MEJORA DEL VALOR NUTRITIVO DE LA PAJA DE CEREAL MEDIANTE
EL TRATAMIENTO QUIMICO CON UREA

TESIS DOCTORAL
MARGARITA JOY TORRENS

Bellaterra, Abril de 1991
MEJORA DEL VALOR NUTRITIVO DE LA PAJA DE CEREAL MEDIANTE EL TRATAMIENTO QUIMICO CON UREA

Tesis Doctoral presentada por Dña. Margarita JOY TORRENS, bajo la dirección del Dr. Xavier ALIBES (IRTA), para optar al grado de Doctor.

Bellaterra, Abril de 1991

Vº Bº:

Dr. X. ALIBES ROVIRA
a Tomeu

a Quienes participaron
AGRADECIMIENTOS

El presente trabajo es el resultado del esfuerzo y colaboración de numerosas personas a las cuales deseo expresar mi más sincero agradecimiento.

- A X. ALIBES y F. MUÑOZ por su dirección y consejos, así como por su amistad y apoyo durante la realización del trabajo.

- A T. FUSTER y A. LEGUA por inestimable ayuda en las determinaciones químicas. También deseo agradecer su esfuerzo, colaboración y apoyo en los momentos finales de la redacción de la presente memoria.

- A J. M. PEREZ REVUELTO y a todo el personal técnico de la Unidad de Producción Animal, Pastos y Forrajes del Servicio de Investigación Agraria por su imprescindible ayuda en el manejo de los animales y en la obtención de los datos de campo.

- A todos los componentes de la Unidad de Producción Animal, Pastos y Forrajes por su ayuda, colaboración y amistad.

- Al Servicio de Investigación Agraria de la Diputación General de Aragón (SIA-DGA) en cuyas instalaciones ha sido realizado este trabajo.

- A la Unidad de Producciones Animales de la Facultad de Veterinaria de la Universidad Autónoma de Barcelona y, en especial, a G. CAJA, J. PLAIXATS, A. FERRET y M. PARAMIO por su ayuda, consejos y amistad.

- A P. BERNAL, M.T. JOY y C.A. JOY por su colaboración en la mecanografía del texto.

- A J. L. ALABART y A. GARBAYO por su participación en los análisis estadísticos, así como por su apoyo moral.

- A M. LUIS por las correcciones de la redacción final de la presente memoria.

- A M. AGUINACO y E. AMEZKETA por su colaboración desinteresada en la presentación del trabajo y, en especial, por sus horas libres dedicadas.

- A P. ALBERTI y R. REVILLA por haber hecho posible la realización del ensayo realizado sobre terneras.

- A la Comisión Interministerial de Ciencia y Tecnología (CICYT) y al Consejo Asesor de Investigación (CONAI), entidades que con la financiación del proyecto nº PP86-0099-C02-02 y de mi beca, respectivamente, han hecho posible la realización de esta tesis.

- Todas las personas que no han sido nombradas pero que por un motivo u otro han ayudado a llevar a cabo el presente trabajo.

- Finalmente deseo agradecer de forma especial a ESPE, MAITE A., MAITE P., Mª JOSE y CATALINA por todo...
On a réalisé une série d’essais pour déterminer les conditions optimales du traitement à l’urée, ainsi que sa viabilité comme méthode d’amélioration de la valeur nutritive de la paille de céréale. Pour cela, on a réalisé quatre types d'études : I. Traitements en laboratoire ; II. Essais "in vivo" réalisés avec des bélus castrés ou des brebis adultes, pour déterminer la digestibilité et/ou l’ingestion volontaire de la paille ; III. Modifications possibles de la technique d’application du traitement et IV. Étude de production réalisé avec des génisses de renouvellement.

I. EVALUATION DE TRAITEMENTS DE PAILLE RÉALISÉS EN LABORATOIRE.

ESSAI I. 1. On a étudié de façon comparative, le traitement de la paille d’orge avec de l’ammoniac anhydre, à des doses de 40 g/kg MS et une humidité de 10, 20 et 30 p. 100, avec le traitement à l’urée et des doses de 43, 65 et 80 g/kg MS et humidités de 20, 30 et 40 p. 100. L’augmentation de l’humidité avec le traitement à l’ammoniaque n’a pas affecté la digestibilité de la matière sèche "in vitro" (DMSIV), et les traitements réalisés avec de l’urée à des doses de 65 et 80 g/kg MS et à 30 % d’humidité, ont présenté une DMSIV semblable au traitement à l’ammoniac anhydre.

ESSAI I. 2. On a réalisé deux essais. Dans l’essai A on a étudié les facteurs de température, humidité et addition de graine crue de soja, comme source d’uréases, dans le traitement de la paille de blé avec de l’urée à des doses de 30 g/kg MS. Dans l’Essai B on a étudié les facteur humidité et addition de graine de soja crue dans le traitement avec l’urée de la paille de blé et d’orge à des doses de 50 g urée/kg MS. Les températures étudiées (15, 25 et 35°C), n’ont pas été limitantes lorsque le temps de réaction était de deux mois. La teneur en humidité de 30 p. 100 a été celle qui a donné les meilleurs résultats. L’effet de l’addition de graine crue de soja était fonction de la teneur en humidité du traitement, avec un effet positif lorsque l’humidité était basse (20 p. 100).
II. EVALUATION "IN VIVO" DE LA VALEUR NUTRITIVE DE LA PAILLE TRAITEE A L'UREE.

ESSAI II.1. On a realisé une étude de comparaison du traitement de la paille d'orge à l'ammoniac anhydride, avec les traitements à l'urée en solution sur pile ou au moment de mettre en balles. Le traitement à l'urée a présenté des résultats irréguliers, surtout au niveau de l'ingestion, étant donné la difficulté d'obtenir une dose précise de la solution d'urée. Le traitement à l'urée sur pile a présenté des résultats légèrement inférieurs, bien que comparables à ceux obtenus avec le traitement à l'ammoniac anhydride.

ESSAI II.2. On a étudié l'effet de la température ambiante (9, 10 et 28°C) sur l'efficacité du traitement à l'urée de la paille de blé avec des doses de 60 g/kg MS et une humidité de 35 p. 100. Les résultats ont montré que la température de 28°C ne limitait pas l'effet du traitement avec l'urée, mais la température à 28°C indiquait une tendance à favoriser l'effet du traitement.

ESSAI II.3. On a étudié l'effet de la dose d'urée (30, 40, 50 et 60 g/kg MS) dans le traitement de la paille de blé avec une humidité de 30 p. 100. Les traitements réalisés aux doses les plus élevées ont présenté une digestibilité de la matière organique (DMO) de la paille, légèrement supérieure, bien que les différences entre doses étaient minimum.

ESSAI II.4. On a réalisé deux Essais, pour lesquels on a déterminé seulement l'ingestion volontaire. Dans l'Essai A on a étudié l'effet de l'humidité, la forme d'application de l'urée (liquide ou solide) et l'addition de graine de soja crue dans le traitement à l'urée à 30 g/kg MS, de la paille de blé. Dans l'Essai B on a déterminé l'effet de l'addition de graine de soja crue dans le traitement à l'urée à 40 g/kg MS et humidité de 15 et 25 p. 100. L'addition de graine de soja crue a eu un effet seulement avec les traitements à basse humidité (15 et 20 p. 100). L'application de l'urée en forme solide a présenté des résultats légèrement inférieurs à ceux obtenus avec les traitements avec de l'urée liquide. Les teneurs en humidité de 20-30 p. 100 ont présenté les meilleurs résultats.

III. MODIFICATIONS DE LA TECHNIQUE D'APPLICATION DU TRAITEMENT A L'UREE.

ESSAI III.1. On a étudié le traitement de balles ronde de paille d'orge avec de l'urée liquide à des doses de 30, 50 et 70 g/kg MS appliquées en surface. Les résultats ont montré que le traitement était viable, mais on a observé une distribution irrégulière de l'urée et on recommande l'application de doses inférieures d'urée (30 et 50 g/kg MS).
ESSAI III.2. Il a été réalisé comme l’Essai II.3., sauf que l’on n’a pas couvert les piles après le traitement. Les résultats de la composition chimique et de la digestibilité estimée avec les méthodes biologiques, ont été semblables à ceux obtenus avec les traitements homologues de l’Essai II.3.

ESSAI III.3. On a comparé les traitements de la paille d’orge avec de l’urée liquide, avec ou sans recouvrement plastique, et le traitement avec de l’urée solide avec recouvrement plastique, avec des doses de 40 g/kg MS et une humidité finale de 25 p. 100. Les modifications ont été efficaces, et les meilleurs résultats ont été obtenus avec le traitement à l’urée liquide et recouvrement plastique, suivi du traitement à l’urée solide et recouvrement plastique, et en dernier lieu le traitement liquide sans recouvrement plastique.

