y la totalidad del fósforo y del potasio se aplicaron en la salida del invierno, una cuarta parte del nitrógeno se aplicó en plena hoja y el resto del nitrógeno en postcosecha en función de la producción obtenida.

El control de plagas y enfermedades se realizó en todo momento siguiendo las recomendaciones de los Boletines del Centro de Protección Vegetal de Zaragoza.

2.1.1. Características climáticas.

La finca experimental donde se ha efectuado el trabajo está situada a una altitud de 225 m sobre el nivel del mar, sus coordenadas geográficas son 41° 43’ 30” de latitud norte y 0° 51’ 38” de longitud W. El clima es semiárido, mesotérmico, sin ningún exceso de agua a lo largo de todo el año según la clasificación de Thornthwaite (LISO y ASCASO, 1969).

Los datos climáticos se han obtenido de la estación agroclimática de la finca experimental del S.I.A., situada en una parcela aneja a la experimental y se presentan resumidos en el Anejo n° 1.
2.1.2. Características edafológicas.

El suelo de la parcela es de origen aluvial, situado en la terraza del río Gállego, de granulometría franca, como se deduce de los análisis medios de las muestras recogidas en la parcela hasta una profundidad de 1,5 m cuyo resumen aparece en el Cuadro 1.

<table>
<thead>
<tr>
<th>Granulometría</th>
<th>Media</th>
<th>Desviación típica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcilla (< 0,002 mm). (%)</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Limo (0,002-0,05 mm). (%)</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Arena (0,05-0,2 mm). (%)</td>
<td>37</td>
<td>5</td>
</tr>
</tbody>
</table>

Texto

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Textura</td>
<td>Franco</td>
</tr>
<tr>
<td>Densidad aparente. (g/cm3)</td>
<td>1,56</td>
</tr>
<tr>
<td>CaCO₃, (%)</td>
<td>28,00</td>
</tr>
<tr>
<td>CEₘₙ (mmho/cm)</td>
<td>2,50</td>
</tr>
<tr>
<td>pHₑς</td>
<td>8,20</td>
</tr>
<tr>
<td>Materia orgánica, (%)</td>
<td>1,60</td>
</tr>
<tr>
<td>Infiltración (mm/h)</td>
<td>8,4</td>
</tr>
</tbody>
</table>

es: extracto saturado.

2.1.3. Material vegetal.

El trabajo se realizó con dos variedades de otoño-invierno: 'Passe Crassanne' y 'General Leclerc' injertadas sobre membrillo A EMLA.
Son dos variedades con un período de recolección amplio y sin grandes problemas de producción en material sano, salvo accidentes o plagas. (CARRERA, 1988b).

La variedad 'Général Leclerc' es una variedad de origen francés procedente de una semilla de 'Doyenne du Comice'. Inicialmente despertó un gran interés por la precoz entrada en producción y las grandes cosechas en árbol joven, si bien posteriormente se han detectado importantes defectos agronómicos: acusada tendencia a la vecería, caída en prerecolección con vientos fuertes, ataques de pájaros, sensibilidad alta a podredumbres.

La calidad del fruto es muy variable tanto en forma y rugosidad como en sabor. El uso de atmósfera controlada podría permitir su consumo hasta la primavera siguiente con suficiente calidad.

Se puede considerar como fecha media de plena floración el 3 de abril y como inicio de recolección el 2 de septiembre.

'Passe Crassanne' es una variedad muy productiva y regular, de poco vigor y rápida entrada en producción, regular adaptación a climas secos y cálidos, y muy sensible al viento por la facilidad con que se desprenden los frutos del árbol, por su pedúnculo corto y poco flexible, y el gran peso de los mismos.
En condiciones de buen estado sanitario, su afinidad con membrillero es perfecta. En estado juvenil o en condiciones de cosecha baja o media tiende a producir frutos muy gruesos, lo que obliga a recolecciones precoces para reducir el calibre final, con la consiguiente pérdida de calidad y aptitud a la conservación. Otro problema de esta variedad es la sensibilidad a fuego bacteriano y los problemas de pardeamiento interno del fruto debido a largos períodos de conservación (CARRERA, 1988b).

Se puede considerar como fecha media de floración el 31 de marzo y como inicio de recolección el 7 de octubre.

En cuanto a los patrones de peral las características comunes de los membrilleros como patrones de peral son: reducción del tamaño de los árboles, mayor precocidad de entrada en producción, sensibilidad a clorosis caliza y compatibilidad mediocre con bastantes variedades (FELIPE, 1989). Su eficiencia productiva es buena, así como la homogeneidad de las plantaciones, resistencia a la asfixia radicular, mayor calidad de fruta en muchas variedades. No obstante, la mala afinidad con algunas variedades importantes, la sensibilidad al frío invernal y a la sequía, y el anclaje escaso, obliga en muchas ocasiones a entutorar el árbol (CARRERA, 1988a).

El membrillero EMLA-A produce árboles de un vigor mucho menor que el patrón franco e intermedio entre los membrilleros EMLA-C y el
BA-29 del grupo de Provence, aunque esta gama de vigor en algunos casos no se manifiesta hasta pasados algunos años. Así mismo, tanto su entrada en producción como su anclaje es intermedia entre los dos tipos de membrilleros anteriores (CARRERA, 1988a).

2.1.4. Agua de riego.

El sistema de riego utilizado ha sido el de inundación y se usaron aguas procedentes:

1) De un pozo de la finca de 90 m de profundidad con un nivel freático situado a 12 m y un nivel dinámico que se estabiliza a los 17 m, proporcionando un caudal máximo de 95 l/s.

2) De la acequia de riego Urdana procedente del río Gállego aguas arriba de la finca experimental.

En el Cuadro 2 se presentan los resultados de los análisis del agua procedente de ambos orígenes.

De acuerdo con la clasificación del U.S. SALINITY LABORATORY (1954) es un agua clasificada como C2-S4 con un riesgo medio de salinidad y un riesgo alto de alcalinidad que podría provocar descensos de rendimiento de hasta un 25 % (AYERS y WESTCOTT, 1985; BRESLER et al., 1981).

<table>
<thead>
<tr>
<th></th>
<th>Pozo</th>
<th>Acequia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca^{++} (meq/l)</td>
<td>10,4</td>
<td>10,9</td>
</tr>
<tr>
<td>Mg^{++} (meq/l)</td>
<td>3,3</td>
<td>4,2</td>
</tr>
<tr>
<td>Na^{+} (meq/l)</td>
<td>10,8</td>
<td>11,3</td>
</tr>
<tr>
<td>Cl^{-} (meq/l)</td>
<td>8,9</td>
<td>9,9</td>
</tr>
<tr>
<td>HCO_{3}^{-}(meq/l)</td>
<td>5,7</td>
<td>6,0</td>
</tr>
<tr>
<td>SO_{4}^{2-}(meq/l)</td>
<td>10,2</td>
<td>10,5</td>
</tr>
<tr>
<td>CE (dS/m)</td>
<td>2,1</td>
<td>2,3</td>
</tr>
<tr>
<td>pH</td>
<td>7,2</td>
<td>7,4</td>
</tr>
<tr>
<td>SAR</td>
<td>4,1</td>
<td>4,1</td>
</tr>
</tbody>
</table>

2.1.5. Calendario de riegos.

El calendario de riegos se estableció a priori de acuerdo con los datos climáticos medios, según el método del tanque evaporímetro clase 'A' utilizando los coeficientes para peral (DOORENBOS y PRUITT, 1977). Estos coeficientes (Figura 1) multiplicados directamente por la evaporación de la lámina de agua y por el coeficiente de posición del tanque (DOORENBOS, 1976).

No obstante, en todo momento se siguieron los datos climáticos de la parcela meteorológica contigua a la parcela experimental y la evolución de las medidas de la humedad del suelo mediante tensiómetros y sonda
de neutrones para el seguimiento de la evolución de la humedad del perfil. La determinación del momento del riego (*Cuadro 3* del capítulo de Resultados) se realizó basado las lecturas de los tensiómetros cuando los valores de los tensiómetros situado a 40 cm se situaban en el intervalo entre los 50-60 cb.

Se aplicaron los riegos por gravedad con un módulo de 95 l/s en cabecera de parcela, controlando el tiempo de aplicación del riego.

2.2. PROTOCOLO EXPERIMENTAL.

2.2.1. Tratamientos experimentales.

Durante los primeros cuatro años de la plantación, estas parcelas experimentales habían sido regadas por aspersión sobre el follaje de los árboles, con agua procedente del pozo de la finca. Los riegos eran nocturnos para evitar las necrosis foliares producidas por los efectos tóxicos del ión sodio contenido en el agua de riego (*Gómez Aparisi*, 1989). El sistema de mantenimiento de suelo había sido de laboreo cruzado.

En la primavera de 1983 se cambió el sistema de riego a inundación y se establecieron cuatro sistemas de mantenimiento de suelo:

1. **LT) Laboreo cruzado** con cultivador y limpieza de la base de los troncos con azada.

2. **HT) No laboreo** manteniendo el suelo desnudo a base de herbicidas en toda la parcela.
HH) Cubierta vegetal (*Festuca pratensis* y *Lolium perenne*) originada por una siembra artificial en las calles, cortada periódicamente y con aplicación de herbicidas en las líneas de los árboles.

LH) Laboreo con cultivador en las calles y tratamiento herbicida en las líneas de los árboles.

Los tratamientos herbicidas aplicados se describen especificando fechas, productos, materias activas, sus concentraciones y orígenes, volúmenes de aplicación, tipos de pulverizadores empleados y otras características en el Cuadro 5 en el Capítulo de Resultados.

Las labores realizadas en las parcelas con sistema de laboreo con sus fechas, características y aperos se describen en el Cuadro 6 en el Capítulo de Resultados.

2.2.2. Diseño estadístico.

El experimento consistió en dos bloques, uno por cada variedad, con parcelas de 400 m2 y 25 árboles por parcela. El diseño es un Split-block con repeticiones a nivel de la interacción (Variedad + Bloque) x Sistemas.

El crecimiento y la producción se controló cada año en 9 árboles por parcela, midiendo el perímetro de tronco de la variedad a 20 cm de altura sobre el punto de injerto situado 10 cm sobre el nivel del suelo y el peso y número de frutos para cada árbol experimental.
Los datos fueron previamente analizados por el Test de Lavene para verificar la homogeneidad de varianzas, y se utilizó la transformación raíz cuadrada de los mismos cuando fue preciso. Para el análisis estadístico de los datos se utilizaron los paquetes informáticos NCSS Y STATVIEW™ 512⁺.

2.2.3. Medidas del estado hídrico del suelo: tensiómetros y sonda de neutrones.

Para el seguimiento de la evolución del perfil hídrico del suelo y determinación del momento del riego se utilizaron tensiómetros (HILLEL, 1980) y sonda de neutrones (GREACEN, 1981).

Los tensiómetros instalados a una distancia de 1 m del tronco del árbol en la línea, estaban situados a 40 y 90 cm de profundidad y a 30 cm de distancia de los tubos de acceso de sonda de neutrones, que alcanzaban una profundidad máxima de 135 cm. Los tensiómetros se controlaron a diario, mientras que las lecturas con la sonda de neutrones se realizaron semanalmente.

Cada estación de control consistía en dos tensiómetros a las dos profundidades indicadas y en un tubo de aluminio de acceso para la sonda de neutrones de 5 cm de diámetro y 1,50 m de largo. Los tubos de acceso tenían un tapón impermeable en su extremo inferior, y otro tapón en su extremo superior para evitar alteraciones en la humedad interior, así como la entrada de insectos y pequeños roedores.

La instalación tanto de los tensiómetros como de los tubos de acceso de sonda de neutrones se realizó en hoyos practicados con barrena manual, para evitar alteraciones del suelo, compactando la tierra para
sellar alrededor del cuello una vez colocado el tubo para evitar la entrada de agua que pudiera falsear las lecturas.

La sonda de neutrones de marca Troxler modelo 3322 (de Troxler Electronic Laboratories, Inc., P.O.B. 12507. North Carolina 27709 USA) está provista de una fuente de 10 mCi de Americio 241 y Berilio de neutrones rápidos y un detector de neutrones lentos de trifluoruro de boro. Su zona de influencia es de 15-20 cm de radio alrededor del detector.

La sonda se calibró para conocer el contenido de humedad volumétrico en el suelo y su relación con el número de cuentas de neutrones termales digitalizados por el aparato. Para ello se tomaron muestras inalteradas de suelo, donde previamente se habían obtenido medidas homogéneas con la sonda a intervalos de 10 cm. Estas muestras herméticamente cerradas se llevaron a laboratorio para determinar su humedad por métodos gravimétricos.

La ecuación de la curva de calibración de esta sonda resultó ser:

\[Y = 5,05 + 0,94 \times \]

Siendo \(Y \) el contenido volumétrico de agua en el suelo (cm³/cm³) indicado por la sonda a la profundidad de la medida y \(x \) el contenido real de agua en el suelo medido en el laboratorio. El coeficiente de determinación fue \(R^2 = 0,96 \).

Se tomaron medidas a 15, 45, 75 y 100 cm de profundidad en un mínimo de un tubo por parcela elemental para cada sistema de mantenimiento de suelo y variedad.
Se comenzó a medir en primavera de 1983 con una periodicidad semanal durante los periodos de vegetación activa correspondientes a los años 1983, 84, 85, 86, 87, 88 y 89. En esta tesis se muestran solamente los datos correspondientes a los años 1985 y 1987 por ser suficientemente representativos.

2.2.4. Evolución de la flora arvense.

La primera evaluación anual se hacía en el momento del tratamiento herbicida (así se apreciaba la flora de otoño-invierno) y en el momento de la recolección de la variedad Passe Crassanne se efectuaba la segunda evaluación, lo que permitía conocer la flora estival. En ocasiones también se realizaba alguna evaluación en pleno verano, para evaluar la eficacia del herbicida aplicado.
2.2.5. Infiltración del agua en el suelo.

Para determinar la tasa de infiltración del agua para cada tratamiento, se emplearon anillos metálicos de infiltración de 20 y 43 cm de diámetro, clavados en el suelo 20 cm, llenando de agua los dos anillos, intentando mantener un nivel constante de agua en su interior y midiendo con un gancho y un escalímetro que permitía apreciar 0,5 mm la altura de agua infiltrada y el tiempo transcurrido. Se controló la infiltración para cada sistema de mantenimiento de suelo a lo largo de dos días en dos situaciones de humedad de suelo muy distintas: antes de un riego y una semana después de un riego.