IV. APPLICATION ZOOTECHNIQUE. ALIMENTATION DE GENISSES DE RENOUVELLEMENT AVEC DE LA PAILLE TRAITEE A L’UREE.

On a réalisé l’essai avec des génisses de renouvellement qui recevaient un régime constitué de 2kg de concentré et de la paille d’orge non traitée ou traitée à l’urée (40 g/kg MS et 30 p. 100 d’humidité) “ad libitum”. Le traitement avec de l’urée a entraîné une amélioration du gain moyen journalier de 60 g/jour, en relation avec le gain obtenu avec le régime constitué de paille non traitée.
El presente trabajo ha sido desarrollado en la Unidad de Producción Animal, Pastos y Forrajes del Servicio de Investigación Agraria de la Diputación General de Aragón (SIA-DGA) (ZARAGOZA), en base al proyecto nº PP86-0099-C02-02 del CICYT y con la ayuda de la beca concedida por el Consejo Asesor de Investigación (CONAI-DGA).
RESUMEN
Se llevaron a cabo una serie de experiencias para determinar las condiciones óptimas del tratamiento con urea, así como su viabilidad como método de mejora del valor nutritivo de la paja de cereal. Para ello, se realizaron cuatro tipos de estudios: I. Tratamientos en laboratorio; II. Ensayos "in vivo" realizados sobre moruecos castrados u ovejas adultas para determinar la digestibilidad y/o la ingestión voluntaria de la paja; III. Posibles modificaciones de la técnica de aplicación del tratamiento; y IV. Estudio de producción realizado sobre terneras de recría.

I. EVALUACION DE TRATAMIENTOS DE PAJA REALIZADOS EN LABORATORIO:

EXPERIENCIA I.1. Se estudió comparativamente el tratamiento de paja de cebada con amoniaco anhídrico, a dosis del orden de 40 g/kg MS y a humedades de 10, 20 y 30 p.100, con el tratamiento con urea a dosis de 43, 65 y 80 g/kg MS y a humedades de 20, 30 y 40 p. 100. El incremento de la humedad en el tratamiento con amoniaco no afectó a la digestibilidad de la materia seca in vitro (DMSIV) y los tratamientos con urea realizados a dosis de 65 y 80 g/kg MS y a 30 p. 100 de humedad presentaron una DMSIV similar al tratamiento con amoniaco anhídrico.

EXPERIENCIA I.2. Se llevaron a cabo dos ensayos. En el Ensayo A se estudiaron los factores temperatura, humedad y adición de haba cruda de soja, como fuente de ureas, en el tratamiento de paja de trigo con urea a dosis de 30 g/kg MS. En el Ensayo B se estudiaron los factores humedad y adición de haba cruda de soja en el tratamiento con urea de paja de trigo y cebada a dosis de 50 g urea/kg MS. Las temperaturas estudiadas (15, 25 y 35°C) no fueron limitantes cuando el tiempo de reacción era de dos meses. El contenido en humedad que mejores resultados proporcionó fue el de 30 p. 100. El efecto de la adición de haba cruda de soja dependió del contenido en humedad del tratamiento, teniendo un efecto positivo cuando dicha humedad era baja (20 p. 100).

II. EVALUACIONES "IN VIVO" DEL VALOR NUTRITIVO DE LA PAJA TRATADA CON UREA.

EXPERIENCIA II.1. Se estudió comparativamente el tratamiento de paja de cebada con amoniaco anhídrico con los tratamientos con urea en solución realizados en pila o al empacar. El tratamiento realizado con urea al empacar presentó resultados irregulares principalmente a nivel de ingestión, debido a la dificultad de una dosificación precisa de la solución de urea. El tratamiento con urea en pila presentó unos resultados ligeramente inferiores aunque comparables a los obtenidos en el tratamiento con amoniaco anhídrico.

EXPERIENCIA II.2. Se estudió el efecto de la temperatura ambiental (9, 10 y 28°C) sobre la eficacia del tratamiento de paja de trigo con urea a dosis de 60 g/kg MS y a humedad de 35 p.100. Los resultados mostraron que la temperatura de 9°C no limitaba el efecto del tratamiento con urea aunque hubo una tendencia a que la temperatura de 28°C favoreciera el efecto del tratamiento.
EXPERIENCIA II. 3. Se estudió el efecto de la dosis de urea (30, 40, 50 y 60 g/kg MS) en el tratamiento de paja de trigo a humedad de 30 p. 100. Los tratamientos realizados a mayores dosis presentaron una digestibilidad de la materia orgánica (DMO) de la paja ligeramente superiores, aunque las diferencias entre dosis eran mínimas.

EXPERIENCIA II. 4. Se realizaron dos Ensayos, en los cuales únicamente se determinaba la ingestión voluntaria. En el Ensayo A se estudió el efecto de la humedad, forma de aplicación de la urea (solución o sólida) y la adición de haba cruda de soja en el tratamiento con urea a 30 g/kg MS sobre paja de trigo. En el Ensayo B se determinó el efecto de la adición de haba cruda de soja en el tratamiento con urea a 40 g/kg MS y a humedades de 25 y 35 p. 100. La adición de haba cruda de soja únicamente tuvo efecto cuando se realizaba en los tratamientos a baja humedad (15 y 20 p. 100). La aplicación de la urea en forma sólida presentó unos resultados ligeramente inferiores a los obtenidos en los tratamientos con urea en solución. Los contenidos en humedad que mejores resultados presentaron fueron los de 20-30 p. 100.

III. MODIFICACIONES DE LA TECNICA DE APLICACION DEL TRATAMIENTO CON UREA.

EXPERIENCIA III. 1. Se estudió el tratamiento de rotopacas de paja de cebada con urea en solución a dosis de 30, 50 y 70 g/kg MS aplicada en la superficie. Los resultados mostraron que el tratamiento era viable, aunque se registró una distribución irregular de la urea, siendo recomendable la aplicación de dosis moderadas de urea (30 y 50 g/kg MS).

EXPERIENCIA III. 2. Se llevó a cabo de igual forma que la Experiencia II. 3, con la diferencia de que no se recubrieron las pilas tras el tratamiento. Los resultados de la composición química y de digestibilidad estimada mediante métodos biológicos fueron similares a los obtenidos en los tratamientos homólogos de la Experiencia II. 3.

EXPERIENCIA III. 3. Se estudió comparativamente los tratamientos de paja de cebada con urea realizados en solución, con recubrimiento o no de plástico y el tratamiento con urea en forma sólida con recubrimiento plástico, realizados a dosis de 40 g/kg MS y a humedad final de 25 p. 100. Las modificaciones fueron eficaces, presentando mejores resultados, el tratamiento con urea en solución y recubrimiento plástico, seguido por el tratamiento con urea en forma sólida y recubrimiento plástico y por último el tratamiento en solución sin recubrimiento plástico.

IV. APLICACION ZOOTECNICA, ALIMENTACION DE NOVILLAS DE REPOSICION CON PAJA TRATADA CON UREA.

Se realizó sobre terneras de recría las cuales recibían una dieta constituida por 2 kg de concentrado y paja de cebada sin tratar o tratada con urea (40 g/kg MS y 30 p. 100 de humedad) "ad libitum". El tratamiento con urea provocó una mejora en la ganancia media diaria de 69 g/día con respecto a la registrada en la dieta constituida por paja sin tratar.
INDICE DE MATERIAS

I- INTRODUCCION 1

1. CONSIDERACIONES GENERALES 2

2. MORFOLOGIA, ESTRUCTURA Y COMPOSICION QUIMICA DE LOS SUBPRODUCTOS DEL CEREAL 3
 2.1 MORFOLOGIA 3
 2.2 ESTRUCTURA CELULAR DE LA PLANTA 3
 2.2.1 ORGANIZACION CELULAR 3
 2.2.1.1 CELULA 3
 2.2.1.2 PARED CELULAR 3
 2.3 COMPONENTES QUIMICOS DE LA PARED CELULAR 4
 2.3.1 POLISACARIDOS 4
 2.3.1.1 CELULOSA 4
 2.3.1.2 HEMICELULOSAS 4
 2.3.1.3 SUSTANCIAS PECTICAS 5
 2.3.2 COMPOSTOS FENOLICOS ESTRUCTURALES 5
 2.3.3 PROTEINAS 5
 2.3.4 COMPONENTES NO ESTRUCTURALES 6
 2.3.5 RELACIONES INTERMOLECULARES 6
 2.4 TEJIDOS PRESENTES EN LOS DIFERENTES ALIMENTOS 6

3. DIGESTION DE LOS SUBPRODUCTOS EN LOS RUMIANTES 7
 3.1 MICROBIOLOGIA DEL RUMEN 7
 3.1.1 BACTERIAS 7
 3.1.2 PROTOZOOS 8
 3.1.3 HONGOS 9
 3.2 DIGESTION EN RUMEN 9
 3.2.1 METABOLISMO DE LOS HIDRATOS DE CARBONO 9
 3.2.1.1 ACIDOS GRASOS VOLATILES 10
 3.2.1.2 DIOXIDO DE CARBONO Y METANO 10
 3.2.2 METABOLISMO DE LOS COMPUESTOS NITROGENADOS 10
 3.2.3 METABOLISMO DE LOS LIPIDOS 11
 3.3 DEGRADACION DE LAS PAREDES CELULARES POR LOS MICROORGANISMOS 11
 3.3.1 DIGESTION DE LA CELULOSA 12
 3.3.2 DIGESTION DE LA HEMICELULOSA 12
 3.3.3 DIGESTION DE LA PECTINA 12
 3.3.4 PRODUCTOS FINALES DE LA DEGRADACION DE LAS PAREDES 12
 3.4 LIMITES DE LA DEGRADACION DE LAS PAREDES CELULARES 12
 3.4.1 FACTORES EXTERNOS 12
 3.4.2 FACTORES INTERNOS 13
 3.4.2.1 COMPOSTOS FENOLICOS DE LAS PAREDES 13
 3.4.2.2 LAS LIGNASAS Y EL CONTROL DE LA DEGRADACION DE LA PARED 13
 3.5 DIGESTION POSTRUMINAL 13

4. VALOR NUTRITIVO DE LA PAJA 15
 4.1 COMPOSICION QUIMICA 15
 4.2 VALOR NUTRITIVO 17
 4.3 FACTORES QUE INFLUYEN SOBRE LA CALIDAD DE LA PAJA 20
 4.3.1 ESPECIE 20
 4.3.2 VARIEDAD 20
 4.3.3 FRACCIONES BOTANICAS 20
 4.3.4 CLIMA 20
 4.3.5 PRACTICAS CULTURALES Y MANEJO 21
5. TECNICAS PARA LA MEJORA DEL VALOR NUTRITIVO DE LA PAJA PARA ALIMENTACION DE RUMIANTES
 5.1. SUPLEMENTACION 22
 5.2. TRATAMIENTO FISICO 24
 5.3. TRATAMIENTOS QUIMICOS 25
 5.3.1. DESCRIPCION DE LOS TRATAMIENTOS QUIMICOS 25
 5.3.1.1. TRATAMIENTO CON HIDROXIDO SODICO 26
 5.3.1.2. TRATAMIENTO CON AMONIACO 27
 5.4. TRATAMIENTOS BIOLOGICOS 28

6. TRATAMIENTO QUIMICO CONDICIONES NECESARIAS PARA EL TRATAMIENTO CON UREA 29
 6.1. CONDICIONES NECESARIAS PARA EL TRATAMIENTO CON ION AMONIO 29
 6.1.1. DOSIS 29
 6.1.2. HUMEDAD 31
 6.1.3. TEMPERATURA 34
 6.1.4. TIEMPO DE REACCION 34
 6.1.5. ADICION DE UREASA 35

7. MEJORA DEL VALOR NUTRITIVO MEDIANTE LOS TRATAMIENTOS QUIMICOS 37
 7.1. EFECTO DEL TRATAMIENTO SOBRE LA DIGESTIBILIDAD E INGESTION DE LA PAJA 37
 7.2. CONTENIDO NITROGENADO DE LA PAJA TRATADA Y SU UTILIZACION 40
 7.3. UTILIZACION DE LA PAJA TRATADA PARA DIETAS DE MANTENIMIENTO Y PRODUCCION 42

II. OBJETIVOS 44

III. PARTE EXPERIMENTAL 47
 - PARTE EXPERIMENTAL (1): METODOLOGIA GENERAL 48

1. DESCRIPCION DE LOS TRATAMIENTOS REALIZADOS 49
 1.1. TRATAMIENTO CON AMONIACO ANHIDRO 49
 1.2. TRATAMIENTO CON UREA 49
 1.2.1. TRATAMIENTO CON UREA EN SOLUCION ACUOSA EN PILA 49
 1.2.2. TRATAMIENTO CON UREA EN SOLUCION DURANTE EL EMPACADO 49
 1.2.3. TRATAMIENTO CON UREA EN FORMA SOLIDA 50
 1.2.4. TRATAMIENTO CON UREA Y ADICION DE UNA FUENTE DE UREASA 50

2. ENSAYOS DE DIGESTIBILIDAD E INGESTION VOLUNTARIA 50
 2.1. ANIMALES UTILIZADOS 50
 2.2. DIETA 50
 2.3. JAULAS UTILIZADAS 51
 2.4. MANEJO EXPERIMENTAL 51
 2.5. RECOGIDA Y PREPARACION DE MUESTRAS 51
 2.5.1. ALIMENTO OFRECIDO 51
 2.5.2. REHUSADO 52
 2.5.3. NECES 52
 2.5.4. ORINA 52
 2.6. CALCULO DE PARAMETROS DIGESTIVOS 52
 2.7. CALCULO DEL BALANCE NITROGENADO 54
 2.8. ANALISIS ESTADISTICOS 54

III. DETERMINACIONES ANALITICAS 54
 3.1. PREPARACION DE LAS MUESTRAS 54
 3.2. MEDIODOS ANALITICOS Y DETERMINACIONES QUIMICAS 55
 3.2.1. MATERIA SECA 55
 3.2.2. CENIZAS 55
 3.2.3. NITROGENO TOTAL 55
 3.2.4. FRACCIONAMIENTO DE LA FIBRA 55
 3.2.4.1. NDF 55
 3.2.4.2. ADF 58
 3.2.4.3. ADL 58

III. PARTE EXPERIMENTAL (2): EXPERIENCIAS 58

I. EVALUACION DE TRATAMIENTOS DE PAJA REALIZADOS EN LABORATORIO 59

1. ESTUDIO COMPARATIVO DE LOS TRATAMIENTOS DE PAJA DE CEBADA CON AMONIACO ANHIDRO Y CON UREA EN SOLUCION ACUOSA. EFECTO DE LA HUMEDAD Y DE LA DOSIS DE UREA 60
 1.1. OBJETIVO 60
 1.2. MATERIAL Y MÉTODOS 60
 1.3. RESULTADOS 61
 1.4. DISCUSION 66
 1.5. CONCLUSION 68

2. ESTUDIO DE LAS CONDICIONES OPTIMAS PARA EL TRATAMIENTO CON UREA EN SOLUCION 65
 2.1. OBJETIVO 65
 2.2. MATERIAL Y MÉTODOS 65
 2.3. RESULTADOS 65
 2.4. DISCUSION 65
 2.5. CONCLUSION 65

II. EVALUACIONES "in vivo" DEL VALOR NUTRITIVO DE LA PAJA DE CEREAL TRATADA CON UREA 90

2. INFLUENCIA DE LA ESTACION DEL AÑO EN LA EFICACIA DEL TRATAMIENTO CON UREA REALIZADO SOBRE PAJA DE TRIGO 98
 2.1. OBJETIVO 98
 2.2. MATERIAL Y MÉTODOS 98
 2.3. RESULTADOS 99
 2.4. DISCUSION 101
 2.5. CONCLUSION 102

3. INFLUENCIA DE LA DOSIS DE UREA SOBRE LA EFICACIA DEL TRATAMIENTO 103
 3.1. OBJETIVO 103
 3.2. MATERIAL Y MÉTODOS 103
 3.3. RESULTADOS 103
 3.4. DISCUSION 108
 3.5. CONCLUSION 108

4. INFLUENCIA DE LA HUMEDAD, DE LA ADICION DE UREASAS Y DE LA FORMA DE APLICACION DE LA UREA SOBRE LA EFICACIA DEL TRATAMIENTO 109
 4.1. OBJETIVO 109
 4.2. MATERIAL Y MÉTODOS 109
 4.3. RESULTADOS 111
 4.4. DISCUSION 128
 4.5. CONCLUSION 128
INDICE DE CUADROS

I- INTRODUCCION

1. Composición química (g/Kg MS) de la paja de cereal según el procedimiento de WEENDE 16
2. Composición química (g/100 g MS) de algunos subproductos determinados siguiendo el procedimiento de fibra detergente de GOERING y VAN SOEST (1970) 17
3. Contenido mineral de diversos tipos de paja 18
4. Contenido en Proteína bruta (PB), Fibra Acido Detergente (ADF) y digestibilidad de la Materia Orgánica "in vitro" (DMOIV) de distintos tipos de paja 19
5. Composición química de las fracciones de la paja de trigo y de cebada 21
6. Composición química (g/Kg MS) de paja de cebada cosechada en diferentes fechas 21
7. Efecto del tratamiento sobre la digestibilidad de la materia seca (DMS), la ingestión y la ganancia media diaria (GMD) registrada en ovinos que reciben una dieta constituida por paja en distintas proporciones 30
8. Condiciones óptimas del tratamiento con amoníaco recomendadas por diversos autores 32
9. Condiciones óptimas para el tratamiento con urea, según diversos autores 33
10. Tiempos de reacción necesarios para el tratamiento con amoníaco, en función de la temperatura ambiental 35
11. Coeficientes de digestibilidad de la materia orgánica (DMO %) y materia seca ingerida (MSI) (g MS/Kg PV 0.75) obtenidos en diversos estudios 38