2.2.6. Compactación del suelo.

Para estudiar la compactación superficial del suelo se midió la resistencia a la penetración con un penetrómetro manual (marca Soilttest modelo CL-700 de Soilttest Inc., 2205 Lee St., Evanston, ILL. 60202 USA) Las medidas se tomaron en el centro de las calles antes y después de un riego.

Posteriormente se dispuso de un penetrógrafo (marca Stiboka modelo 06.02 de Eijelkamp, Nijverheidsstraat 14- 6987 EM Giesbeek Holanda) con el que se hizo un seguimiento de la evolución de la compactación del suelo de 0 a 1,5 m de profundidad en función del estado hídrico del suelo entre dos riegos consecutivos, para cada sistema de mantenimiento de suelo.
2.2.7. Temperatura del suelo.

Se instalaron sondas de medición de temperatura a 1 m de altura, directamente sobre la superficie del suelo y enterradas a 15 cm de profundidad. Las sondas estaban conectadas con un medidor-registrador de datos (modelo Squirrel SQ-4U de la marca Grant) para su posterior volcado al ordenador y análisis estadístico. Se siguió la evolución de la temperatura del suelo en el sistema de laboreo y en el de no-laboreo durante un período de heladas y en un período normal de temperatura.

2.2.8. Desarrollo vegetativo: evolución del crecimiento del tronco.

Para seguir la evolución del desarrollo vegetativo se midieron en plena parada vegetativa invernal los perímetros de troncos de todos los árboles a 30 cm sobre la superficie del suelo, para lo que al inicio de la experiencia se procedió a pintar un anillo con pintura plástica blanca indicando el lugar exacto de la medida para evitar errores de método.

2.2.9. Producción y calidad.

Aunque las dos variedades presentan una buena aptitud para su conservación frigorífica y su posterior consumo invernal, su época de maduración difiere en dos meses. 'General Leclerc' se recoge entre la última semana de agosto y la primera de septiembre, mientras que 'Passe Crassanne' se recoge en octubre.
La recolección de los árboles del ensayo se realizó individualmente pesando la cosecha total y contando el número de frutos. El cociente entre los dos valores se consideraba como estimación del peso medio del fruto.

Se tomaron muestras de 10 frutos por árbol en tres árboles por parcela elemental para las posteriores determinaciones de calidad realizadas en laboratorio y consistentes en las determinaciones de:

- pH del fruto usando un pHmetro calibrado (Modelo Digit 501 de Crison, provisto de un electrodo Ingold).

- Acidez total expresada en g/l de ácido málico valorado con NaOH 0,1 N.

2.2.10. Nutrición mineral.

2.2.10.1. Análisis foliar.

Para determinar la influencia de las técnicas de mantenimiento de suelo en la nutrición mineral, se utilizó el análisis foliar.

Se tomaron las muestras en la segunda quincena de julio según las recomendaciones del Laboratorio Regional Agrario de Zaragoza donde, de acuerdo con las normas del M.A.P.A., se realizaron las
determinaciones químicas de: nitrógeno, fósforo, potasio, calcio, magnesio, sodio, hierro, cobre, manganeso y cinc.

Las muestras consistían en un mínimo de 50 hojas sanas y enteras situadas en dardos sin frutos que tras un lavado con jabón neutro y posterior enjuagado con agua destilada se secaron en estufa de aire forzado a una temperatura de 65 °C hasta peso constante. Una vez secas las muestras se molíraron con un molino Culatti provisto de un tamiz de 0,5 mm de diámetro. Seguidamente las muestras se conservaron en recipientes inertes herméticamente cerrados.

2.2.10.2. Análisis de suelo.

Para la determinación del efecto sobre estado nutricional del suelo, se tomaron muestras duplicadas a tres intervalos de profundidades de suelo (0-30, 30-60 y 60-90 cm) de todas las situaciones que se querían comparar dentro de cada tratamiento: LH y HH en línea y calle, LT y HT solamente en la línea de los árboles.

Las muestras de suelo, desecadas se enviaron al Laboratorio Regional Agrario donde, de acuerdo con las normas del M.A.P.A., se realizaron las determinaciones de pH, C.E., M.O., fósforo, potasio, y un análisis granulométrico.
3. **RESULTADOS**
3. RESULTADOS

En el Anejo 1 aparecen resumidos los datos climáticos correspondientes al periodo 1983-1988 que se describen brevemente a continuación.

La temperatura media anual es de 14,7 °C, con una oscilación térmica anual (diferencia entre la temperatura media mensual mayor y la menor) de 21,7 °C. La temperatura media del mes más frío fue de 4,9 °C en enero y la del más cálido de 24,5 °C en julio.

La velocidad del viento osciló entre los 1,6 m/s en octubre y los 3,9 m/s en marzo. Todos los valores de recorrido de viento estuvieron por encima de los 100 Km/24 horas.

El valor medio anual de la velocidad del viento fue de 2,5 m/s que equivale a un recorrido medio anual de 218 Km/24 h. La dirección del viento dominante en el Valle del Ebro, localmente denominado "Cierzo", proviene del sector del cuadrante (N-W)-N.

La humedad relativa mínima se dio en julio (33 %) y la máxima en diciembre (70 %).

El valor de la evapotranspiración de referencia (ETo) fue máximo en el mes de julio (6,2 mm/día) y mínimo en diciembre (0,5 mm/día) El valor
medio de la ET acumulada del periodo 1983-1988 fue de 1215,3 mm correspondiendo al periodo vegetativo abril-noviembre 1027,4 mm.

La pluviometría media anual fue de 301,5 mm con una distribución interanual y estacional (Anejo 1) muy irregulares. La mayor pluviometría media anual se registró en 1988 con 404,7 mm y la menor en 1985 con 218,4 mm.

Aunque los máximos pluviométricos se producen en otoño y en primavera, la irregular distribución de la pluviometría puede provocar periodos largos de déficit hídrico incluso en años de pluviometría superior a la media. Desde un punto de vista agronómico la temperatura y la lluvia, por su influencia directa en la evapotranspiración, son los parámetros responsables de la heterogeneidad que se puede observar en el calendario de riegos (Cuadro 4) como se describe más adelante.

En el Cuadro 7 se muestran los datos de los análisis de suelos (Anejo 2) realizados al finalizar la experiencia y que al comparar con los datos del Cuadro 1 permite comprobar los cambios ocurridos en el suelo de la parcela debidos a los sistemas de mantenimiento de suelo aplicados.

En las Figuras 3.1.1 a 3.5.2 se presentan los valores de los distintos parámetros químicos analizados (C.E., pH, M.O, P_{2}O_{5} Y K_{2}O) y los cambios experimentados tanto en función de la profundidad en el perfil (0-30, 30-60 y 60-90 cm) como del efecto del tratamiento: Laboreo total (LT), Laboreo con herbicida (LH), Hierba con herbicida (HH) y Herbicida total (HT).
En las Figuras 4.2 y 4.3 se presentan las curvas de infiltración de agua acumulada en el suelo para los distintos sistemas de mantenimiento aplicados, en el último año del experimento en dos condiciones de humedad de suelo: suelo seco antes de un riego (14 % de humedad) y suelo húmedo tras un riego (20 % de humedad).

Con los datos de campo se han realizado los ajustes estadísticos según el modelo propuesto por Kostiakov-Lewis (WALKER, 1989):

\[I = A \cdot t^B \]

Siendo \(I \) = Infiltración acumulada (mm).

\[t = \text{Tiempo (min)} \]

\(A, B = \text{Constantes.} \)

\[VI = AB \cdot t^{B-1} \]

Siendo \(VI = \text{Velocidad de infiltración (mm/min).} \)

Las curvas de infiltración acumulada ajustadas que aparecen en las Figuras 4.2 y 4.3 muestran una perfecta correlación con las curvas de infiltración medidas, como se puede apreciar en el Cuadro 3.

La velocidad de infiltración del agua en el suelo se representa en las Figuras 4.4.1 y 4.4.2 para condiciones de suelo seco y suelo húmedo tras un riego.

En el Cuadro 3 se presentan para cada sistema de mantenimiento de suelo, y para los dos contenidos de humedad, los valores obtenidos
para los coeficientes A y B de la ecuación anterior, así como los altos valores de los coeficientes de correlación.

Las medidas de compactación superficial se tomaron en el tercer año y las del perfil el último año de experiencia. En las Figuras 5.1.1 y 5.1.2 se presentan las medidas de compactación superficial para dos condiciones de humedad del suelo.

Las medidas de compactación del perfil, se realizaron en diferentes condiciones de estado de humedad del mismo (Figura 5.2.1) para cada uno de los sistemas de mantenimiento de suelo aplicados (Figuras 5.2.2 y 5.2.3) y en distintas situaciones de compactación del suelo debidas al tráfico de maquinaria (Figuras 5.3.1.1 y 5.3.1.2).

En la Figura 5.4 se muestra la evolución de la compactación del suelo entre dos laboreos consecutivos, permitiendo observar la compactación del suelo con el transcurso del tiempo tras el mullido inicial producido por el laboreo con cultivador.

En el Cuadro 6 se resumen las labores y aperos utilizados durante un año agrícola y que son representativos de las labores normalmente realizadas para los distintos sistemas estudiados.

En la Figura 6 se muestra un corte transversal de una costra superficial en la que se puede apreciar la estructura en hoja y dre formada al depositarse por gravedad las partículas de suelo disgregadas tras un riego.
En el **Cuadro 8.1** se muestran las temperaturas medias, máximas y mínimas en la superficie del suelo y a 15 cm de profundidad para los sistemas LT y HT así como la influencia en la temperatura ambiental a un metro sobre la superficie del suelo en el caso de una helada (**Cuadro 8.2**). En las **Figuras 7.2 y 7.3** se muestra la evolución diaria de las temperaturas de suelo y a 15 cm de profundidad durante un periodo de heladas de radiación.

En el **Cuadro 4** se presenta el calendario de riegos aplicado teniendo en cuenta la evolución del potencial matricial del suelo y regando para valores comprendidos entre 50 y 70 cm como se puede apreciar en la **Figura 7.1**. Por tanto aún partiendo del calendario teórico de riegos establecido a priori con los datos climáticos medios, tanto el seguimiento preciso de la evolución del potencial matricial del suelo explorado por las raíces absorbentes, como de la ET, marcarán el calendario real de riegos.

El calendario real de riegos ha sido muy variable y la razón hay que buscarla en la variabilidad de los parámetros climáticos, especialmente en la distribución estacional de pluviometría temperatura y radiación, que han influido notoriamente en la evolución de la ETo (ver **Anejo 1**).

En las **Figuras 8.1.1 a 8.1.4** se representan las curvas de la evolución del estado hídrico medido con sonda de neutrones a distintas profundidades para cada sistema de mantenimiento de suelo, para la 'Général Leclerc' y en las **Figuras 8.2.1.1 a 8.2.4.2** para la 'Passe Crassanne'.
En el Cuadro 9 se relacionan las especies de malas hierbas, su densidad y evolución hasta 1987, según los distintos sistemas de mantenimiento de suelo y en diferentes épocas del año.

Las Figuras 9.1 y 9.2 muestran la evolución del crecimiento medio de los troncos de los árboles a lo largo de la experiencia para cada sistema de mantenimiento de suelo, permitiendo observar el distinto hábito de crecimiento de cada variedad y el distinto grado de influencia de los tratamientos aplicados.

En las Figuras 10.1.1 a 10.1.10 se muestran los resultados de los contenidos minerales en hoja y su evolución a lo largo de los años en función del sistema de mantenimiento de suelo, para la variedad 'G. Leclerc'.

En los Cuadros 10.1 y 10.2 se muestran los resultados de los análisis de calidad de fruto efectuados relacionando el pH, acidez total y sólidos solubles totales para cada sistema de mantenimiento de suelo.

En las Figuras 11.1.1 y 11.1.2 se presentan gráficamente las producciones medias anuales para cada variedad y sistema de mantenimiento de suelo, y en las Figuras 11.2.1 y 11.2.2, la producción acumulada a lo largo de los siete años.

Finalmente en el Anejo 1 figuran todos los datos climáticos de la estación meteorológica del SIA, en el Anejo 2 figuran los análisis completos de suelos realizados y en el Anejo 3 los análisis foliares.
Cuadro 3. Ajuste estadístico de las curvas de infiltración del agua en el suelo para los sistemas de mantenimiento usados: Herbicida total (HT), Laboreo total (LT), Hierba con herbicida en la calle (HHC) y en la fila (HHF), para dos condiciones de humedad (14% y 20%) del suelo.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Humedad (%)</th>
<th>A</th>
<th>B</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHC</td>
<td>14</td>
<td>5,58</td>
<td>0,48</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4,10</td>
<td>0,53</td>
<td>0,94</td>
</tr>
<tr>
<td>HHF</td>
<td>14</td>
<td>3,45</td>
<td>0,45</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3,55</td>
<td>0,50</td>
<td>0,96</td>
</tr>
<tr>
<td>HT</td>
<td>14</td>
<td>0,79</td>
<td>0,54</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2,05</td>
<td>0,46</td>
<td>0,98</td>
</tr>
<tr>
<td>LT</td>
<td>14</td>
<td>5,31</td>
<td>0,33</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2,31</td>
<td>0,35</td>
<td>0,92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junio</td>
<td>27</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Julio</td>
<td>24</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>10, 26</td>
</tr>
<tr>
<td>Agost.</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Septi.</td>
<td>11</td>
<td>5</td>
<td>23</td>
<td>8</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Octub.</td>
<td>3</td>
<td></td>
<td></td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Novie.</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 5. Tratamientos herbicidas aplicados en el mantenimiento de suelo del peral.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Materia activa</th>
<th>Dosis</th>
<th>Volumen l/ha</th>
<th>Características del tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.83</td>
<td>simazina 50% + glifosato 35%</td>
<td>7+2</td>
<td>25</td>
<td>Suelo húmedo. Caída de pétalos. Hierbas grandes.</td>
</tr>
<tr>
<td>1.6.83</td>
<td>glifosato 36%</td>
<td>6</td>
<td>65</td>
<td>Suelo seco.</td>
</tr>
<tr>
<td>31.8.83</td>
<td>glifosato 36%</td>
<td>6</td>
<td>65</td>
<td>Suelo húmedo. Rocío.</td>
</tr>
<tr>
<td>25.4.84</td>
<td>glifosato 36%</td>
<td>2</td>
<td>65</td>
<td>Suelo seco. Mucha hierba. Postfloración.</td>
</tr>
<tr>
<td>14.6.84</td>
<td>simazina 28% + glifosato 10%</td>
<td>10</td>
<td>45</td>
<td>Suelo seco. Calor. Muchas plantas.</td>
</tr>
<tr>
<td>14.6.85</td>
<td>glifosato 36%</td>
<td>2</td>
<td>30</td>
<td>Suelo húmedo mucho calor.</td>
</tr>
<tr>
<td>1.8.85</td>
<td>glifosato 36%</td>
<td>2</td>
<td>30</td>
<td>Suelo muy húmedo. Nublado, fresco.</td>
</tr>
<tr>
<td>11.4.86</td>
<td>glifosato 36%</td>
<td>1</td>
<td>30</td>
<td>Plena floración. Suelo seco. Hierbas grandes en flor. Viento.</td>
</tr>
<tr>
<td>8.8.86</td>
<td>glifosato 36%</td>
<td>1</td>
<td>30</td>
<td>Calor. Suelo seco. "Mulching" seco.</td>
</tr>
<tr>
<td>3.9.86</td>
<td>glifosato 36%</td>
<td>1</td>
<td>30</td>
<td>Capsella y Hordeum grandes. "Mulching" fresco y húmedo.</td>
</tr>
<tr>
<td>11.3.87</td>
<td>glifosato 36%</td>
<td>1</td>
<td>30</td>
<td>Calor, suelo seco. "Mulching" seco.</td>
</tr>
<tr>
<td>30.5.87</td>
<td>simazina 50% + glifosato 36%</td>
<td>7</td>
<td>30</td>
<td>Calor, suelo seco. "Mulching" seco.</td>
</tr>
<tr>
<td>28.3.88</td>
<td>simazina 50% + glifosato 36%</td>
<td>7</td>
<td>30</td>
<td>Suelo seco. Plena floración.</td>
</tr>
<tr>
<td>19.9.88</td>
<td>glifosato 20%</td>
<td>5</td>
<td>30</td>
<td>Suelo húmedo. Contra Portulaca y Amarantus.</td>
</tr>
<tr>
<td>29.3.89</td>
<td>glifosato 12%</td>
<td>2.5</td>
<td>30</td>
<td>Suelo seco. Plena floración.</td>
</tr>
<tr>
<td>24.5.89</td>
<td>simazina 50% + glifosato 36%</td>
<td>7</td>
<td>30</td>
<td>Muy húmedo. Lluvia posterior.</td>
</tr>
<tr>
<td>6.2.90</td>
<td>simazina 50% + glifosato 36%</td>
<td>10</td>
<td>30</td>
<td>Muy húmedo.</td>
</tr>
<tr>
<td>27.8.90</td>
<td>glifosato 14.4% + aceite</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 6. Labores y aperos utilizados en el año 1987, representativos de los normalmente utilizados en el año agrícola.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Operación</th>
<th>Apero</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>Labor 1</td>
<td>Cultivador</td>
<td>Lluvia posterior</td>
</tr>
<tr>
<td>28.3</td>
<td>Labor 2</td>
<td>Cultivador</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Siega 1</td>
<td>Desbrozadora</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>Siega 2</td>
<td>Desbrozadora</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>Labor 3</td>
<td>Cultivador</td>
<td>Se cavaron los pies de los árboles en LT.</td>
</tr>
<tr>
<td>20.5</td>
<td>Siega 3</td>
<td>Desbrozadora</td>
<td></td>
</tr>
<tr>
<td>26.6</td>
<td>Labor 4</td>
<td>Cultivador</td>
<td>Suelo muy seco</td>
</tr>
<tr>
<td>16.7</td>
<td>Labor 5</td>
<td>Cultivador</td>
<td>Suelo húmedo</td>
</tr>
<tr>
<td>17.8</td>
<td>Labor 6</td>
<td>Cultivador</td>
<td>Se cavaron los pies de los árboles en LT.</td>
</tr>
<tr>
<td>27.8</td>
<td>Siega 4</td>
<td>Desbrozadora</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Desviación típica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulometría.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcilla (< 0,002 mm). (%)</td>
<td>19,39</td>
<td>3,40</td>
</tr>
<tr>
<td>Limo (0,002-0,05 mm). (%)</td>
<td>42,89</td>
<td>6,09</td>
</tr>
<tr>
<td>Arena (0,05-0,2 mm). (%)</td>
<td>37,86</td>
<td>5,40</td>
</tr>
<tr>
<td>Textura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad aparente. (g/cm³)</td>
<td>1,56</td>
<td>0,20</td>
</tr>
<tr>
<td>CaCO₃, (%)</td>
<td>28,00</td>
<td>6,00</td>
</tr>
<tr>
<td>CEₐs (mmho/cm)</td>
<td>2,35</td>
<td>1,17</td>
</tr>
<tr>
<td>pHₐs</td>
<td>8,24</td>
<td>0,17</td>
</tr>
<tr>
<td>Materia orgánica, (%)</td>
<td>1,36</td>
<td>0,31</td>
</tr>
<tr>
<td>Infiltración (mm/h)</td>
<td>8,4</td>
<td>0,3</td>
</tr>
</tbody>
</table>

es: extracto saturado.
Cuadro 8.1. Registro de temperaturas (°C) de suelo en superficie y a 15 cm de profundidad durante los periodos de heladas en 1989.

8.1.1. Periodo 14.2.89-19.2.89.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Situación</th>
<th>Nº medidas</th>
<th>T. Mínima</th>
<th>T. Máxima</th>
<th>T. Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>Superficie</td>
<td>250</td>
<td>1,5 a</td>
<td>28,3 a</td>
<td>10,9</td>
</tr>
<tr>
<td>LT</td>
<td>Superficie</td>
<td>250</td>
<td>0,15 b</td>
<td>32,2 b</td>
<td>10,7</td>
</tr>
<tr>
<td>HT</td>
<td>-15 cm</td>
<td>250</td>
<td>6,3</td>
<td>14,8</td>
<td>9,9</td>
</tr>
<tr>
<td>LT</td>
<td>-15 cm</td>
<td>250</td>
<td>6,1</td>
<td>14,9</td>
<td>9,7</td>
</tr>
</tbody>
</table>

8.1.2. Periodo 23.2.89-1.3.89.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Situación</th>
<th>Nº medidas</th>
<th>T. Mínima</th>
<th>T. Máxima</th>
<th>T. Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>Superficie</td>
<td>300</td>
<td>1,8 a</td>
<td>33,3</td>
<td>13,7 a</td>
</tr>
<tr>
<td>LT</td>
<td>Superficie</td>
<td>300</td>
<td>-0,5 b</td>
<td>32,9</td>
<td>13,0 b</td>
</tr>
<tr>
<td>HT</td>
<td>-15 cm</td>
<td>300</td>
<td>6,5 a</td>
<td>19,1 a</td>
<td>11,9</td>
</tr>
<tr>
<td>LT</td>
<td>-15 cm</td>
<td>300</td>
<td>7,3 b</td>
<td>15,9 b</td>
<td>11,2</td>
</tr>
</tbody>
</table>

8.1.3. Periodo 2.3.89-20.3.89.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Situación</th>
<th>Nº medidas</th>
<th>T. Mínima</th>
<th>T. Máxima</th>
<th>T. Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>Superficie</td>
<td>890</td>
<td>-4,6 a</td>
<td>36,9 a</td>
<td>12,1 a</td>
</tr>
<tr>
<td>LT</td>
<td>Superficie</td>
<td>890</td>
<td>-6,9 b</td>
<td>38,5 b</td>
<td>11,4 b</td>
</tr>
<tr>
<td>HT</td>
<td>-15 cm</td>
<td>890</td>
<td>2,6 a</td>
<td>21,4 a</td>
<td>11,3 a</td>
</tr>
<tr>
<td>LT</td>
<td>-15 cm</td>
<td>890</td>
<td>4,3 b</td>
<td>17,0 b</td>
<td>10,7 b</td>
</tr>
</tbody>
</table>

8.1.4. Periodo 24.3.89-7.4.89.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Situación</th>
<th>Nº medidas</th>
<th>T. Mínima</th>
<th>T. Máxima</th>
<th>T. Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>Superficie</td>
<td>690</td>
<td>-1,0 a</td>
<td>36,3 a</td>
<td>13,0 a</td>
</tr>
<tr>
<td>LT</td>
<td>Superficie</td>
<td>690</td>
<td>-4,7 b</td>
<td>38,3 b</td>
<td>12,1 b</td>
</tr>
<tr>
<td>HT</td>
<td>-15 cm</td>
<td>690</td>
<td>5,8 a</td>
<td>21,9 a</td>
<td>12,6 a</td>
</tr>
<tr>
<td>LT</td>
<td>-15 cm</td>
<td>690</td>
<td>8,0 b</td>
<td>16,9 b</td>
<td>11,7 b</td>
</tr>
</tbody>
</table>

Medias seguidas de letras distintas son diferentes significativamente (p≤ 0,05)
Cuadro 8.2. Registro de temperaturas de ambiente (°C) a 1m de altura sobre el suelo, durante las heladas de 1989.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>T. Mínima</th>
<th>T. Máxima</th>
<th>T. Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>-5,0 a</td>
<td>17,0</td>
<td>5,7 a</td>
</tr>
<tr>
<td>LT</td>
<td>-6,0 b</td>
<td>16,5</td>
<td>5,1 b</td>
</tr>
</tbody>
</table>

Medias seguidas de letras distintas son diferentes significativamente (p≤0,05).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>P</td>
<td>V</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>DICOTILEDONEAS ANUALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthus blitoides S. Watson</td>
<td>2C1A</td>
<td>1A</td>
<td>4A1BC</td>
<td>2A+C</td>
<td>2A1B</td>
</tr>
<tr>
<td>Amaranthus retroflexus L.</td>
<td>1B</td>
<td>1AC</td>
<td>1AC</td>
<td>2A+C</td>
<td>3A</td>
</tr>
<tr>
<td>Anacystis clavatus (Desf.) Pers.</td>
<td>1AC</td>
<td>3C2A1B</td>
<td>3B2C1A</td>
<td>4B2AC</td>
<td>4BC2A</td>
</tr>
<tr>
<td>Capsella bursa-pastoris (L.) Medicus</td>
<td>1BC</td>
<td>1B+C</td>
<td>1B+C</td>
<td>1B+C</td>
<td>1B+C</td>
</tr>
<tr>
<td>Corchorus capsularis Forskall</td>
<td>2BC</td>
<td>2AC</td>
<td>2C</td>
<td>1B+C</td>
<td>1A</td>
</tr>
<tr>
<td>Chenopodium album L.</td>
<td>1A</td>
<td>2A</td>
<td>+A</td>
<td>1A</td>
<td>2B</td>
</tr>
<tr>
<td>Diplolepis erucoides (L.) DC</td>
<td>1A</td>
<td>1A</td>
<td>2A1BC</td>
<td>1A</td>
<td>2A1B</td>
</tr>
<tr>
<td>Kochia scoparia (L.) Shadrer</td>
<td>1A</td>
<td>1BC</td>
<td>2CB</td>
<td>1C</td>
<td>1A+B</td>
</tr>
<tr>
<td>Podospermum lancinatum (L.) DC</td>
<td>2B</td>
<td>2B1AC</td>
<td>2A1BC</td>
<td>1A+C</td>
<td>2A1B</td>
</tr>
<tr>
<td>Polygonum aviculata L.</td>
<td>1A</td>
<td>2A1BC</td>
<td>3C2A1B</td>
<td>2A1BC</td>
<td>1A+C</td>
</tr>
<tr>
<td>Portulaca oleracea L.</td>
<td>1A</td>
<td>2A1BC</td>
<td>3C2A1B</td>
<td>2A1BC</td>
<td>1A+C</td>
</tr>
<tr>
<td>Senecio vulgaris L.</td>
<td>1AC</td>
<td>2AC1B</td>
<td>1A+C</td>
<td>1A+B</td>
<td>2A1B</td>
</tr>
<tr>
<td>Sinapis arvensis (L.)</td>
<td>1A+</td>
<td>1A+</td>
<td>1A+B</td>
<td>1A+C</td>
<td>1A+B</td>
</tr>
<tr>
<td>Stemonurus inc. (L.)</td>
<td>1A+</td>
<td>1A+</td>
<td>1A+B</td>
<td>1A+C</td>
<td>1A+B</td>
</tr>
<tr>
<td>Sprengelia rubra (L.) JC</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>2B</td>
</tr>
<tr>
<td>Sonchus oleraceus L.</td>
<td>3A</td>
<td>2B1AC</td>
<td>1A+C</td>
<td>3C1A+B</td>
<td>2C1AB</td>
</tr>
<tr>
<td>DICOTILEDONEAS BISANUALES O VIVACES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astil squamatus (Sprangel) Hieron</td>
<td>1B</td>
<td>3C1AB</td>
<td>2C1B</td>
<td>1B+C</td>
<td>1B+C</td>
</tr>
<tr>
<td>Convolvulus arvensis L.</td>
<td>1A</td>
<td>1B</td>
<td>1A</td>
<td>1B+C</td>
<td>1B+C</td>
</tr>
<tr>
<td>Cirsis arvensis (L.) Scop.</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
</tr>
<tr>
<td>Crepis vestitula L.</td>
<td>1C+</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>Pteris chiloides L.</td>
<td>1C+</td>
<td>1C+</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>Plantago major L.</td>
<td>1C+</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>Rumex crispus L.</td>
<td>1B</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>Teraxacum officinale L.</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>Trifolium repens L.</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
<td>1C</td>
</tr>
<tr>
<td>MONOCOTILEDONEAS ANUALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus matrinensis (L.)</td>
<td>1B</td>
<td>1A+C</td>
<td>1A+C</td>
<td>1A+C</td>
<td>1A+C</td>
</tr>
<tr>
<td>Echinocloa crus-galli (L.) Beauv.</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A+B</td>
</tr>
<tr>
<td>Hordeum murinum L.</td>
<td>2B1A</td>
<td>2BCB1A</td>
<td>3AB2C</td>
<td>2C</td>
<td>4B1A</td>
</tr>
<tr>
<td>Poa annua L.</td>
<td>2B1AC</td>
<td>2BCB1A</td>
<td>3AB2C</td>
<td>3CB2A</td>
<td>4AB</td>
</tr>
<tr>
<td>MONOCOTILEDONEAS VIVACES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon (L.) Pers.</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A+B</td>
</tr>
<tr>
<td>Cyperus rotundus L.</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A+B</td>
</tr>
<tr>
<td>Sorghum halepense (L.) Pers.</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A+B</td>
</tr>
</tbody>
</table>

Cuadro 10.1. Influencia del sistema de mantenimiento de suelo en los parámetros de la calidad del fruto de 'G. Leclerc' en 1989: pH, sólidos solubles ($^\circ$Brix) y acidez (g/l de á. málico).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>pH</th>
<th>S.S. ($^\circ$Brix)</th>
<th>Acidez (g/l de á. málico)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>4.49</td>
<td>11.7</td>
<td>1.09</td>
</tr>
<tr>
<td>HH</td>
<td>4.74</td>
<td>11.7</td>
<td>1.14</td>
</tr>
<tr>
<td>HT</td>
<td>4.35</td>
<td>12.6</td>
<td>0.96</td>
</tr>
<tr>
<td>LT</td>
<td>4.35</td>
<td>12.3</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Cuadro 10.2. Influencia del sistema de mantenimiento de suelo en los parámetros de la calidad del fruto de 'P. Crassanne' en 1989: pH, sólidos solubles ($^\circ$ Brix) y acidez (g/l de á. málico).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>pH</th>
<th>S.S. ($^\circ$ Brix)</th>
<th>Acidez (g/l de á. málico)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>3.96</td>
<td>14.6</td>
<td>1.88</td>
</tr>
<tr>
<td>HH</td>
<td>3.95</td>
<td>15.2</td>
<td>1.94</td>
</tr>
<tr>
<td>HT</td>
<td>4.01</td>
<td>14.4</td>
<td>1.94</td>
</tr>
<tr>
<td>LT</td>
<td>3.91</td>
<td>15.2</td>
<td>1.94</td>
</tr>
</tbody>
</table>
FIGURAS 1 y 2.1
FIGURA 1 Curva de los coeficientes de cultivo (Kc) en peral

FIGURA 2.1 Parcela agrometeorológica del Servicio de Investigación Agraria
FIGURA 2.2. Aspecto general de los cuatro sistemas de mantenimiento de suelo aplicados: Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).
FIGURA 2.2 Aspecto general de los cuatro sistemas de mantenimiento de suelo aplicados: Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

FIGURAS 3.1.1 y 3.1.2.
FIGURA 3.1.1. Variación de la conductividad eléctrica (CE) con la profundidad del perfil del suelo. (Medias con letras diferentes difieren significativamente \(p<0.01 \)).