II- PARTE EXPERIMENTAL

I.1.1. Esquema experimental seguido en la Experiencia I.1 sobre muestras de 2 Kg de paja de cebada 60
I.1.2. Composición química (% MS) de la paja de cebada tratada con amoníaco anhidro (NH₃-anhidro) y con urea a tres dosis y tres niveles de humedad (Experiencia I.1) 62
I.2.1. Diseño experimental seguido en el Ensayo A sobre paja de trigo tratado con urea (30 g/Kg MS) a distintas condiciones de humedad, temperatura y adición de haba cruda de soja (Experiencia I.2) 70
I.2.2. Diseño experimental seguido en el Ensayo B sobre paja de trigo y de cebada tratada con urea (Experiencia I.2) 71
I.2.3. Significaciones estadísticas resultantes del Análisis de la Varianza realizado en el Ensayo A de la Experiencia I.2 73
II.1.1. Características de los tratamientos con amoníaco anhído y con urea en solución, aplicada en pila o al empacar, realizados sobre paja de cebada (Experiencia II.1) 91

II.1.2. Composición química (% del concentrado y de la paja de cebada sin tratar (testigo) y tratada con amoníaco anhído o con urea en solución, aplicada en la pila o al empacar (Experiencia II.1) 92

II.1.3. Número de animales y características de la dieta ingerida por los moruecos en la fase de digestibilidad (Experiencia II.1) 93

II.1.4. Coeficientes de digestibilidad e ingestión voluntaria de paja de cebada sin tratar (testigo) y tratada con amoníaco anhído o con urea en solución, aplicada en pila o al empacar (Experiencia II.1) 94

II.1.5. Balance de Nitrógeno de los moruecos obtenido en la fase de digestibilidad (en muestras desecadas a 60°C) de la paja sin tratar (testigo) y tratada con amoníaco anhído o con urea en solución, aplicada al empacar o en pila (Experiencia II.1) 95

II.2.1. Características de los tratamientos con urea realizados sobre paja de trigo en verano, otoño e invierno (Experiencia II.2) 98

II.2.2. Composición química (% MS) del concentrado, de la paja de trigo sin tratar (testigo) y tratada con urea en tres épocas del año (Experiencia II.2) 99

II.2.3. Características de las dietas ingeridas por los moruecos en la fase de digestibilidad (Experiencia II.2) 100

II.2.4. Coeficientes de digestibilidad e ingestión voluntaria de paja de trigo sin tratar (testigo) y tratada con urea en tres épocas del año (Experiencia II.2) 100

II.3.1. Composición química (% MS) del concentrado y de la paja de trigo sin tratar (testigo) y tratada con urea a dosis crecientes (Experiencia II.3) 104

II.3.2. Características de las dietas ingeridas en la fase de digestibilidad (Experiencia II.3) 104

II.3.3. Coeficientes de digestibilidad e ingestión voluntaria de paja de trigo sin tratar (testigo) y tratada con urea, determinados en ensayos "in vivo" (Experiencia II.3) 105

II.3.4. Tratamientos de paja de trigo con urea en solución acuosa a cuatro dosis crecientes. Balance de nitrógeno en corderos adultos a mantenimiento (Experiencia II.3) 106

II.4.1. Características de los ensayos y tratamientos realizados en la Experiencia II.4 110

II.4.2. Composición química y digestibilidad de la MS de la paja de trigo tratada con urea a 30 g/Kg MS (Ensayo A) y de la paja de cebada tratada con urea a 40 g/Kg MS (Ensayo B), con o sin adición de 30 g de haba cruda de soja/Kg MS, en función de la humedad 112

II.4.3. Ingestión (g MS/Kg PV₇₈) de paja tratada con urea, en ovejas adultas, vacas y secas de raza "Raza Aragonesa" (Experiencia II.4) 121

II.2.1. Composición química de la paja de trigo tratada a cuatro dosis de urea y 30 p. 100 de humedad sin recubrimiento plástico (Experiencia III.2) 137

III.3.1. Condiciones en que se llevaron a cabo los tratamientos realizados en la Experiencia III.3 144

III.3.2. Composición química (% MS) de la paja de cebada sin tratar (testigo) y tratada con urea en tres tipos de tratamientos 145

III.3.3. Características de las dietas ingeridas en la fase de digestibilidad (Experiencia III.3) 146

III.3.4. Coeficientes de digestibilidad e ingestión voluntaria de paja de cebada sin tratar (testigo) y tratada con urea (Experiencia III.3) 146

IV.1. Características de los lotes experimentales y composición de las dietas estudiadas en el Experiencia IV 151

IV.2. Composición química y DMSIV de la paja sin tratar (testigo) y tratada con urea ofrecida a las terneras de reposición 151
ÍNDICE DE FIGURAS

<table>
<thead>
<tr>
<th>número</th>
<th>descripción</th>
<th>página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Grado de ureolisis observado en paja de cebada tratada con urea, a dosis crecientes y con tres niveles de humedad</td>
<td>63</td>
</tr>
<tr>
<td>1.1.2</td>
<td>DMSIV (a) y DMS-celulasas (b) de paja de cebada tratada con amoníaco anhidro y con urea a tres niveles de humedad</td>
<td>64</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Porcentaje de Nitrógeno retenido en la paja de cebada tratada con amoníaco anhidro y urea a tres niveles de humedad. Muestras oreadas 24 horas</td>
<td>65</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Porcentaje de Nitrógeno retenido en la paja de cebada tratada con amoníaco anhidro y con urea a tres niveles de humedad. Muestras desecadas a 60°C</td>
<td>65</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Contenidos en NDF (a) y NT (b) de paja de trigo tratada con urea a cuatro humedades, con o sin haba cruda de soja (ureasas) y sometida a tres temperaturas</td>
<td>72</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Grado de ureolisis registrado en paja de trigo tratada con urea, a cuatro humedades, con o sin haba cruda de soja (ureasas) y sometida a tres temperaturas</td>
<td>74</td>
</tr>
<tr>
<td>1.2.3</td>
<td>DMSIV (a), DMS-celulasas (b) y DMS-in sacco (c) obtenidas en paja de trigo tratada con urea, a cuatro humedades, con o sin haba cruda de soja (ureasas) y sometida a tres temperaturas</td>
<td>76</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Retención de Nitrógeno registrado en la paja de trigo oreada (ureasa Ore.) o desecada a 60°C (ureasa Des.) tras el tratamiento con urea, a cuatro humedades, con o sin haba cruda de soja y sometidas a temperatura de 15°C (a), 25°C (b) y 35°C (c)</td>
<td>77</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Contenido en NDF de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad</td>
<td>78</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Efecto de la adición de haba cruda de soja (ureasa) sobre el contenido en NDF de paja de cebada tratada con urea a tres niveles de humedad</td>
<td>79</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Contenido en NT de paja de trigo y de cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad</td>
<td>79</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Efecto de la adición de haba cruda de soja (ureasa) sobre el contenido en NT de paja de cebada tratada con urea a tres niveles de humedad</td>
<td>80</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Efecto del contenido de humedad sobre el grado de ureolisis registrado en la paja de trigo y cebada tratada con urea</td>
<td>81</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Efecto de la adición de haba cruda de soja (ureasa) sobre el grado de ureolisis registrado en la paja de cebada tratada con urea a tres niveles de humedad</td>
<td>81</td>
</tr>
</tbody>
</table>
I.2.11. DMSIV de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad 82
I.2.12. Efecto de la adición de haba cruda de soja (ureasa) sobre la DMSIV de la paja de cebada tratada con urea a tres niveles de humedad 83
I.2.13. DMS-celulasa de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad 83
I.2.14. Efecto de la adición de haba cruda de soja (ureasa) sobre la DMS-celulasa de paja de cebada tratada con urea a tres niveles de humedad 84
I.2.15. DMS-in sacco de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad 85
I.2.16. Efecto de la adición de haba cruda de soja (ureasa) sobre la DMS-in sacco de paja de cebada tratada con urea a tres niveles de humedad 85
II.4.1. Contenidos en NDF (a), NT (b) y N-urea residual (c) de paja de trigo tratada con urea aplicada en solución (Sl.) o sólida (Sd.), con o sin haba cruda de soja (ursa.), en función de la humedad 85
II.4.2. Contenidos en NDF (a), NT (b) y N-urea residual (c) de paja de trigo tratada con urea a cuatro humedades, con o sin haba cruda de soja (ursa.), en función de la forma de aplicación 113
II.4.3. Contenidos en NDF (a), NT (b) y N-urea residual (c) de paja de trigo tratada con urea, a cuatro humedades y dos formas de aplicación, sólida (Sd.) o solución (Sl.), en función de la adición de haba cruda de soja (ursa.) 114
II.4.4. Grado de ureólisis registrado en la paja de trigo tratada con urea, en función de la humedad (a), de la forma de aplicación, sólida (Sd.) o solución (Sl.), (b) y de la adición de haba cruda de soja (ursa.) 116
II.4.5. Efecto de la humedad sobre la DMSIV (a), DMS-celulasa (b) y DMS-in sacco (c) de paja de trigo tratada con urea, con dos formas de aplicación, sólida (Sd.) o solución (Sl.), con o sin haba cruda de soja (ursa.) 117
II.4.6. Efecto de la forma de aplicación sobre la DMSIV (a), DMS-celulasa (b) y DMS-in sacco (c) de paja de trigo tratada con urea, a cuatro humedades, con o sin haba cruda de soja (ursa.) 118
II.4.7. Efecto de la adición de haba cruda de soja sobre la DMSIV (a), DMS-celulasa (b) y DMS-in sacco (c) de paja de trigo tratada con urea, a cuatro humedades y dos formas de aplicación, sólida (Sd.) o solución (Sl.) 119
II.4.8. Contenidos en NDF (a), ADF (b) y ADL (c) de paja de cebada tratada con urea, a dos humedades, con o sin haba cruda de soja 120
II.4.9. Contenidos en NT (a), N-urea residual (b) y grado de ureólisis (c) de paja de cebada sin tratar (testigo) y tratada con urea, a dos humedades, con o sin haba cruda de soja 123
II.4.10. Valores de DMSIV (a) y DMS-celulasa (b) de paja de cebada sin tratar (testigo) y tratada con urea, a dos humedades, con o sin haba cruda de soja 125
II.4.11. Ingestión de paja (g MS/Kg PV) de cebada sin tratar (testigo) y tratada con urea, a dos humedades, con o sin adición de haba cruda de soja 126
III.1.1. Contenido en MS de los rotopacas de cebada sin tratar (testigo) y tratadas a tres dosis de urea y a 25 % de humedad, en función de la localización de la muestra 131
III.1.2. Contenido en NT (a) y grado de ureólisis (b) registrados en los rotopacas de cebada tratadas a tres dosis de urea y a 25 % de humedad, en función de la localización de la muestra 132
III.1.3. Contenido en NDF de las rotopacas de cebada sin tratar (testigo) y tratadas a tres dosis de urea y a 25 % de humedad, en función de la localización de la muestra 133
III.1.4. Coeficientes de digestibilidad de la MS estimados mediante los métodos "in vitro" (a), "celulasa" (b) e "in sacco" (c) de las rotopacas de cebada sin tratar (testigo) y tratadas con urea 134
III.2.1. Grado de ureólisis registrado en la paja de trigo tratada con cuatro dosis de urea, sin recubrimiento plástico 138
III.2.2. Coeficientes de digestibilidad de la MS estimados mediante los métodos "in vitro" (a), "celulasa" (b) de la paja de trigo tratada con cuatro dosis de urea, sin recubrimiento plástico 139
III.2.3. Contenido en NDF de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico 140
III.2.4. Contenido en NT de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico 140
III.2.5. Grado de ureólisis de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico 141
III.2.6. Porcentaje de retención de N en la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico 141
III.2.7. Coeficientes de digestibilidad de la MS determinados mediante los métodos "in vitro" (a) y "celulasa" (b) de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico 142
IV.1. Ingestión de paja (g MS/Kg PV) sin tratar (testigo) y tratada con urea, registrada en terneras de razas Parda Alpina y Pirenaica (Experiencia IV) 152
IV.2. Ganancia media diaria (GMD) (g/d) registradas en terneras de cracimiento de razas Parda Alpina y Pirenaica (Experiencia IV) 153
1- INTRODUCCION
1. CONSIDERACIONES GENERALES