FIGURA 3.1.2. Influencia del sistema de mantenimiento en la conductividad eléctrica (CE) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente \(p<0.01 \)).
FIGURAS 3.2.1 y 3.2.2
FIGURA 3.2.1 Variación del pH con la profundidad del perfil del suelo.

FIGURA 3.2.2 Influencia del sistema de mantenimiento de suelo en el pH del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0.01)).
FIGURAS 3.3.1 y 3.3.2
FIGURA 3.3.1 Variación del contenido en materia orgánica (MO) con la profundidad del perfil del suelo.

FIGURA 3.3.2 Influencia del sistema de mantenimiento de suelo en el contenido en materia orgánica (MO) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)).
FIGURAS 3.4.1 y 3.4.2
FIGURA 3.4.1. Variación del contenido en fósforo (P) con la profundidad del perfil del suelo. (Medias con letras diferentes difieren significativamente (p<0.01)).

FIGURA 3.4.2. Influencia del sistema de mantenimiento de suelo en el contenido en fósforo (P) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0.01)).
FIGURAS 3.5.1 y 3.5.2.
FIGURA 3.5.1. Variación del contenido en potasio (K) con la profundidad del perfil del suelo (Medias con letras diferentes difieren significativamente (p<0,01)).

FIGURA 3.5.2. Influencia del sistema de mantenimiento de suelo en el contenido en potasio (K) del suelo para Laboreo con Herbicida en la calle (LHC), en la línea (LHL), Laboreo total (LT), Hierba con herbicida en la línea (HHL) y en la calle (HHC) y Herbicida total (HT). (Medias con letras diferentes difieren significativamente (p<0,01)).
FIGURA 4.1. Medición de la infiltración del agua en el suelo usando anillos infiltrómetros.
FIGURA 4.2 Infiltración acumulada en suelo seco (14% de humedad) para los sistemas de mantenimiento de suelo. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.
FIGURA 4.3. Infiltración acumulada en suelo humeddo tras un riego (20% de humeddo) para los sistemas de mantenimiento de suelo. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.
FIGURA 4.4.1. Velocidad de infiltración (mm/min) en suelo seco (14% de humedad) para los sistemas de mantenimiento de suelo. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.
FIGURA 4.4.2. Velocidad de infiltración (mm/min) en suelo humedo (20% de humedad) tras un riego. El sistema Hierba con herbicida (HH), se midió en la fila (F) y en la calle (C) de los árboles.
FIGURAS 5.1.1 y 5.1.2
FIGURA 5.1.1 Compactación (KPa) superficial en suelo seco (14% de humedad) para los sistemas Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

FIGURA 5.1.2 Compactación (KPa) superficial en suelo húmedo tras un riego (20% de humedad) para los sistemas Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH). (Medias con letras diferentes difieren significativamente (p<0.01)).
FIGURA 5.2.1
FIGURA 5.2.1. Compactación (Nw/cm²) del perfil del suelo en dos condiciones distintas de humedad (14% y 20%) para los cuatro sistemas de mantenimiento de suelo: (1) Herbicida total (HT), (2) Laboreo total (LT), (3) Hierba con herbicida (HH) y (4) Laboreo con herbicida (LH).
FIGURA 5.2.2 Efecto del sistema de mantenimiento del suelo Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH) en la compactación (Nw/cm²) del perfil del suelo húmedo (20% de humedad).
FIGURA 5.2.3. Efecto del sistema de mantenimiento de suelo Laboreo total (LT), Herbicida total (HT), Hierba con herbicida (HH) y Laboreo con herbicida (LH) en la compactación (Nw/cm2) del perfil del suelo seco (14% de humedad).
FIGURA 5.3.1.1 Efecto del tráfico de maquinaria en la compactación (Nw/cm²) del perfil del suelo en el sistema Laboreo total (LT) en la calle y bajo la rodada del tractor.
FIGURA 5.3.1.2. Efecto del tráfico de maquinaria en la compactación (Nw/cm²) del perfil del suelo en el sistema Hierba con herbicida (HH) en la calle, en la línea y bajo la rodada del tractor.
FIGURA 5.4. Evolución de la compactación (Nw/cm²) del suelo en el sistema Laboreo total (LT) entre dos labores con cultivador.
FIGURA 6. Detalle del corte transversal de la costra superficial del suelo.
FIGURA 8.1.1.1 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema de Laboreo total (LT) en 1985.
FIGURA 3.1.2.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Générall Leclerc' con sistema Herbicida total (HT) en 1985.
FIGURA 8.1.2.2 Evolución estacional del perfil hidrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema herbicida total (HT) en 1987.
FIGURA 8.1.3.1 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc con sistema Hierba con herbicida (HH)' en 1985.
FIGURA 8.1.3.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema Hierba con herbicida (HH) en 1987.
FIGURA 8.1.4 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Général Leclerc' con sistema Laboreo con herbicida (LH) en 1985.
FIGURA 8.2.1.1 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo total (LT) en 1985
FIGURA 8.2.1.2 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo total (LT) en 1987.
FIGURA 8.2.2.1 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Herbicida total (HT) en 1985.
FIGURA 8.2.2.2 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en ‘Passe Crassanne’ con sistema Herbicida total (HT) en 1987.
FIGURA 8.2.3.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Hierba con herbicida (HH) en 1985.
FIGURA 8.2.3.2. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Hierba con herbicida (HH) en 1987.
FIGURA 8.2.4.1. Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo con herbicida (LH) en 1985.
FIGURA 8.2.4.2 Evolución estacional del perfil hídrico del suelo medido con sonda de neutrones en 'Passe Crassanne' con sistema Laboreo con herbicida (LH) en 1987
FIGURA 9.1. Evolución del crecimiento de troncos en el periodo 1984-1989 en 'Passe Crassanne' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH). (Medias con letras diferentes difieren significativamente (p<0,05)).

FIGURA 9.2. Evolución del crecimiento anual de troncos en el periodo 1984-1989 en 'Général Leclerc' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH). (Medias con letras diferentes difieren significativamente (p<0,05)).
FIGURA 10.1.1 Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc'. Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): nitrógeno.

FIGURA 10.1.2. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc'. Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): fósforo.
FIGURA 10.1.3. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc': Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): potasio.

FIGURA 10.1.4. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc': Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): sodio.
FIGURA 10.1.5. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en ‘Général Leclerc’
Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): calcio.

FIGURA 10.1.6. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en ‘Général Leclerc’
Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): magnesio.
FIGURA 10.1.7 Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc': Herbicida total (HT), Laboreo total (LT). Hierba con herbicida (HH) y Laboreo con herbicida (LH): hierro. (Medias con letras diferentes difieren significativamente \(p \leq 0.05 \))

FIGURA 10.1.8 Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc': Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): cobre.
FIGURA 10.1.9. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): manganeso. (Medias con letras diferentes difieren significativamente (p<0,01))

FIGURA 10.1.10. Evolución del contenido mineral en hoja para los cuatro sistemas de mantenimiento de suelo en 'Général Leclerc' Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH): cinc
FIGURA 11.1.1 Evolución de la producción anual media por árbol en el periodo 1984-1989 en 'Passe Crassanne' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

FIGURA 11.1.2 Evolución de la producción anual media por árbol en el periodo 1984-1989 en 'Général Leclerc' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).
FIGURA 11.2.1. Producción acumulada media por árbol en el periodo 1984-1989 en 'Passe Crassanne' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).

FIGURA 11.2.2. Producción acumulada media por árbol en el periodo 1984-1989 en 'Général Leclerc' para los cuatro sistemas de mantenimiento de suelo Herbicida total (HT), Laboreo total (LT), Hierba con herbicida (HH) y Laboreo con herbicida (LH).
4. DISCUSION.

4.1. SUELO.

Este estudio se llevó a cabo en un suelo de unas condiciones físicas totalmente uniformes en todos los parámetros analizados, como se puede apreciar en el Cuadro 1. Ello es especialmente interesante teniendo en cuenta el origen aluvial de este suelo. En el transcurso de la experimentación se han producido unos cambios que se deberán únicamente a los sistemas de mantenimiento de suelo utilizados, puesto que el resto de operaciones de campo aplicadas han sido las mismas para los cuatro tratamientos.

4.1.1. Propiedades químicas.

En relación al análisis de suelo inicial, no se observan cambios en los valores de los parámetros analizados al final de la experiencia, excepto para los valores de MO que son por término medio menores.

El análisis estadístico de los datos, realizado desde dos puntos de vista, tanto para los tres horizontes por separado como para cada variante de los sistemas de mantenimiento de suelo aplicados, refleja las siguientes particularidades para cada parámetro:

4.1.1.1. Conductividad Eléctrica (C.E.).

Se aprecia un claro incremento de los valores de la CE con la profundidad, resultado sin duda de los lavados producidos por los sucesivos riegos a lo largo de todo el período experimental, con una diferencia significativa (p<0,05) de los valores del horizonte superficial (0-30 cm) respecto a los horizontes más profundos (30-60 y 60-90 cm),
en los que se aprecian valores más altos de conductividad sin duda debidos a la acumulación de sales (Figura 3.1.1).

Por otro lado al comparar el efecto que los distintos tratamientos han tenido en la evolución de este parámetro, se puede observar que el valor más alto obtenido en las parcelas de LT difiere significativamente (p< 0,05) de los valores obtenidos en los tratamientos LH y HH (Figura 3.1.2).

En el tratamiento HH es donde se han obtenido los valores más bajos de CE, lo que pone en evidencia el efecto positivo del sistema de hierba permanente que intercepta la radiación solar y disminuye los procesos de evaporación directa del agua del suelo y por tanto los procesos de acumulación de sales en su superficie. Por otro lado, los mayores valores de infiltración facilitan un mejor lavado de sales profundizando más el frente salino.

Los efectos de la salinidad sobre las plantas se han clasificado en tres categorías principales (PASTERNAK, 1987): efecto osmótico, efecto nutricional y efecto sobre el balance de energía. Todos estos efectos se traducen en una serie de modificaciones morfológicas y fisiológicas que pueden alterar el comportamiento de las plantas, teniendo como consecuencia última la reducción del crecimiento y de la producción de los cultivos (ROYO y ARAGÜES, 1989).

Dado que los árboles frutales son cultivos considerados muy sensibles a la salinidad (MAAS, 1984), desde un punto de vista de manejo agronómico es imprescindible: 1) Controlar la salinidad en la zona radicular para mantenerla por debajo de niveles tóxicos, mediante riego y lavado. 2) Modificar las condiciones de cultivo para que el efecto negativo de la salinidad sea mínimo a nivel de planta (MEIRI y PLAUT, 1985).

Los valores de la CE encontrados en el suelo pueden provocar descensos en el rendimiento de los cultivos frutales de hasta un 25 % dada su gran sensibilidad (AYERS y WESTCOTT, 1985) y dado que en LT la destrucción de raíces superficiales propiciará un mayor desarrollo radicular en horizontes más profundos (TAMASI, 1986), los mayores
niveles de salinidad podrían incrementar los descensos de la producción debidos a este factor.

4.1.1.2. pH.

Los valores del pH han sido altos y por término medio superiores a 8. No se observan variaciones en los valores del pH del suelo en función de la profundidad (Figura 3.2.1) oscilando sus valores para las tres capas de suelo analizadas entre 8,22 y 8,27. No obstante, del análisis de los datos del efecto de los tratamientos se deduce la influencia de éstos ya que aparecen diferencias significativas (p<0,05) entre dichos valores. Los valores más bajos se han obtenido para HH en la línea y para LT, mientras que los más elevados se han obtenido en HH en la calle, en LH y en HT (Figura 3.2.2).

Muchos trabajos indican que el pH es mayor en suelos con sistemas de cubierta vegetal que con suelo labrado (ATKINSON y HERBERT, 1979; HAYNES y GOH, 1980b; NEILSEN y STEVENSON 1983), como si de algún modo la presencia de la cubierta vegetal previniera el descenso de pH asociado con el continuo uso de abonados nitrogenados acidificantes en las plantaciones (HOGUE y NEILSEN, 1987).

En suelos cultivados el pH puede descender en relación a suelos con cubierta vegetal permanente atribuyéndose este descenso al lavado de calcio y magnesio desde los horizontes superficiales (HAYNES y GOH, 1980b). Sin embargo otras veces no se detectan cambios en el pH de los suelos labrados (GOODE y WHITE, 1958), o bien es similar a otros tratamientos con cubiertas vegetales (DEIST et al., 1973).

En suelos sometidos a tratamientos herbicidas a largo plazo, se han obtenido en general descensos del pH, respecto a suelos sometidos a laboreo, muy acusados en algunos casos (ROBINSON, 1974) o inapreciables en otros (ATKINSON y WHITE, 1980; HAYNES y GOH, 1980b; MILLER y GLENN 1985). En el presente trabajo se han obtenido valores heterogéneos, así mientras se ha obtenido el mínimo valor de pH para HH.L, se ha obtenido el máximo para HT.L, siendo el valor para LH.L intermedio entre los dos anteriores, por lo que habrá que
considerar la influencia de otros factores como el poder tampón del suelo o la influencia de la densidad radicular en el lavado de cationes (ATKINSON et al., 1980).

Estos valores podrían marcar una tendencia a largo plazo de la evolución de este parámetro en el suelo. No se puede considerar en este caso, que pueda ejercer una influencia ni en absorción de nutrientes ni en otros procesos que pudieran influir en los procesos fisiológicos relacionados con la absorción hidro-mineral de los árboles, pero sí debe ser un factor a tener muy en cuenta a la hora de decidir un determinado sistema de mantenimiento de suelo en función de las características del mismo.

Un descenso acusado del pH del suelo (pH < 4,5), aunque solamente se produjese en la capa más superficial podría llegar a alterar la persistencia y la tolerancia de algunos herbicidas, especialmente triacinas (TRIPPLETT y WORSHAM, 1986) si bien estos descensos normalmente sólo se alcanzan tras repetidas aplicaciones de fertilizantes nitrogenados de reacción ácida.

4.1.1.3. Materia orgánica (M.O.).

Como ya ha sido señalado (Cuadro 7, Anejo 2), se observa en general un descenso del contenido en MO del suelo respecto a los valores iniciales (1,6 %) en todos los tratamientos. Este descenso podría considerarse lógico, si se tiene en cuenta que originariamente la parcela se dedicó a cultivos de cereales y pratenses y que tanto los aportes orgánicos, abonados en verde y abonados de fondo, realizados con vistas a la instalación de la plantación frutal, ya no se han vuelto a repetir posteriormente.

Aunque los valores de MO (Figura 3.3.1) son ligeramente superiores en los 30 cm más superficiales del suelo (1,43 %) no se han podido detectar diferencias significativas entre éste y las muestras de los otros dos horizontes analizados a pesar de los menores valores de MO encontrados (1,29% y 1,38%).

En cambio al comparar el efecto de los sistemas de mantenimiento de suelo se pueden observar diferencias significativas (p<0,05) entre
tratamientos. Los valores más bajos han correspondido al sistema HT (1,12 %) por la práctica ausencia de vegetación superficial a lo largo de todo el período experimental y a la ausencia de aportes vegetales al suelo como ha sido indicado por otros autores (ATKINSON et al., 1980; HAYNES, 1980). Los valores más elevados se han obtenido para los sistemas que implican cubierta vegetal: HH (1,56 %) y paradójicamente laboreo, LT (1,65 %). Se evidencia así que tanto el corte periódico de la cubierta vegetal como el enterrado de las malas hierbas mediante el laboreo, suponen aportes orgánicos que contribuyen a restituir o mantener la tasa de MO de los suelos (Figura 3.3.2).

Hay que destacar el alto contenido en MO en HHL, consecuencia de los aportes laterales de hierba segada de la calle como ha sido descrito por DELVER (1980), aunque a veces puede ser difícil detectar el incremento de MO debido a la rápida descomposición de los residuos vegetales no incorporados al suelo según HOGUE y NEILSEN (1987).

Aunque generalmente el contenido en MO de los suelos sometidos a laboreo decrece rápidamente, especialmente en la superficie del suelo (HOGUE y NEILSEN, 1987), en otros casos el nivel de MO se ha mantenido, debido a los aportes anuales de hojas en otoño y de las raíces muertas (GREENHAM, 1955).

El alto valor de MO obtenido para el sistema LT de las condiciones normales de aplicación implica una alta tasa de reposición de materia orgánica vegetal, pudiéndose pensar que la gran producción de hierba que este hecho evidencia supone una alta competencia entre ésta y el cultivo frutal. Por otro lado el sistema de laboreo total no aparece como un sistema de control de las malas hierbas tan eficaz como se piensa en gran parte del sector agrícola, si no se aplica en el momento oportuno para evitar el crecimiento y la competencia de la mala hierba con los árboles.

La falta de oportunidad de las labores es un hecho muy frecuente en la práctica debido a fenómenos climáticos y a la urgencia de otras operaciones agrícolas más prioritarias, por lo que la práctica del laboreo suele convertirse indirectamente en un abonado en verde, con el agravante de que los aportes de MO y elementos minerales, son
realmente una reposición de recursos previamente extraídos y que en su momento fueron detraídos a los árboles frutales privándoles de ellos.

4.1.1.4. Nutrientes.

Fósforo.

La distribución del fósforo en el suelo no es uniforme en el perfil analizado. El valor máximo se ha obtenido para los 30 cm superficiales (24,05 ppm) con un valor significativamente superior (p<0,05) a los otros horizontes más profundos (18,82 y 18,34 ppm) como era de esperar dados los altos valores del pH del suelo y los bajos contenidos en MO (Figura 3.4.1).

Por otra parte los sistemas de mantenimiento de suelo han influido en el contenido en P siendo destacable el bajo valor obtenido en el tratamiento HH en la calle (17,25 ppm) probablemente debido a una mayor extracción por parte de la cubierta vegetal permanente de acuerdo con DELVER (1980), puesto que en el mismo tratamiento, en la línea tratada con herbicida, se ha registrado el valor medio mayor (22,07 ppm) diferenciándose ambas situaciones en la ausencia de cubierta vegetal (Figura 3.4.2) y en los aportes de hierba segada de las calles a las filas de los árboles como ya ha sido descrito (TUKEY y SCHOFF, 1963).

Este hecho se ve reforzado al coincidir un alto valor de P para el tratamiento HT (21,98 ppm) bastante coincidente con el obtenido para HH en la línea de árboles de acuerdo con ATKINSON y WHITE (1980).

Los valores de P son en general elevados y se mantienen por encima de los valores considerados umbral para afectar al normal desarrollo del cultivo frutal por lo que no habrán afectado en ningún caso negativamente la producción y el desarrollo de los árboles. De cualquier modo, la destrucción de raíces superficiales en LT en condiciones desfavorables sería un factor limitante para una correcta y suficiente absorción del elemento como ha sido puesto en evidencia (HOGUE y NEILSEN, 1987).
En general habrá que considerar, especialmente en el caso de tratamientos con cubiertas vegetales, la conveniencia de localizar los abonos en las líneas de los árboles libres de vegetación, para conseguir un mejor aprovechamiento del abono por los árboles y como medio indirecto de deprimir la cubierta vegetal. Por esta misma razón hay que destacar la importancia de mantener libre de malas hierbas la zona radicular de los árboles para evitar competencias innecesarias.

Potasio.

Al igual que para el P, se han detectado diferencias altamente significativas (p<0,01) entre el contenido en K de la capa de suelo más superficial (120,67 ppm) y las más profundas (52,5 y 69,55 ppm) evidenciando una falta de translocación del K debido al bloqueo producido por las características físicas del suelo (Figura 3.5.1).

En cualquier caso todos los valores están muy por encima de los considerados umbral para afectar al normal desarrollo y producción de los cultivos, no obstante al igual que ocurría con el P, en el sistema HH es mayor (p<0,01) el contenido en K en la línea (107,27 ppm) que en las calles (72 ppm) aunque no aparecen diferencias significativas respecto a los sistema HT (77,8 ppm) ni LHL (88 ppm) (Figura 3.5.2) según ha sido previamente descrito (HAYNES y GOH,1980).

Igual que en el apartado anterior, la eliminación de raíces de la zona superficial priva al árbol de la posibilidad de absorción mineral del horizonte más rico en el elemento coincidiendo con HOGUE y NEILSEN (1987), sobre todo teniendo en cuenta que el horizonte comprendido entre 30 y 60 cm es el más pobre en potasio (Figura 3.5.1).

4.1.2. Propiedades físicas.

De acuerdo con los datos de los análisis de suelos (Anejo 2) la granulometría de las parcelas se mantiene con valores homogéneos muy similares a los valores iniciales como cabía esperar, correspondiendo el análisis granulométrico a una textura franca.
4.1.2.1. Compactación.

Tras ocho años de experimentación de los cuatro sistemas de mantenimiento de suelo, las diferencias detectadas en los parámetros de suelo medidos son en general muy claras. Los valores de compactación máximos medidos oscilan alrededor de 450 KPa, por lo que no son de esperar efectos negativos en el desarrollo radicular para este suelo según ha descrito AGÜERA (1986).

En el sistema LT puede apreciarse (Figura 5.1.2) en concordancia con otros autores, una menor compactación superficial a una profundidad comprendida entre 5 y 20 cm atribuible al mullido y subsiguiente esponjamiento del suelo originado por el laboreo continuado (VAN HUYSTSTEEN y WEBER, 1980a; SANCHEZ-GIRON, 1986). No obstante, ésta es una situación transitoria ya que, como puede apreciarse en la Figura 5.1.1, con el paso del tiempo y la pérdida de humedad la compactación superficial del suelo labrado, alcanza valores similares a los de los otros sistemas de mantenimiento de suelo como ya ha sido publicado (SCIENZA y VALENTI, 1983).

La mayor compactación observada a una profundidad de 20 cm en el sistema LT (Figura 3.1.1.1) es atribuible a la formación de una suela de labor compacta, impermeable y en algunos casos infranqueable para las raíces, como ya ha sido puesto de manifiesto por otros autores (EDWARDS, 1982; PASTOR, 1989).

Es de destacar que en el sistema HT no se aprecia la existencia de una suela de labor, ya que ésta, de haber existido, en ausencia de laboreo habría desaparecido con el paso del tiempo como ya ha sido descrito (PROEBSTING, 1953; PASTOR, 1985).

Se puede observar en las Figuras 5.2.2 y 5.2.3 que la compactación del perfil del suelo sigue una pauta similar para los cuatro sistemas en condiciones de suelo húmedo (20% de humedad). Se puede destacar la mayor resistencia superficial en el sistema HH, seguramente debido al entramado radicular y la menor resistencia superficial para el sistema LT, concordando con los resultados mostrados en la Figura 5.1.2.
En las Figuras 5.3.1.1 y 5.3.1.2 puede apreciarse la mayor compactación producida por el tráfico de la maquinaria que es generalmente más acusado en los horizontes superficiales que son los que más interfieren en los procesos de intercambio gaseoso del suelo con la atmósfera y en la infiltración del agua en el suelo de acuerdo con PARDO y SUSO (1986).

El efecto del paso de la maquinaria es igualmente detectable en el sistema HH, mientras que en la línea de los árboles debido a una ausencia total de tráfico, la compactación es menor (Figura 5.3.1.2).

En el sistema HH no se han detectado diferencias significativas de compactación superficial entre la calle y la línea de los árboles tratada con herbicidas (Figura 5.3.1.2).

La compactación del perfil del suelo observada (Figura 5.4), evidencia el efecto superficial y transitorio del laboreo en el esponjamiento del suelo, lo que puede ser necesario para algunas prácticas agrícolas, pero de acuerdo con EDWARDS (1982) no se justifica la necesidad del laboreo en cualquier situación en el cultivo frutal de regadío basándose únicamente en el criterio de compactación del suelo ni en el de eliminación de malas hierbas.

Por otro lado se han observado las simíares evoluciones de los valores de compactación de los perfiles del suelo para dos condiciones distintas de humedad de suelo (14 y 20 %) para los cuatro sistemas de mantenimiento aplicados (Figura 5.2.1), destacando que los efectos de los sistemas con laboreo son más superficiales como indica PASTOR (1988) que los de los sistemas sin laboreo en cuanto a disminución de la compactación, pero igualmente transitorios y variables en relación con la humedad del suelo según SCIENZA y VALENTI (1983).

4.1.2.2. Infiltración.

La infiltración es el proceso más importante en el riego por superficie. Esencialmente controla la cantidad de agua que entra en la reserva del suelo, así como el avance y la recesión del flujo superficial de agua (WALKER, 1990).
La infiltración es un proceso complejo que puede cambiar drásticamente a lo largo de la estación de riegos y que depende de las propiedades físicas e hidráulicas del suelo, de su contenido en humedad y de su evolución en el tiempo, así como de los cambios estructurales de los horizontes y del aire retenido en el suelo (WALKER, 1990)

Las diferencias en la infiltración acumulada medida para los distintos sistemas en un suelo seco (Figura 4.2), muestra las claras diferencias inducidas tras seis años de experimentación de los diversos sistemas de mantenimiento en el suelo.

De acuerdo con ROJAS (1982), la cubierta vegetal viva propicia un gran aumento de la infiltración acumulada frente a la infiltración medida para todos los demás sistemas, debido en primer lugar a un buen contenido en materia orgánica y una mejora estructural del perfil del suelo y por otro lado al efecto físico de las raíces de la propia cubierta vegetal en concordancia con VAN HUYSSTEEN y WEBER (1980a).

Los sistemas de HT presentan la menor tasa de infiltración ya que tanto la compactación del suelo inducida por el tratamiento en sí como por el tráfico rodado disminuyen la porosidad del terreno como ha sido descrito (GRAS y TROCME, 1977; AGULHON et al., 1983a; SCIENZA y VALENTI, 1989). El descenso de la tasa de infiltración se observó ya desde los primeros minutos en los que las diferencias entre HT y los demás sistemas fueron las mayores. A medida que avanza el tiempo, aumenta gradualmente la infiltración en HT, aunque el agua total infiltrada fue menor al final de las experiencias para este sistema.

Es de destacar que la infiltración en las filas de los árboles del sistema HH, al no existir tráfico de maquinaria, presenta unos valores muy superiores al sistema HT, del cual es similar, y ligeramente superiores a LT a partir del minuto 35.

En condiciones de suelo húmedo, después de un riego, al cambiar las constantes físicas que determinan el movimiento del agua en el suelo (WALKER, 1990), puede observarse cómo cambian los valores de infiltración para los distintos sistemas (Figura 4.3), pudiéndose ver
entonces que aumenta la infiltración de todos los sistemas respecto al sistema LT, al no existir en ninguno de ellos el impedimento físico de la suela de labor, presente en LT y que junto a la pérdida de estructura del suelo inducida por el laboreo, constituye el principal obstáculo a la penetración del agua en el suelo como ya ha sido descrito por numerosos autores (PROEBSTING, 1953; TROCMÉ y GRAS, 1979; EDWARDS, 1982; PASTOR, 1985).