Los residuos lignocelulósicos, en particular la paja de cereal, se encuadran dentro del grupo de subproductos de alto contenido en fibra y bajo en nitrógeno. Estas características limitan su utilización como alimento, incluso para los rumiantes; sin embargo su producción excedentaria y el interés, cada vez mayor, del aprovechamiento de alimentos alternativos a los convencionales, justifican el interés actual de optimizar su utilización.

La rentabilidad o conveniencia de la utilización de la paja como alimento para los rumiantes está determinada por las condiciones del mercado y la disponibilidad de otros alimentos, así como por la posibilidad de otros usos alternativos (energía, papel, fibras...).

El área mediterránea se caracteriza por tener una baja producción forrajera que, además, está sometida a una fuerte estacionalidad. Consecuentemente, se registra un déficit de forraje para la alimentación de los rumiantes, siendo más acusado en determinadas épocas. En tales circunstancias la paja de cereal puede jugar un papel estratégico como alimento forrajero (CHENOST y REINIGER, 1989).

Sin embargo, la inclusión de elevadas proporciones de paja en la dieta del rumiante plantea problemas como consecuencia de su baja digestibilidad e ingestión, así como a su pobre contenido en vitaminas, minerales y proteína bruta. Por ello, uno de los principios básicos de las dietas constituidas por paja es el aporte de una suplementación adecuada que permita unas condiciones en el rumen óptimas para obtener un aprovechamiento máximo de la paja (PRESTON y LENG, 1984).

Por otra parte se han estudiado las posibles mejoras de la digestibilidad e ingestión de paja mediante tratamientos físicos, biológicos y químicos (SUNDSTOL y OWEN, 1984). El tratamiento de forrajes pobres con agentes químicos es una técnica que puede ser aplicada en sistemas de producción de rumiantes que presentan periodos estacionales de escasez de pastos o de panura en reservas forrajeras. En estas situaciones, dietas que contienen una alta proporción de paja tratada podría garantizar una alimentación satisfactoria del ganado y a la vez permitiría valorizar con alta eficiencia unos recursos alimenticios disponibles en numerosas áreas.

2. MORFOLOGIA, ESTRUCTURA y COMPOSICION QUIMICA DE LOS SUBPRODUCTOS DEL CEREAL

2.1 MORFOLOGÍA

La paja es el residuo del cereal recuperable después de la separación del grano. Básicamente está formada por los tallos, que engloba los nudos y los entrenudos, y las hojas, que a su vez incluyen la vaina (envuelve la parte inferior del entrenudo) y el limbo (parte adrasa). La paja también contiene una proporción limitada de glumas y otras fracciones menores.

La proporción de cada uno de dichos componentes en la planta global es muy variable y depende de diversos factores, tales como altura del corte, método de la cosecha (CAPPER et al., 1986), momento del corte (LAREDO y MINSON, 1973), especie y cultivar (RAMANZIN et al., 1986; CAPPER et al., 1986; TUAIH et al., 1986; BHARGAVA et al., 1988; SHAND et al., 1987). Aunque de una manera global se puede considerar que los tallos suponen entre un 40 y 90 p. 100 del total de la paja (THIAGO y KELLAWAY, 1982; THEANDER y AMAN, 1984). La proporción de hojas es inferior a la de los tallos, oscilando entre 19 y 40 p. 100 (THIAGO y KELLAWAY, 1982). El contenido en partes residuales (raquis, glumas, ...) es pequeño y varía entre 2 y 10 p. 100 (THEANDER y AMAN, 1984).

2.2 ESTRUCTURA CELULAR DE LA PLANTA

2.2.1 ORGANIZACION CELULAR

2.2.1.1 CELULA

La célula se puede dividir en constituyentes solubles y en pared celular. Debido a que la paja de cereal se caracteriza por su elevado contenido en pared celular, en el presente capítulo únicamente se tratará dicho contenido.

2.2.1.2 PARED CELULAR

En la pared se distinguen tres láminas principales de una célula:

A.- La lámina media: está situada entre dos células adyacentes. Está formada principalmente por pectina, aunque en los tejidos lignificados también contiene lignina

B.- La pared celular primaria: se forma en las primeras fases del crecimiento. Es elástica y flexible. Está formada por celulosa, hemicelulosa y sustancias pécticas y puede también lignificarse.

C.- La pared celular secundaria: se forma tras el crecimiento de la planta.
Reduce la cavidad de la célula y generalmente es rígida. Está constituida fundamentalmente por celulosa, hemicelulosa y lignina.

La estructura de la pared celular es bastante constante, presentando un compuesto fibroso constituido por microfibrillas de celulosa, las cuales están rodeadas por una matriz amorfa. Dicha matriz está formada, principalmente, por polisacáridos.

Las microfibrillas de celulosa están configuradas en láminas concéntricas, paralelas a la superficie de la célula, y su posición varía entre las láminas.

2.3 COMPONENTES QUÍMICOS DE LA PARED CELULAR

La clasificación de los componentes químicos está basada en su fraccionamiento químico (solubilidad en diversos solventes) y en su estructura química.

2.3.1 POLISACARIDOS

2.3.1.1 CELULOSA

Es un homopolisacárido formado por largas cadenas lineales de D-glucosa unidas por enlaces β(1-4).

De forma natural, las cadenas de celulosa están estrechamente empaquetadas en agregados compactos formando fibrillas, las cuales, a su vez, están rodeadas por una matriz de otros constituyentes de la pared celular, confiriéndoles una forma cristalina. Diversos puentes de hidrógeno intra e inter polímeros le dan solidez a la estructura.

La celulosa se sintetiza a lo largo del crecimiento de la célula, fuera de la membrana plasmática. Su contenido aumenta de la pared celular primaria a la secundaria. Debido a su dureza y rigidez, contribuyen al soporte de la misma.