La reducción de la infiltración en HT puede estar relacionada de acuerdo con la bibliografía (KEMPER y MILLER, 1974; GRAS y TROCMÉ, 1977; KLADIVKO et al., 1986) con la presencia en la superficie del suelo de capas endurecidas o "costras" (PARDO y SUSO, 1986) debidas a la degradación de la estructura inicial y formadas por la sedimentación gravimétrica de las partículas de suelo tras una lluvia o un riego, como ya se observó por análisis micromorfológicos de la superficie de los suelos no labrados de acuerdo con diversos autores (GRAS y TROCMÉ, 1977; PAGLIAI y SEQUI, 1983). La "costra" estaba compuesta por planos orientados paralelamente a la superficie y poco conectados verticalmente entre sí, con ausencia casi total de poros (Figura 6), dificultándose así el intercambio gaseoso y de agua entre el suelo y la atmósfera, por lo que se limita en gran medida la tasa de infiltración de acuerdo con WALKER (1990).

Cabe pensar que en condiciones de suelo húmedo la "disgregación" de la costra superficial permita la mayor infiltración medida. Este hecho es coherente con los trabajos que muestran que una ligera labor superficial realizada al final de la primavera, aumenta la tasa de infiltración del agua en suelos sometidos a sistemas de suelo desnudo con aplicación de herbicidas (POMARES, 1975; JUSTE, 1985; PASTOR, 1989).

Como ya se dijo anteriormente, el aumento de la compactación trae consigo una reducción de la infiltración de acuerdo con SANCHEZ-GIRON (1986).

En general en condiciones de riego la disminución de la tasa de infiltración puede conllevar pérdidas por escorrentía y por evaporación directa desde el suelo con la consiguiente disminución de la cantidad
de agua infiltrada y posteriormente disponible por las raíces como ya ha sido reseñado (PASTOR, 1989).

4.1.3. Temperatura: Efecto ambiente.

Los datos de la temperatura del suelo se tomaron a lo largo del final del invierno y el inicio de la primavera de 1990 en cuatro períodos comprendidos entre el 14 de febrero y el 7 de abril por la irregularidad climática y por las grandes heladas padecidas en esas fechas (Cuadro 8.1; Figuras 7.2 y 7.3).

Las temperaturas medias y mínimas medidas en la superficie del suelo fueron superiores (p ≤ 0,05) en HT respecto a LT mientras que para las temperaturas máximas influyó el período de medida, así que se detectaron diferencias a favor de LT salvo en el período comprendido entre 23/2 y 1/3.

Cuando se consideraron las temperaturas a 15 cm de profundidad de suelo se observó que las temperaturas medias fueron superiores (p ≤ 0,05) en HT, mientras que para las máximas existía una marcada diferencia de 3,15 ºC. Por el contrario las temperaturas mínimas fueron inferiores en HT como ya ha sido descrito (HOGUE y NEILSEN, 1987).

Considerando las temperaturas medidas cuando se produjeron las fuertes heladas, hay que destacar la marcada diferencia existente en la superficie del suelo para la temperatura mínima que alcanzó una diferencia de 2,3º a favor del sistema HT. Aunque las temperaturas medias fueron superiores tanto en superficie como a 15 cm de profundidad, hay que resaltar el hecho de que la temperatura mínima a 15 cm de profundidad fue 1,8 ºC inferior en el sistema HT que en el sistema LT mientras que la temperatura máxima fue de nuevo 4,45 ºC superior en HT que en LT.

Estos datos coinciden con los obtenidos por SCIENZA y VALENTI (1983), ZARAGOZA (1988), ZARAGOZA et al. (1989) y PASTOR (1988) en cuanto a una mayor acumulación de calor en los suelos desnudos sometidos a sistemas de HT, que por lo tanto, repercutirán en una mayor protección antihelada al ceder el suelo a la atmósfera por la noche la mayor cantidad de calor almacenada de día según HOGUE y NEILSEN.
(1987). Así se alcanza un mayor enfriamiento del suelo que en el sistema LT, en el cual existe un mayor volumen de aire en el suelo, por lo que la conductividad térmica será menor, como se ha evidenciado por diversos autores (WELLER, 1969; VAN HUYSSTEEN et al., 1984). Por lo tanto durante la noche, la capa de aire cercana al suelo recibirá más calor procedente del acumulado en los suelos sometidos a sistemas de HT como ya ha sido descrito (PASTOR, 1988; BEAR, 1970; GARCÍA CAMARERO et al., 1980).

De acuerdo con GLENN y WELKER (1987) el flujo de calor del suelo y el intercambio resultante del contenido calorífico es el resultado del gradiente de temperaturas establecido en el perfil del suelo por la profundidad de la penetración del frente calorífico diurno.

La presencia de un suelo desnudo, compactado y húmedo puede provocar diferencias en la temperatura del aire de la plantación en noches de heladas de hasta 2º C (JORDAN Y JORDAN, 1984) respecto de un suelo labrado.

Las características de la superficie del suelo son los componentes que mejor controlan las transferencias de calor a la zona radicular (GLENN y WELKER, 1987). La mayor conductividad y difusividad térmica del suelo permite a éste actuar como acumulador de calor durante el día y cederlo de noche a la atmósfera, lo que explicaría las mayores temperaturas medias y máximas a 15 cm de profundidad, mientras que se alcanzan unas menores temperaturas mínimas debido a esta cesión de calor a la atmósfera antes aludida según ha sido señalado (FRITTON y MARTSOLF, 1981; FRITTON et al., 1976; GRADWELL, 1963; HAMER, 1975; PROEBSTING, 1970; WELLES et al., 1979). Ello en nuestro caso se tradujo (Cuadro 8.2) en una diferencia en las temperaturas medias medidas a un metro de altura sobre el suelo de 1ºC con una indudable incidencia en la supervivencia de las flores en caso de helada primaveral, que es cuando conviene minimizar los riesgos (HAMER, 1975).
4.2. RIEGOS.

4.2.1. Calendario de riegos: Incidencias climáticas.

El riego es la técnica de cultivo que más interfiere con la mayoría de las prácticas agrícolas de laboreo, tratamientos fitosanitarios etc., por lo que su programación debe ser conjunta. La programación de las labores debe hacerse con datos anuales medidos para poder prever con antelación las fechas y épocas de realización, elaborando así un calendario teórico que servirá de base para la ejecución de las labores. Dada la incidencia que tienen los factores climáticos, la superposición de este calendario a un Diagrama Ombrotérmico de Gaussen, permite fijar con bastante aproximación las épocas adecuadas que permiten establecer un calendario práctico. Teniendo en cuenta las variaciones de cada año, es fácil elaborar un calendario real de riegos como señala GIL-ALBERT VELARDE (1991).

Tomando como referencia los datos de la estación climática del S.I.A., aneja a las parcelas de ensayo, y aplicando los coeficientes de cultivo de la F.A.O. para peral, se aplicaron los riegos cuando las lecturas de los tensiómetros colocados a 40 cm oscilaban entre 50 y 70 cm (Figura 7.1). El sistema de riego era por inundación y como se observa en el Cuadro 4 se registraron diferencias tanto en el número de riegos como en su época de aplicación y por lo tanto en el volumen total de agua aplicada.

Por dificultades de realización y debido a la similitud de oscilaciones del potencial matricial en el suelo, los riegos se aplicaron simultáneamente para todos los sistemas de mantenimiento del suelo.

El volumen anual medio de agua aplicado oscila entre 6120 y 6750 m³/ha/año cifra sensiblemente inferior a la media de Aragón que supera ampliamente los 9000 m³/ha/año.

De acuerdo con el calendario de riegos resultante tras la experiencia de seis años cabe deducir que no se deben establecer a priori ni el inicio ni el final de la estación de riegos puesto que está fuertemente influída por las incidencias climáticas producidas a lo largo del período vegetativo y en función de la oscilación de la ET estacional que
finalmente determinará la correcta aplicación del riego según ha sido descrito (GOMEZ APARISI, 1990).

La fecha del inicio del riego viene fuertemente influída por el régimen de lluvias. Así en 1987 se dio el primer riego el día 28 de abril, mientras que en 1984 se dio el 27 de junio, prácticamente con dos meses de diferencia entre ambos. La fecha del último riego igualmente ha oscilado entre el 8 de septiembre en 1987 y el 8 de noviembre en 1984.

Conviene puntualizar que independientemente del valor total de la pluviometría anual, el parámetro realmente importante lo constituye el calendario de distribución y la cuantía de las precipitaciones. Por este motivo no existe una relación directa entre la pluviometría total y el calendario de riegos aplicado.

En la actualidad existe una tendencia ascendente de las temperaturas mínimas, medias y máximas (siendo algo más acusada en las temperaturas mínimas que en las máximas) de la Depresión media del Ebro observada desde 1974 (RASO NADAL, 1987; CUADRAT PRATS, 1989), con especial incidencia en verano y otoño (HERNÁNDEZ NAVARRO, 1990) que es cuando más afecta a la ET del cultivo frutal. Esta tendencia forma parte de la normalidad climática en la evolución temporal de los valores térmicos y coincide con la tendencia registrada en el resto de Europa y en el conjunto del resto del Hemisferio Norte (CUADRAT PRATS, 1989).

La temperatura es un elemento climático de gran importancia para la agricultura, puesto que condiciona las actividades biológicas de las plantas, determinando su ciclo biológico, y porque además tiene una influencia directa sobre la evapotranspiración como ya ha sido señalado (GONZALEZ HIDALGO, 1989), de una importancia trascendental en una zona árida, deficitaria en precipitaciones, como es la Depresión media del Valle del Ebro.
A pesar de los años transcurridos desde que se iniciaron los estudios científicos sobre el riego en frutales (VEIHMeyer, 1927) y de que actualmente se dispone de abundante información sobre las respuestas fisiológicas de los árboles a los tratamientos hídricos (JONES et al., 1985; FERERES y GODHAMER, 1990; SHALHEVET y LEVY, 1990), la información experimental existente para especies frutales es muy limitada y varía mucho con las especies, resultando evidente que aún se necesita mucho trabajo de investigación para llegar a comprender las necesidades hídricas y en consecuencia las respuestas al riego de los árboles frutales.

El valor de la ETc resultante de multiplicar el Kc por la ETc siempre será aproximado, porque los valores de Kc (Figura 1) utilizados (DOORENBOS y PRUITT, 1977) no contemplan las diferencias intervarietales (COUVILLON et al., 1989), que pueden llegar a diferir mucho, dados los amplios calendarios de maduración, ni los efectos del patrón en cuanto a su eficiencia en la absorción de agua y nutrientes (HIGGS y JONES, 1985; LANG, 1990). Así lo demuestran las actuales investigaciones sobre el déficit hídrico controlado, que están evidenciando que se pueden disminuir los aportes hídricos a las plantaciones adultas, lo que controla el crecimiento pero no afecta la cantidad ni la calidad de la producción frutal (CHALMERS, 1987).

Por otro lado, como se puede observar en las Figuras 8.1.1.1 a 8.2.4.2, la extensión del sistema radicular absorbente, de acuerdo con TAMASI (1986), está muy influenciada por el patrón utilizado, y limita el volumen de suelo explorado por las raíces, por lo que es imprescindible adaptar tanto el módulo como el calendario de riegos al material vegetal utilizado si se quiere conseguir un riego eficiente.

Sigue siendo por tanto imprescindible, desde un punto de vista de correcta aplicación del riego, el conocimiento tanto del estado de humedad del suelo y su evolución con la extracción del agua por las raíces, para lo que es imprescindible conocer el volumen de suelo explorado por las mismas y que puede ser muy variable según el patrón utilizado y la textura del suelo de la plantación como ya ha sido reseñado (TAMASI, 1986).
4.2.2. Perfil hídrico del suelo.

Del análisis de los datos de humedad de suelo medidos con sonda de neutrones se desprende que mientras que la recarga de agua se origina principalmente por el riego, la disminución de humedad en el suelo sólo cabe atribuirla a extracción por las raíces y a una evaporación directa desde el suelo.

De la evolución de la humedad a lo largo del ciclo, se puede deducir que la mayor extracción de agua por las raíces se produce en el horizonte de suelo comprendido entre 0-45 cm, como lo evidencia el hecho de la menor o nula oscilación en el contenido en humedad de los horizontes más profundos (Figuras 8.1.1.1 a 8.2.4.2).

El contenido en agua medido a 15 cm de profundidad pone de manifiesto en general un mayor agotamiento del contenido en agua para el sistema LT, así como una buena recarga tras el riego. Podría considerarse que en esta capa superficial, que es la más rica en elementos fertilizantes y presenta menor CE, en ausencia de laboreo al producirse una mayor extensión del sistema radicular se producirá una mejor nutrición hidro-mineral del árbol, lo que debe redundar en un mejor rendimiento productivo del mismo, por su mejor eficiencia en el balance energético como ya ha sido descrito (TAMASI, 1986).

Por otra parte, al mayor agotamiento de las reservas de agua de este horizonte del perfil, deben añadirse unas mayores pérdidas de agua por evaporación debidas a la interceptación directa de la radiación solar. La operación de volteo de la tierra en LT incrementará sin ninguna duda las pérdidas de agua de este horizonte superficial de acuerdo con PASTOR (1985). En el sistema HH la competencia de la cubierta vegetal por el agua contribuirá sin ninguna duda a un mayor agotamiento de las reservas hídricas del suelo.

Las medidas del contenido de agua realizadas a 45 cm evidencian una adecuada recarga de este horizonte, lo que prueba una buena tasa de infiltración del suelo.

No obstante, el mayor agotamiento del agua del perfil en LT es indicativo de dos hechos. En primer lugar, la desaparición de una
cantidad mayor de agua puede ser debida al aumento de las pérdidas de aguas producidas por el laboreo, ya que al voltear la tierra provoca un aumento de la evaporación directa desde el suelo, como se puede observar al comparar la evolución del perfil hídrico de las Figuras 8.1.1.1 y 8.1.2.1. En segundo lugar, al disminuir el contenido de agua, se obliga a los árboles a vencer una mayor resistencia precisando utilizar una mayor cantidad de energía para extraer el mismo volumen de agua, con el consiguiente detrimento en el estado energético del árbol.

Estos hechos unidos a la inevitable destrucción de raíces superficiales efectuada por el laboreo de la capa superficial del suelo, que es la más rica en elementos nutrientes, necesariamente debe contribuir al agotamiento de reservas del árbol necesarias para el correcto desarrollo de todos los procesos fisiológicos, por lo que puede afectar negativamente a la producción.

Las pequeñas oscilaciones del contenido en humedad de los horizontes más profundos evidencian unos valores de extracción de agua mucho menores que los de los horizontes más superficiales, por lo que debe considerarse que la extracción a esas profundidades sólo se produce en condiciones de una alta demanda estacional de la tasa de evapotranspiración. En estas condiciones, el mayor consumo de energía requerido para la extracción del agua por el árbol, unido al hecho de la enorme competencia estacional entre el crecimiento vegetativo y reproductivo, se traducirá en mermas de producción de acuerdo con LANDSBERG y JONES (1981) tanto más importantes cuanto mayor sea el esfuerzo exigido al árbol.

Finalmente conviene considerar que como se ha indicado en el punto 4.1.1.1, la importante acumulación de sales originada en el horizonte superficial, debidas principalmente a la evaporación del agua del suelo, puede afectar sensiblemente la producción frutal reduciéndola hasta niveles de un 25 % (AYERS y WESTCOTT, 1985). Este hecho merece tenerse especialmente en cuenta en el sistema de LT, en el cual se produce la mayor acumulación salina.
Aunque la menor presencia de raíces en este horizonte en el sistema de LT reste importancia a este hecho, el arrastre por lavado de estas sales en cada riego de acuerdo con SHALHEVET et al. (1983), aumentará el contenido salino de la zona radicular, haciendo persistir el problema y requiriendo lavados intermitentes del suelo además de los producidos en cada riego como ha sido descrito por MEIRI y PLAUT (1985).

4.3. SISTEMAS DE MANTENIMIENTO DE SUELO.

La aplicación de los distintos sistemas de mantenimiento del suelo tienen un efecto directo sobre su estructura con unas consecuencias decisivas sobre las características físicas del suelo, como se ha visto en los apartados anteriores. La aplicación de sistemas de mantenimiento de suelo desnudo con aplicación de herbicidas (HT) trae consigo una importante reducción de la MO y de la tasa de infiltración del agua en el suelo. Este hecho está muy relacionado con los altos valores de resistencia a la penetración en la superficie del suelo como describe PASTOR (1989) cuyo efecto directo es la compactación y la reducción del crecimiento radicular (BENHOUGH y MULLINS, 1990). Por otro lado, como se ha visto, y de acuerdo con HOGUE y NEILSEN (1987) es el mejor sistema cuando se producen heladas de irradiação primaverales.

De acuerdo con PASTOR (1989) la rotura de la "costra" mediante una labor muy superficial, aumenta la infiltración en los suelos sometidos a sistemas de HT, por lo que parece aconsejable la realización de esta operación cultural en suelos propensos a formación de costras, operación que debe realizarse cuando el suelo reúna las condiciones adecuadas de tempero para evitar la formación de terrones y una innecesaria evaporación de agua.

La reducción de la infiltración en el sistema LT (Figuras 4.2.1. a 4.4.2) es atribuible a la existencia de capas compactadas en profundidad ("suela de labor") subyacentes a la zona labrada (EDWARDS, 1982; PASTOR, 1989) y a la pérdida de estructura del suelo (HILLEL, 1980; EHLERS, 1989; BEURET y NEURY, 1990). Por otra
parte, la destrucción de raíces y el aumento de la CE debido a la mayor evaporación del agua puede provocar descensos en la producción debido a la salinidad (Ayers y Westcott, 1985).

El empleo de cubiertas vegetales en condiciones de regadío en sistemas de no-laboreo, aumenta la tasa de infiltración, al mejorar la estructura e impedir el impacto directo de las gotas de lluvia o de riego sobre el suelo como ha sido descrito (Van Huyssteen et al., 1984). Sin embargo, en condiciones de secano pueden llegar a presentar problemas de competencia por agua y nutrientes con el cultivo (Mailard, 1973; Civantos y Torres, 1981; Pastor, 1988). Respecto a los efectos de competencia con el sistema radicular de los árboles, sus efectos siempre serán menos drásticos que los producidos por el laboreo.

Por otra parte, desde un punto de vista práctico, una gran ventaja del sistema HH lo constituye la disminución de pérdidas por caída de frutos en la época de la recolección. Este sistema parece un método óptimo en cuanto a resultados agronómicos como ya ha sido descrito (Gil-Albert Velarde, 1983).

Investigaciones actualmente en curso (Aíbar et al., 1990) proporcionarán en breve información sobre cubiertas vegetales poco agresivas para las plantaciones frutales, ya que al limitarse su ciclo vegetativo al período pre-estival podrían permitir aunar las ventajas de una cubierta vegetal permanente con su efecto beneficioso sobre las constantes del suelo, con las de un acolchado inerte estival.

4.3.1. Efectos herbicidas y evolución de la flora arvense.

El empleo de los herbicidas selectivos, que eliminan las plantas adventicias sensibles, libera un espacio ecológico que puede ser ocupado por especies no sensibles ya presentes, o posteriormente, por individuos de especies sensibles o no de germinación más tardía, modificando a corto o medio plazo la composición de la flora adventicia existente en el suelo (Cuadro 9), por lo que a largo plazo para combatir eficazmente la flora adventicia modificada se requerirán
medidas de lucha química más compleja y costosa como ya ha sido señalado (GOMEZ APARISI y ZARAGOZA, 1989).

Una de las consecuencias de la utilización de herbicidas es un empobrecimiento de la flora presente que no consigue en general eliminar las especies más perjudiciales. Este problema se agrava en el caso de las plantaciones frutales porque a diferencia de los cultivos anuales no es posible la rotación de cultivos y por lo tanto el cambio de especies a combatir ni de los herbicidas utilizados, ya que se trata de cultivos a largo plazo. En el futuro se deberían en principio evitar esos cambios de la composición de la flora alternando las medidas de lucha contra las plantas adventicias complementadas con previsiones fiables de la evolución de la flora.

La flora arvense, compuesta normalmente por dicotiledóneas anuales y perennes y por algunas especies monocotiledóneas, se controla satisfactoriamente a base de herbicidas. Los tratamientos a bajo volumen (<100 l/ha) con herbicidas residuales y con el sistémico glifosato han resultado muy eficaces.

Tras seis años de tratamientos se observan procesos de adaptación de determinadas especies a los diferentes sistemas:

- Adaptación al laboreo: Las especies anuales: *Amarantus blitoides*, *A. retroflexus*, *Chenopodium album*, *Diplotaxis erucoides*, *Sinapis arvensis*, *Echinocloa crus-galli*, y las especies perennes: *Cirsium arvense* y *Convulvulus arvensis*.

- Adaptación a no-laboreo y cubierta vegetal segada: *Picris echioides*, *Aster squamatus*, *Plantago major*, *Rumex crispus*, *Taraxacum officinale*, *Trifolium repens*.

- Adaptación a herbicidas aplicados durante el período vegetativo: *Capsella bursa-pastoris*, *Spergularia rubra*, *Hordeum murinum*, *Poa annua*.

En el caso de las especies perennes adaptadas al laboreo, resalta la importancia que las bases de los árboles, menos labrados o eventualmente cavados a mano tienen en el control de las malas
hierbas. *Cyperus rotundus* es una especie de verano sumamente agresiva, muy adaptada al laboreo y a las siegas periódicas con una densidad creciente.

Se puede pensar que una alternancia de herbicidas con diferentes modos de acción y un poder residual preferentemente corto, unida a la aplicación de métodos preferentemente no químicos puede contribuir a la solución del problema (ZARAGOZA, 1988).

Finalmente hay que tomar en consideración la posibilidad ciertamente arriesgada de la introducción de caracteres de resistencia a los nuevos herbicidas en los cultivos.

4.4. DESARROLLO VEGETATIVO: EVOLUCION DEL CRECIMIENTO DE TRONCO.

El objetivo de la aplicación de herbicidas selectivos es combatir las plantas adventicias sin perjudicar a los cultivos. Por diversos motivos, las especies reaccionan de manera diversa a los herbicidas e incluso dentro de la misma especie hay reacciones más o menos marcadas.

Las dos variedades de peral empleadas tienen hábitos de comportamiento muy diferentes por lo que era de esperar respuestas también diferentes a los tratamientos aplicados. Mientras que 'Général Leclerc' es una variedad vigorosa, alternante y con una fecha de recolección de finales de agosto, 'Passe Crassanne' es una variedad débil, menos alternante, con fecha de recolección de finales de septiembre y frutos de gran calibre, por lo que pueden producirse graves pérdidas de cosecha comercial por caída de frutos debido al viento, fenómeno muy frecuente en las condiciones climáticas de la zona.

Se han considerado los incrementos relativos de tronco acumulados desde el inicio de la experiencia, con el fin de separar las causas debidas a otros factores no contemplados en el presente trabajo. Se puede observar la respuesta diferente debida a las dos variedades con incrementos de perímetro de tronco comprendidos entre 3,2 y 5 cm para
'P. Crassanne' y los 9-11 cm para 'G. Leclerc', evidenciando la diferencia de vigores esperado entre ambas variedades.

No obstante (Figuras 9.1 y 9.2), hay que destacar lo que podría considerarse como fitotoxicidad de los herbicidas aplicados. Para los sistemas HT y HH, en la variedad 'G. Leclerc' hay una clara disminución de crecimiento respecto a los otros sistemas de mantenimiento de suelo utilizados entre los años 1985-1987, con una evidente recuperación posterior al cambiar los tratamientos herbicidas por otros más inocuos para los árboles. No obstante, el retraso producido en el crecimiento no se ha recuperado al final, pudiéndose apreciar la clara diferencia existente entre los sistemas HH y HT respecto a los sistemas LT y LH que han sido superiores en crecimiento, aunque no se hayan podido detectar ($p \leq 0.05$) diferencias significativas el último año de la experiencia.

Por otro lado, los datos de crecimiento de tronco (Figura 9.1.2) muestran las diferencias significativas ($p<0.05$) existentes entre los tratamientos a lo largo de la experiencia, que se han mantenido hasta el final LT (100 %), HT (86 %), HH (81 %) y LH (104 %) a pesar de no haberse detectado diferencias significativas en el último año. Hay que destacar el efecto depresivo observado en el sistema HT en el año 1985, atribuible al efecto del tratamiento herbicida como señala GIL-ALBERT VELARDE (1990), que en cambio no se reflejó en la producción.

Para la variedad 'P. Crassanne' se produce una detención del crecimiento en 1986-87 en el sistema HH, por lo que cabría pensar más en un fenómeno de competencia de la cubierta vegetal que en un efecto depresivo del tratamiento herbicida. No obstante, en el sistema LT con ausencia total de tratamientos herbicidas se han conseguido los mayores crecimientos de tronco, lo que induce a pensar una vez más en la posibilidad del efecto nocivo para esta variedad de los tratamientos herbicidas aplicados. Se han detectado para esta variedad diferencias significativas ($p \leq 0.05$), siendo mayor el crecimiento de los árboles en los sistemas LT y HH.
Los datos de crecimiento de tronco reflejan valores menores para los sistemas LH y HT por lo que aunque no aparezcan síntomas visibles de toxicidad en los árboles no se puede descartar la posibilidad de una mayor sensibilidad de esta variedad a la simicaina como parece evidenciar el menor crecimiento inicial de troncos producido por el tratamiento herbicida, coincidiendo con otros autores (GIL-ALBERT VELARDE, comunicación personal; GOMEZ APARISI y ZARAGOZA, 1989).

Puede observarse (Figura 9.1) el distinto efecto que tienen los tratamientos en el crecimiento de tronco si se compara con la otra variedad, especialmente si se considera que en este caso, las diferencias \((p<0.05)\) se siguen manteniendo al final resultando el mayor crecimiento de 4,8 cm para LT (100%), seguido de HH (88%), HT (83%) y LH (65%).

4.5. NUTRICION MINERAL: Análisis foliares.

La evolución del contenido mineral en hoja de los elementos minerales básicos analizados para los distintos sistemas de mantenimiento de suelo experimentados (Figuras 10.1.1 a 10.1.10) han mostrado unas concentraciones generalmente comprendidas dentro de los valores considerados normales de acuerdo con los baremos establecidos (CHAPMAN, 1965; MARTIN PREVEL et al., 1984; REUTER y ROBINSON, 1986), con oscilaciones entre años atribuibles a los programas de abonado aplicados, que siempre ha sido el mismo para todos los sistemas.

Aunque no se han detectado diferencias significativas, se puede apreciar en 1989 un descenso acusado del contenido en N para el sistema HH, evidenciando la competencia de la cubierta vegetal con el cultivo frutal, más acusado los primeros años de acuerdo con diferentes autores (BOULD et al., 1972; MILLER y GLENN, 1985).

El contenido en P es mucho menos variable, evidenciando las bajas necesidades de este elemento para el cultivo del peral como señalan ATKINSON y WHITE (1980), puesto que a pesar del bajo contenido en
fósforo del suelo detectado para HHC (Figura 3.4.2), a nivel foliar el contenido en P para este tratamiento es de los más elevados coincidiendo con otros autores (BOULD et al., 1972; NEILSEN y HOGUE, 1985).

Los contenidos en K han sido en general bajos para todos los sistemas, por lo que se podría considerar la existencia de un bloqueo de este elemento en el suelo debido a los altos valores del pH. Se puede observar que el sistema HH presenta una menor oscilación en sus valores coincidiendo con HOGUE y NEILSEN (1987), lo que habría que atribuirlo al efecto adicional del aporte de K contenido en la hierba segada según ya ha sido descrito (SCHRIIBBS y SKROCH, 1986).

El análisis foliar de los elementos minerales realizado el último año permite apreciar la gran diferencia obtenida en Ca, aunque no llegue a ser significativa entre el sistema LT y los sistemas con tratamientos herbicidas de acuerdo con WANDER y GOURLEY (1943).

Los valores de Na son en general elevados, seguramente influidos por sus altos contenidos en el agua de riego y en el suelo. Esta es una razón importante, en condiciones de salinidad potencial, para elegir el sistema de mantenimiento de suelo de acuerdo con MEIRI y PLAUT (1985) que menos contribuya a elevar el contenido en Na, por su efecto negativo en la producción, ya comentado en el apartado 4.1.1.1 y que está descrito en la bibliografía (MAAS, 1984).

Es de destacar la clara diferencia significativa (p<0,05) resultante en el mayor contenido foliar en Mn entre el sistema LT y los otros tres sistemas de mantenimiento de suelo, consecuencia probable del mayor grado de aireación del suelo como ha sido reseñado en la bibliografía (HOGUE y NEILSEN, 1987), que como consecuencia no produce bloqueos del elemento, permitiendo en este caso una asimilación más eficiente por la planta, a lo largo de toda la experiencia.

El análisis foliar de los elementos minerales realizado el último año, permite apreciar la diferencia (p ≤ 0,05) en contenido foliar de Fe detectada entre el sistema HH y los sistemas con tratamientos herbicidas y el laboreo total, evidenciando un menor bloqueo de este
elemento en el suelo como ya ha sido indicado (HOGUE y NEILSEN, 1987; TAMASI, 1986).