2.3.1.2 HEMICELULOSAS

Las hemicelulosas están formadas por heteropolisacáridos. Se pueden dividir en tres grandes grupos:

A.- Xilanos: Forman un esqueleto carbonado consistente en enlaces β(1-4) de residuos de xilopirosanos.

B.- Glucanos: La mayoría de ellos están compuestos por enlaces β(1-4) de glucosa, generalmente ramificadas con (1-6) xilosa. A su vez pueden presentar puentes de hidrógeno con la celulosa.

C.- Manosas: El polímero central son hexosas unidas con enlaces β(1-4) y también contienen ramificaciones cortas con otros glucídios.

Las hemicelulosas presentan un grado de polimerización inferior al de la celulosa, aunque presentan una conformación similar y, por tanto, pueden asociarse estrechamente con la celulosa.

Las hemicelulosas son importantes para la flexibilidad y elasticidad de la pared celular. Su contenido disminuye desde la pared primaria a la secundaria, localizándose principalmente en paredes lignificadas, ya que presentan una estrecha asociación con la lignina. Por otra parte, su contenido y estructura dependen del tipo de tejido, de los órganos, del origen botánico, de la edad y del tipo de cultivo (BAILEY, 1973).

2.3.1.3 SUSTANCIAS PÉCTICAS

Las sustancias pecticas presentan, en general, un peso molecular relativamente bajo. Una de las sustancias más conocidas es el ácido pectico que está formado por unidades de ácido α(1-4) D-galacturónico con residuos de raminosa. Los grupos ácidos pueden estar esterificados por metanol y/o neutralizados por Ca⁺⁺, K⁺ o Na⁺.

Las sustancias pecticas se localizan fundamentalmente en la lámina media y actúan como cemento entre las células y entre otros componentes de la pared.

2.3.2 COMPUESTOS FENOLICOS ESTRUCTURALES

El principal compuesto fenólico es la lignina. Es un polímero de elevado peso molecular formado por unidades fenilpropano. Varía con las características intrínsecas de las especies y probablemente con la maduración de la planta. Según VAN SOEST (1982) el término lignina debería restringirse a formas nutricionales de elevado peso molecular ya que pueden estar constituidas por diversas proporciones de unidades de monómeros diferentes y, por tanto, no es una única sustancia sino una "clase de sustancias".

Los precursores de la lignina son los ácidos hidroxicinámicos (p-cumarico, ferulico y sinapico) que son reducidos enzimáticamente a alcoholes. Dichos alcoholes son condensados mediante un proceso oxidativo en macromoléculas celulares tridimensionales.

Las ligninas se sintetizan al final del crecimiento de la pared celular. Su contenido es alto en la lámina media y disminuye cerca de la pared celular secundaria. La composición, estructura y contenido está en parte determinado por caracteres genéticos aunque también influyen el tipo de tejido, y de órganos, el origen botánico, la edad de la planta y los factores ambientales (GRENET y BESLE, 1990).

Las funciones de la lignina son esenciales para la planta y, junto con otros componentes, da una gran resistencia al ataque microbiano, además de proporcionar a las paredes celulares un soporte estructural y una resistencia mecánica.

2.3.3 PROTEINAS

Las proteínas de la pared celular son principalmente glucoproteínas que son ricas en L-hidroxi-prolin (DEY y BRINSON, 1984).
2.3.4 COMPONENTES NO ESTRUCTURALES

Los componentes no estructurales son compuestos indigestibles y/o interfieren en la actividad celulolítica de los microorganismos del rúmen. Los principales componentes son:

A.- Silice: Es utilizado como elemento estructural y complementa la lignina.

B.- Taninos: Son sustancias polifénolicas sintetizadas a partir del ácido p-cumaríaco, aunque no presentan la estructura de fenilpropanóico. Se pueden dividir en taninos hidrolizables y condensables (VAN SOEST, 1982).

C.- Cumarinos e isoflavinas: Son sustancias fenilpropanoides que se encuentran principalmente en las legumbres (VAN SOEST, 1982).

D.- Ceras, cutinas y suberina: Consisten principalmente en largas cadenas de alcohol y ácidos más o menos hidrolizados y completamente esterificados.

E.- Lípidos esenciales: son éteres, ésteres o fenoles volátiles, terpenos, que incluyen saponinas, y esteroides (GRENET y BESLE, 1990).

2.3.5 RELACIONES INTERMOLECULARES

No se ha demostrado que la celulosa está unida covalentemente a las ligninas o a glucanos no celulícos. Las microfibrillas de celulosa están embebidas en una matriz de glucoproteínas, pectinas, hemicelulósas y ligninas (LAMPART, 1986). Se ha observado diversas uniones covalentes entre las ligninas y otros polímeros: hemicelulosa (THEANDER y AMAN, 1984), pectinas, taninos y posiblemente proteínas (WHITMORE, 1982).

2.4 TEJIDOS PRESENTES EN LOS DIFERENTES ALIMENTOS

Los tejidos están formados por diversos tipos de células cuyas paredes pueden presentar diferencias en la composición química y en las propiedades físicas (GORDON et al., 1985), así como en la resistencia al ataque de los microorganismos (CHESSEON et al., 1986; GRENET y DEMARQUILLY, 1987).

Las células que lignifican sus paredes están destinadas a proveer el soporte debido a sus propiedades mecánicas y a la resistencia de sus paredes. Por otra parte, también facilitan el movimiento del agua ya que la red de lignina es hidrófoba y canaliza los fluidos.

La lignificación permite una clasificación simple y dicotómica de los sistemas de conductos y de soporte. Los tejidos del soporte consisten en colágena, cuyas paredes son esencialmente glucídicas, hidrófilas, plásticas y capaces de criscer; y en esclerénquina, con paredes lignificadas y rígidas. Los tejidos conductores están formados por floema, con paredes glucídicas, y de xilema con paredes lignificadas.

3. DIGESTION DE LOS SUBPRODUCTOS EN LOS RUMIANTES

3.1 MICROBIOLOGIA DEL RUMEN

Las condiciones del rúmen son muy estables, con una temperatura de alrededor de 39° C, con escasa presencia de oxígeno (O₂) y un pH bastante estable (principalmente en animales alimentados con forraje). La presión osmótica oscila alrededor de niveles isotónicos ya que las concentraciones de iones están reguladas por la dilución, absorción y paso de la digesta (VAN SOEST, 1982). Dichas condiciones conducen a que el rúmen se comporte como un sistema de fermentación continuo, favoreciendo la proliferación de una población microbiana extremadamente densa y activa, con una población media de 10¹⁰ bacterias y 10⁵-10⁶ protozoos/ml de líquido ruminal (HUNGATE, 1966).

3.1.1 BACTERIAS

Las bacterias del rúmen son, predominantemente, anaerobias estrictas aunque puede haber algunas bacterias anaerobias facultativas (HUNGATE, 1966).

El desarrollo de la microflora del rúmen está afectado por la localización geográfica, por los contactos con los otros animales y por la dieta (STEWART et al., 1988). Por otra parte, diversos estudios han demostrado que la flora del rúmen de los animales jóvenes contiene una mayor variedad de especies que la de los animales adultos (STEWART, 1990).

La preponderancia de unas especies u otras depende de las condiciones anaeróbicas, de la velocidad de tránsito de la digesta y de la presencia de distintos sustratos en la dieta (STEWART, 1990). En dietas constituidas exclusivamente por forraje las especies que predominan son las celulolíticas y hemicelulolíticas (BALDWIN y ALISON, 1983). Cuando se suministran dietas ricas en hidratos de carbono fácilmente fermentables hay un marcado descenso del pH y consecuentemente una reducción de la población celulolítica y de su actividad (THRSKOV y FRASER, 1976), a la vez que se produce un aumento de las bacterias amilolíticas y acidófilas (OSBURN et al., 1970).

Las funciones más importantes de las bacterias del rúmen, según STEWART (1990), son:

A.- Fermentación de la fibra y otros polímeros del forraje en ácidos grasos volátiles (AGV), dióxido de carbono (CO₂) y metano (CH₄).

B.- La fermentación se compagina con el crecimiento microbiano, siendo la proteína celular microbiana la fuente más importante de proteína para el hospedador.

C.- Sintetizan ciertas vitaminas que pueden ser utilizadas por el hospedador.
3.1.3 HONGOS

ORPIN en 1976, demostró que algunos hongos estrictamente anaerobios formaban parte de los microorganismos del rumen. Posteriormente, se observó que los hongos anaerobios del rumen colonizaban los tejidos lignocelulósicos, y por tanto, podían tener una cierta habilidad para degradar los componentes de la pared celular.

Los hongos crecen sólo en un rango de temperatura entre 33-41°C y son estrictamente anaerobios (ORPIN, 1976; LOWE et al., 1987). Como fuente de energía son capaces de utilizar un amplio rango de azúcares solubles así como muchos polisacáridos, excepto la pectina y el ácido galacturónico. Además producen las enzimas necesarias para la despolimerización de la celulosa y la hemicelulosa y para hidrolizar los oligosacáridos libres. Los productos finales de la fermentación son formato, acetato, lactato, etanol, CO₂ y H₂.