Las necesidades de nutrientes minerales de los árboles frutales son menores que las de otros muchos cultivos de acuerdo con GREENHAM, (1976) y por tanto sus respuestas al abono son pequeñas. A pesar de esto, las concentraciones de nutrientes de suelo asimilables y su absorción pueden ser modificados por el manejo del suelo como indica la bibliografía (ATKINSON y WHITE, 1980). Además de los efectos directos sobre el funcionamiento del sistema radicular, el manejo del suelo puede modificar la distribución de las raíces actuando sobre las reservas del suelo y por tanto afectando la nutrición.

4.6. PRODUCCION Y CALIDAD DE FRUTA.

El patrón membrillero induce una mejor calidad de la fruta que el franco de peral (CARRERA, 1988a), pero por su sistema radicular de limitada extensión y poca profundidad, es particularmente sensible a la competencia que las malas hierbas u otros factores de cultivo pueden establecer en los primeros años de la plantación. Es por tanto recomendable siempre, cualquiera que sea el sistema de mantenimiento de suelo elegido para la plantación adulta, el minimizar esta competencia con las raíces en la zona de goteo del árbol (CARRERA, 1989), puesto que sus efectos siempre influirán en la producción de la fruta.

Las diferencias en producción son evidentes entre la variedad 'P. Crassanne' de poco vigor, maduración tardía y con una marcada caída de frutos en condiciones de vientos fuertes, y la variedad 'G. Leclerc', más vigorosa, de maduración más precoz, fuertemente alternante y sin la caída de frutos observada para 'P. Crassanne' como ha sido señalado por CARRERA (1988b).

El peral como especie frutal, en casi todas sus variedades, presenta producciones frutales fuertemente alternantes de acuerdo con CARRERA (1989). Al no ser todos los árboles coincidentes en esta alternancia, el análisis y la discusión de los resultados se ven muy
influídos por este hecho, no pudiéndose lograr la uniformidad de resultados deseada y al analizar los datos no se pueden conseguir los bajos coeficientes de variación que se pueden obtener para otras especies. No obstante, la homogeneidad de varianzas permite el correcto análisis de los datos, manteniendo la variabilidad de producciones obtenida.

En 'G. Leclerc' puede observarse una producción mantenida con ligeras oscilaciones hasta que en 1988 se produce un descenso en producción que provoca una entrada en alternancia en 1989, seguido de una cosecha muy baja en 1990. La producción para el sistema LT fue inferior a los otros sistemas salvo en el año 1988 y aparentemente no hay motivos para esta entrada en alternancia como ocurre para los demás tratamientos salvo que la causa de la misma se deba a algo ajeno al árbol como podría ser el efecto del clima.

En 'P. Crassanne', tras una acusada caída de frutos debida a un fuerte cierzo en 1984, se produce una entrada en alternancia en 1985, pero dado el carácter poco alternante de esta variedad ya descrito (CARRERA, 1989) se observa una regularización de la producción a partir de 1985, aunque al contrario de lo observado en 'G. Leclerc' se observa que las tendencias productivas entre HH-LT y LH-HT se contraponen en cuanto a la oscilación de producción.

La producción media anual (Figuras 11.1.1 y 11.1.2) de los árboles presenta la alternancia antes señalada, y aunque permiten distinguir las diferencias debidas a los sistemas de mantenimiento de suelo utilizados, a causa de la alternancia existente en los árboles dentro de cada tratamiento no ha sido posible detectar estadísticamente esta diferencia debida a la interacción entre sistemas y años.

El análisis de la producción media acumulada en el periodo considerado muestra en 'G. Leclerc' que los sistemas de mantenimiento de suelo, incluyendo los tratamientos con herbicidas, presentan una producción significativamente mayor (p< 0,05) que los sistemas con laboreo de suelo. Mientras que la producción media en el periodo considerado para LT (100 %) fue de 26 Kg/árbol, en HT (120 %) se
obtuvieron 31 Kg/árbol, 28 Kg/árbol para HH (108 %) y 31 Kg/árbol para LH (121 %).

Por el contrario, para la variedad 'P. Crassanne' la producción comercial del sistema HH fue claramente superior (152 %) que la de LH (113 %), LT (24,6 Kg/árbol= 100 %) y HT (87 %).

La producción acumulada media (Figuras 11.2.1 y 11.2.2) refleja claramente la influencia que los sistemas de mantenimiento de suelo ejercen sobre los árboles desde un punto de vista productivo.

En 'G. Leclerc' el sistema de LT es significativamente (p<0,05) inferior a los demás, con unas mermas importantes de producción a nivel unitario, destacan como más productivos los sistemas HT y LH, y aparece con una producción ligeramente inferior el sistema HH, aunque sin diferencias significativas con los dos anteriores.

En 'P. Crassanne' destaca poderosamente (p<0,05) el sistema HH, seguido de LH, mientras que los sistemas LT y HT son los menos productivos.

La cubierta vegetal, al aumentar mediante su transpiración la humedad relativa ambiente, podría ser sumamente beneficiosa para una variedad como 'P. Crassanne', mal adaptada a las condiciones de aridez del clima de la depresión media del Ebro como ya ha sido citado (CARRERA, 1989 com. personal), compensando así el posible efecto negativo de la competencia de la cubierta vegetal por el agua y los nutrientes.

Por otro lado, el efecto negativo del laboreo sobre el sistema radicular disminuye las posibilidades de exploración y por tanto de absorción de agua y nutrientes en el horizonte más superficial del suelo que es el más favorable para una correcta nutrición con un mínimo consumo de energía coincidiendo con TAMASI (1986). A este efecto hay que añadir la pérdida de agua y el aumento superficial de la salinidad que supone el movimiento de tierras que produce el laboreo.

No obstante, conviene puntualizar a este respecto que, al haberse establecido la cubierta vegetal en un estado ya adulto de la plantación,
la competencia de esta cubierta vegetal necesariamente deberá ser menор al encontrarse completamente establecido el sistema radicular de los árboles, mientras que en fases de menor desarrollo de las plantaciones la competencia sería mucho mayor de acuerdo con COUVILLON (com. personal, 1989).

Finalmente en lo que respecta a la calidad de fruta es evidente la diferencia existente entre ambas variedades, pero (Cuadros 10.1 y 10.2) no se han detectado diferencias debidas a los tratamientos aplicados para los parámetros analizados como puede ocurrir a largo plazo como ha sido señalado por HOGUE y NEILSEN (1987).
5. CONCLUSIONES

De los precedentes análisis y discusión se pueden extraer las siguientes conclusiones:

1) Las medidas de compactación superficial del suelo tomadas en el centro de las calles antes y después del riego, muestran que el sistema de laboreo provoca la formación de una costra superficial al secarse el suelo, permaneciendo así hasta el próximo riego. El suelo no labrado tiene una mayor compactación superficial que el sometido a labores, especialmente en la zona de rodadas del tractor.

La compactación superficial del suelo en los sistemas de no-laboreo mantiene un valor moderado, similar en los sistemas de suelo desnudo con herbicidas y cubierta vegetal permanente, aunque tras el riego la compactación fue menor en el sistema de suelo desnudo con herbicidas. La fluctuación de la compactación, fue menor en el sistema de suelo desnudo, siendo casi constante en el de cubierta vegetal.

2) La tasa de infiltración de agua se reduce en las parcelas con sistema de no-laboreo, pudiendo en condiciones de campo llegar a provocar pérdidas de agua por evaporación y/o escorrentía y, por lo tanto, una peor distribución del agua en el perfil del suelo y en algunos casos un menor contenido de agua.
El laboreo y, sobre todo, su oportunidad aumentan la velocidad de infiltración, siendo este efecto tanto más apreciable cuanto más escasa sea el agua. No obstante, la formación de una suela de labor puede impedir el descenso del agua hacia horizontes más profundos disminuyendo entonces indirectamente la velocidad de infiltración. Por este motivo hay que evitar el uso de aperos inadecuados o la aplicación de labores en condiciones desfavorables para el mantenimiento de las constantes del suelo.

La mayor infiltración medida en las parcelas enherbadas en las dos condiciones de humedad asegura una mejor y más rápida redistribución del agua en el perfil del suelo, por lo que no son de esperar accidentes debidos a asfixia radicular causada por lluvias que ocurran después de un riego ni grandes pérdidas por evaporación superficial del agua de riego.

3) La evolución del perfil hídrico del suelo, muestra una clara fluctuación, motivada por los procesos de extracción y recarga del agua debidos a la evapotranspiración y al riego. La rapidez de la respuesta es mayor en las capas más superficiales hasta 45 cm, disminuyendo al aumentar la profundidad hasta anularse.

Salvo en las situaciones de retraso del riego, con el consiguiente agotamiento de la reserva de agua del perfil superficial, la extracción del agua se ha producido en la capa más superficial del suelo por encima de los 50 cm. Este hecho evidencia por sí solo, la imperiosa necesidad de preservar el sistema radicular superficial evitando su destrucción innecesaria.
4) Los sistemas de mantenimiento de suelo han influido significativamente en la evolución de algunos de los parámetros analizados:

En el sistema con cubierta vegetal permanente (HH), bajan significativamente los niveles de fósforo y potasio del suelo debido a la extracción de elementos nutrientes realizada por la cubierta vegetal.

Los valores de la CE, y los contenidos en P y K del suelo han variado significativamente con la profundidad del perfil. Mientras la CE aumenta con la profundidad, los contenidos en P y K han disminuido.

El sistema con laboreo total incrementa significativamente el contenido salino superficial del suelo.

Se han detectado diferencias significativas en cuanto a la influencia de los tratamientos en pH y materia orgánica.

5) Los sistemas de mantenimiento de suelo influyen en la evolución del perfil hídrico del suelo debido a:

- Los cambios en la tasa de infiltración de agua, influída por los distintos grados de compactación del suelo.

- Cambios en la evapotranspiración de la superficie del suelo y/o cubierta vegetal, y de los diferentes modelos de extracción de agua del suelo debido a la distribución de las raíces absorbentes de los árboles originadas por el laboreo.

6) La extensión del ciclo de riegos, así como el número de riegos aplicado, están claramente influidos por la ET estacional y por la
distribución de la pluviometría anual. El calendario de riego solamente
se podrá establecer a priori como guía orientativa a modificar en función
del clima y de acuerdo con la evolución de los parámetros indicadores
de la humedad del suelo para su correcta realización práctica.

7) La temperatura media del suelo es significativamente más
elevada en el sistema de no-laboreo que en el de laboreo total, por lo
que podría relacionarse este hecho con los modelos de conductividad
térmica del suelo relacionados con la evolución de su perfil hídrico del
suelo.

Esta elevación de temperatura provoca una mayor acumulación de
calor en el suelo que al ser cedido a la atmósfera provoca una elevación
de la temperatura de 1 °C, de gran importancia en la prevención de las
heladas de irradiación de primavera.

8) La flora arvense, compuesta normalmente por dicotiledóneas
anuales y perennes, y por algunas especies monocotiledóneas, se
controla satisfactoriamente a base de herbicidas. Los tratamientos a
bajo volumen (<100 l/ha) con herbicidas residuales y con el sistémico
glisosate han resultado muy eficaces; no obstante, se producen
fenómenos de evolución de la flora presente para los diferentes
tratamientos.

9) Las variedades peral de otoño-invierno utilizadas: 'P.
Crassane' (débil, maduración más tardía y marcada caída de frutos
debida al viento) y 'G. Leclerc' (más vigorosa, maduración más precoz y
sin caída de frutos debido al viento, con vecería muy acusada), han
mostrado unas diferencias evidentes de comportamiento frente a los
tratamientos aplicados respecto a la producción de fruta. Sin embargo, aunque no han aparecido diferencias significativas respecto al crecimiento vegetativo en ‘G. Leclerc’, en ‘P. Crassane’ el sistema de no-laboreo produjo árboles significativamente menos vigorosos.

- En ‘G. Leclerc’ todos los sistemas de mantenimiento de suelo que incluían herbicidas han mostrado una productividad significativamente superior que el sistema de laboreo. El crecimiento vegetativo sigue una pauta similar pero sin significación estadística.

- En ‘P. Crassane’ a pesar de la caída de frutos a causa de los vientos, los tratamientos con herbicidas fueron más productivos que los tratamientos con laboreo y suelo desnudo, destacando el sistema HH, sin duda influido por la mayor humedad ambiental que favorece en este caso a esta variedad, mal adaptada a las condiciones de aridez.

10. CONCLUSION GENERAL

La presencia de malas hierbas, o en menor grado de cubierta vegetal segada, produce pérdidas de agua por transpiración y competencia directa por el agua y los nutrientes del perfil del suelo con las raíces de los árboles, mientras que en el suelo desnudo solamente se producen pérdidas de agua por evaporación. En el sistema de LT se producen especialmente pérdidas debido a la evaporación del agua del terreno removido, con la consiguiente acumulación de sales en el horizonte superficial de suelo, además de pérdidas y lesiones en el sistema radicular.
La menor compactación del suelo en el caso de laboreo es sólo transitoria, pero teniendo en cuenta la eliminación de las raíces superficiales por la práctica de excesivo laboreo, los árboles pueden resultar privados del agua y los elementos minerales existentes en esta capa superficial que es donde son más abundantes.

La infiltración es uno de los parámetros más afectados por el sistema de mantenimiento del suelo por lo que hay que considerarlo para optimizar la penetración del agua en el suelo, especialmente en condiciones adversas.

El calendario de riegos deberá planificarse de acuerdo con los datos climáticos medios, pero se realizará siempre en función de la evolución de la ET, muy influída por las particularidades del año climático, complementada con la evolución de las medidas del estado hídrico del suelo, en la zona de actividad radicular.

No existe el sistema que sea el mejor para todas las situaciones. En función de las características de cada plantación, habrá que elegir entre todas las posibilidades de mantenimiento de suelo, la que sea más ventajosa para cada situación dada.

En las condiciones de las experiencias, para ambas variedades, ha destacado el sistema HH en cuanto a rendimiento productivo, lo que unido a sus indudables ventajas de orden agronómico práctico lo hacen muy recomendable para las explotaciones frutales, sobre todo considerando que las investigaciones actualmente en curso proporcionarán información sobre las especies herbáceas más convenientes y menos agresivas para este uso. El sistema LT ha sido
siempre el menos productivo, por lo que se considera el menos adecuado para su aplicación.
6. BIBLIOGRAFIA

LORD, W. J.; B.A. DAMON; B. GERSTEN. 1968. Effects of simazine alone and in combination with hay or plastic mulch on " McIntosh " apple