En ensayos "in vitro" se ha demostrado que los hongos son capaces de solubilizar una alta proporción de materia seca e, incluso, tejidos altamente lignificados. Según diversos autores (BAUCHOP, 1981; GRENET Y BARRY, 1988; AKIN et al., 1989), colonizan preferentemente tejidos lignificados AKIN et al. (1989), anotaban que los hongos podían presentar una eficacia de degradación igual o mayor que la de la población microbiana del rumen. Por otra parte, WALLACE y JOBLIN (1985) sugirieron que los hongos producían una proteasa extra celular que podría ser necesaria para la hidrólisis de la extensina, una proteína muy común en la pared celular.

Finalmente, en estudios "in vivo" no se conoce muy bien el papel que tienen en la degradación de la pared celular y en la proteólisis. Tampoco es evidente que sean capaces de utilizar la lignina como fuente de carbono (ORPIN, 1984; GORDON y PHILIPS, 1989).

El ecosistema del rumen presenta un ambiente microbiano muy complejo formado por un gran número de bacterias, hongos y protozoos. Dichos microorganismos presentan numerosas interacciones cuyos efectos varían entre ser esenciales a ser de escasa importancia. El estudio de dichas interacciones es muy complejo y actualmente se supone que contribuyen a una mayor estabilidad y adaptación del ecosistema del rumen (DORE, 1990).

3.2 DIGESTION EN EL RUMEN

3.2.1 METABOLISMO DE LOS HIDRATOS DE CARBONO

Según RUSSELL y HESPELL (1981), el metabolismo de los hidratos de carbono se puede dividir en tres fases. Una primera fase corresponde al ataque o colonización de los microorganismos a las partículas del alimento y posterior disociación de los polímeros. Una segunda fase sería la hidrólisis de dichos polímeros a pequeños sacáridos. La última fase, correspondería a la inmediata absorción y metabolización de estos sacáridos por los microorganismos.
3.1.3 HONGOS

ORPIN en 1976, demostró que algunos hongos estrictamente anaerobios formaban parte de los microorganismos del rumen. Posteriormente, se observó que los hongos anaerobios del rumen colonizaban los tejidos lignocelulósicos, y, por tanto, podían tener una cierta habilidad para degradar los componentes de la pared celular.

Los hongos crecen sólo en un rango de temperatura entre 33-41°C y son estrictamente anaerobios (ORPIN, 1976; LOWE et al., 1987). Como fuente de energía son capaces de utilizar un amplio rango de azúcares solubles así como muchos polisacáridos, excepto la pectina y el ácido galacturónico. Además producen las enzimas necesarias para la despolimerización de la celulosa y la hemicelulosa y para hidrolizar los oligosacáridos libres. Los productos finales de la fermentación son formato, acetato, lactato, etanol, CO₂ y H₂.

En ensayos "in vitro" se ha demostrado que los hongos son capaces de solubilizar una alta proporción de materia seca e, incluso, tejidos altamente lignificados. Según diversos autores (BAUCHOP, 1981; GRENET Y BARRY, 1988; AKIN et al., 1989), colonizan preferentemente tejidos lignificados. AKIN et al. (1989), anotaron que los hongos podían presentar una eficacia de degradación igual o mayor que la de la población microbiana del rumen. Por otra parte, WALLACE y JOBLIN (1985) sugirieron que los hongos producían una proteasa extra celular que podía ser necesaria para la hidrólisis de la extensina, una proteína muy común en la pared celular.

Finalmente, en estudios "in vivo" no se conoce muy bien el papel que tienan en la degradación de la pared celular y en la proteólisis. Tampoco es evidente que sean capaces de utilizar la lignina como fuente de carbono (ORPIN, 1984; GORDON y PHILLIPS, 1989).

El ecosistema del rumen presenta un ambiente microbiano muy complejo formado por una gran número de bacterias, hongos y protozoos. Dichos microorganismos presentan numerosas interacciones cuyos efectos variarían ser esenciales a ser de escasa importancia. El estudio de dichas interacciones es muy complejo y actualmente se supone que contribuyen a una mayor estabilidad y adaptación del ecosistema del rumen (DORE, 1990).

3.2 DIGESTIÓN EN EL RUMEN

3.2.1 METABOLISMO DE LOS HIDRATOS DE CARBONO

Según RUSSELL y HESPELL (1981), el metabolismo de los hidratos de carbono se puede dividir en tres fases. Una primera fase corresponde al ataque o colonización de los microorganismos a las partículas del alimento y posterior disociación de los polímeros. Una segunda fase sería la hidrólisis de dichos polímeros a pequeños sacáridos. La última fase, correspondería a la inmediata absorción y metabolización de estos sacáridos por los microorganismos.

Los sacáridos son convertidos en monosacáridos mediante la acción de diferentes enzimas y tanto las pentosas como las hexosas son convertidas a piruvato a través de la vía glucolítica. Los principales componentes finales son ácidos grasos de cadena corta (AGV), dióxido de carbono (CO₂) y metano (CH₄) y a su vez, la población microbiana utiliza la energía (ATP) y los ácidos grasos necesarios para sus necesidades.

3.2.1.1 ÁCIDOS GRASOS VOLÁTILES (AGV)

La cantidad y proporción molar de los ácidos grasos existentes en el rumen dependen de numerosos factores, tales como nivel de ingestión, relación del forraje:concentrado, frecuencia de alimentación, suplementación con grasas y modificación de la forma física de la dieta (SUTTON, 1979; THOMAS y ROOK, 1981). Por otra parte, la cantidad de AGV producidos es proporcional a la cantidad de substrato carbonado fermentado en rumen. PETERS et al. (1989), anotaban que el principal factor ambiental del rumen que afecta a la producción de dichos ácidos es el pH aunque la osmoriedad y la concentración de ácido propiónico también son factores muy importantes.

En general, las proporciones de los AGV son, de mayor a menor, (INRA 1978): ácido acético (60-70 p. 100), ácido propiónico (15-20 p. 100) ácido butírico (10-15 p. 100) y los ácidos isobutírico, metilbutírico, valérico e isovalérico (2-5 p. 100). Sin embargo, la relación forraje:concentrado determina en gran medida dicha proporción. En raciones eminentemente forrajeras predomina el ácido acético (INRA, 1978; KAUFMANN et al., 1980), mientras que en dietas predominantemente concentradas hay una alta proporción de ácido propiónico y butírico (VAN SOEST, 1982).

3.2.1.2 DIOXIDO DE CARBONO Y METANO (CO₂ Y CH₄)

El CO₂ proviene de los bicarbonatos aportados por la saliva y de numerosos procesos fermentativos. Una parte de dicho gas es reducido a CH₄ por los iones de hidrógeno (H⁺) liberados en los procesos fermentativos de azúcares y por los iones de H⁺, de los cuales el más importante es el ácido fórmico.

El CH₄ representa la mayor pérdida de energía que sufre el alimento durante la digestión ruminal. Sin embargo, VAN SOEST (1982), anotaba que en la pérdida de energía era más importante la distribución de la energía del alimento dentro de las células microbianas y los productos resultantes de la degradación que la pérdida por calor.

3.2.2 METABOLISMO DE LOS COMPOSTOS NITROGENADOS

Las materias nitrogenadas, tanto del alimento como endógenas, sufren en el rumen una degradación más o menos intensa y rápida, dando como producto final más importante el amoníaco (NH₃). Dicho amoníaco es la mayor fuente de crecimiento de las bacterias del rumen (KAY, 1969; COLEMAN, 1975).

Las proteínas del alimento son liberadas por rotura de las membranas celulares como consecuencia de la masticación y de la acción de los microorganismos. Estas proteínas son sometidas a la acción de las proteasas, enzimas localizadas en la pared
bacteriana (TAMMINGA, 1979) o en los protozoos (COLEMAN, 1975), las cuales desdoblan las proteínas en péptidos y aminóacidos. A su vez, los péptidos son desdoblados en aminoácidos y estos o bien son incorporados en la proteína microbiana o bien son degradados a NH₃, AGV, CO₂ y CH₄ (TAMMINGA, 1979). Por otra parte, los aminoácidos no son degradados a igual ritmo (CHALUPA, 1976; TAMMINGA, 1979) ni en igual cuantía (TITGEMEYER et al., 1989), siendo la metionina y la valina los aminoácidos que se degradan más lentamente (CHALUPA, 1976).

La principal fuente de nitrógeno de los microorganismos para la síntesis de sus propias proteínas es el amoníaco (KAY, 1969) siempre y cuando la energía no sea un factor limitante (SMITH, 1979; THOMAS, 1973; TITGEMEYER et al., 1989). Dicho amoníaco es rápidamente incorporado en las bacterias del rumen bajo la forma de grupos amida y son usados posteriormente para la síntesis de aminoácidos (SMITH, 1979). Sin embargo, la adición de proteínas o mezclas de aminoácidos en el rumen pueden estimular el crecimiento microbiano (MAENG y BALDWIN, 1976; SMITH, 1979; RUSSELL y HESPELL, 1981) debido a que algunas bacterias ruminales tienen preferencia para la utilización de aminoácidos exógenos (BRYANT y ROBINSON, 1963), y, además, pueden aportar ciertos factores de crecimiento (UMUNNA et al., 1975). Por otra parte, NOLAN y STACHIWI (1979) observaron que en dietas fibrosas de baja calidad, el 34. p. 100 del N microbiano derivaba de compuestos nitrogenados más complejos que el amoníaco, probablemente aminoácidos y péptidos.

La degradación de la proteína de la dieta en el rumen está principalmente determinada por la solubilidad de la proteína (KAY et al., 1969) y por el tiempo de retención en el rumen (TAMMINGA, 1979). El N alimenticio que no es degradado en rumen pasa a duodeno y sigue una digestión similar a la del monogástrico.

3.2.3 METABOLISMO DE LOS LÍPIDOS

Los lípidos de la dieta son hidrolizados por la acción de las lipasas microbianas (BAUCHOP, 1981). Dichas lipasas se han aislado en diferentes bacterias mientras que los protozoos únicamente intervienen en las hidrólisis de los fosfolípidos (TAMMINGA y COREAU, 1990). Los productos finales de la hidrólisis son ácidos grasos libres, glicerol y galactosa. Estos dos últimos compuestos son degradados a AGV mientras que los ácidos grasos libres sufren una hidrogenación, la cual se inicia con una isomerización y una posterior reducción (BAUCHART, 1981), dando lugar a ácidos grasos saturados.

Los ácidos grasos, probablemente, no son usados por los microorganismos como una fuente de energía, y cuando son incorporados a las bacterias y protozoos son parcialmente degradados en ácidos grasos de cadena carbonada impar (ENMANUEL, 1978), pudiéndose incorporar a sus lípidos o fijarse en las partículas alimentarias pasando así al tracto digestivo posterior (INRA, 1978).

3.3 DEGRADACION DE LAS PAREDES CELULARES POR LOS MICROORGANISMOS

El primer paso para la degradación de las paredes celulares es la adhesión de los microorganismos a las partículas que están en el rumen. Dicha adhesión se realiza a través de la colonización, principalmente, de las lesiones en la epidermis o de los estomas de hojas (CHENG et al., 1983/84).
Todos los microorganismos del rumen producen una serie de enzimas (celulasas, hemicelulasas, xilanasa) capaces de hidrolizar los diferentes sustatos. Sin embargo, la actividad de las enzimas de los protozoos cilíados y de los hongos del rumen es inferior a la de las enzimas procedentes de las bacterias (GRENET y BESLE, 1990).

3.3.1 DIGESTION DE LA CELULOSA

Las enzimas principales que toman parte en la hidrólisis de la celulosa son una β(1-4) endoglucanasa, una cellobiosidasa y una β-glucosidasa. La endoglucanasa ataca ordenadamente la celulosa, disminuyendo rápidamente la longitud de la cadena y produce celo-oligosacáridos. La cellobiosidasa degrada la celulosa por liberación de cellobio. La β-glucosidasa hidroliza la cellobio y los oligosacáridos solubles con un bajo nivel de polimerización de la glucosa.

3.3.2 DIGESTION DE LA HEMICELULOSA

Las enzimas que hidrolizan la hemicelulosa son L-arabinosa, D-galactana, D-mannana y D-xilanasa. La enzima D-xilanasa hidroliza los polímeros de xilosa principalmente en xilosa, xilobiosas y en oligosacáridos de xilosa, liberando L-arabinosa. Una β-glucosidasa, una β-xilosidasa y una L-arabinofuranosidasa son necesarias para la total degradación de los oligosacáridos resultantes de la hidrólisis de los polisacáridos.

3.3.3 DIGESTION DE LA PECTINA

Las enzimas que digieren la pectina se pueden dividir en dos grandes grupos: esterasas e hidrolasas o lisas, las cuales pueden ser exo o endoenzimas. Las esterasas separan el metanol y las hidrolasas despolimerizan las pectinas.

3.3.4 PRODUCTOS FINALES DE LA DEGRADACION DE LAS PAREDES

Todos los monómeros producidos por la hidrólisis de los componentes de la pared celular son posteriormente fermentados a piruvato, el cual es metabolizado rápidamente en ácidos de cadena corta (AGV) y en gases (CO₂, H₂, CH₄). La energía que se libera durante estas reacciones en forma de calor y de metano no puede ser utilizada por el animal. Por el contrario, la energía obtenida en forma de ATP es usada para el crecimiento y el metabolismo básico de los microorganismos.

3.4 LIMITES DE LA DEGRADACION DE LAS PAREDES CELULARES

Los factores que afectan al grado de degradación pueden ser externos o internos.

3.4.1 FACTORES EXTERNOS

Una gran proporción de las partículas que llegan al rumen están cubiertas por la epicérdmero que protege a la planta del ataque de los microorganismos.

3.4.2 FACTORES INTERNOS

La estructura de los polisacáridos puede influir en la tasa y extensión de la degradación realizada por la microflora del rumen. Se ha sugerido que la cristalización de la celulosa puede ser un factor que limita la degradación de la fibra. Sin embargo, se ha demostrado que la celulosa cristalina tiene una tasa de degradación similar a la de la celulosa amorfa (BEVERIDGE y RICHARDS, 1975). Es evidente que otros factores distintos a la estructura de los polisacáridos afectan a la degradabilidad y que dichos factores, en tejidos lignificados, están relacionados con el contenido en compuestos fenólicos de la pared (GRENET y BESLE, 1990).

3.4.2.1 COMPUESTOS FENOLICOS DE LAS PAREDES

Los ácidos fenólicos tienen interés debido a que su estructura es igual a la de los precursors de la lignina (THEANDER y AMAN, 1984). Dichos ácidos no están en suficiente cantidad para prevenir la acción de las enzimas microbianas y son liberados de las paredes a medida que éstas son degradadas (JUNG et al., 1983), siendo rápidamente metabolizadas por la microflora en el rumen (CHESSON et al., 1982).

Las paredes primarias tienen un contenido en compuestos fenólicos bajo (HARTLEY y KEENE, 1984). Por el contrario, las paredes secundarias presentan un mayor contenido, destacando la lignina que está estrechamente unida a la matriz de los polisacáridos de la pared. Sin embargo, en contra del término "lignocelulosa", no se ha observado que la lignina esté directamente unida a la celulosa (GRENET y BESLE, 1990).

3.4.2.2 LAS LIGNINAS Y EL CONTROL DE LA DEGRADACION DE LA PARED

Las paredes lignificadas no son probablemente lo suficientemente porosas para la libre difusión de las enzimas, particularmente las celulolíticas, y por tanto los microorganismos únicamente pueden atacar la superficie de la pared celular.

Según CHESSON y FORSBERG (1988), la degradación de las paredes lignificadas se produce de la siguiente forma: Los polisacáridos accesibles a los microorganismos y no cubiertos por lignina son eliminados de la superficie de la pared celular. Posteriormente, la lámina de protección de lignina aparece en la superficie de la pared e impide futuras degradaciones. Sin embargo, los complejos de polisacáridos-lignina que existen en el fluido del rumen sugieren que dichas paredes deben presentar un cierto grado de degradación.

De todo lo anteriormente expuesto se puede concluir que la digestibilidad de la materia orgánica de los forrajes está estrechamente relacionada con la digestibilidad de la pared celular (JARRIGE, 1981). La tasa de digestión de las paredes, depende de su lignificación y de la accesibilidad de los microorganismos. Por otra parte, el tiempo necesario para la digestión está en función de la proporción relativa de las paredes y de los contenidos celulares (GRENET y BESLE, 1990).
3.5 DIGESTION POSTRUMINAL

La digesta abandona la cavidad retículo-ruminal y pasa a omaso, abomaso e intestino delgado. Los mecanismos de digestión y absorción en el intestino delgado son similares a los de los monogástricos con pequeñas diferencias. Las enzimas del jugo pancreático y de la mucosa intestinal son iguales a las de los monogástricos, aunque contienen, además, enzimas específicas de la digestión de los ácidos nucleicos microbianos (INRA, 1978).

El intestino grueso de los rumiantes puede jugar un importante papel en la digestión. En dicho tracto subsiste una fermentación microbiana similar a la del rumen, que se inicia en la parte distal del ileón, siendo las porciones más importantes de fermentación el ciego y en menor medida el colon proximal (DIXON y NOLAN, 1982). Su actividad depende en gran medida de la cantidad de sustancia orgánica fermentable que llega a dicha porción ya que el nitrógeno procede de las bacterias del rumen y de fuentes endógenas (INRA, 1978). Por otro lado, las fermentaciones no son tan variables como en el rumen, probablemente debido a las modificaciones anteriores sufridas en rumen y en intestino delgado (DIXON y NOLAN, 1982).

La concentración de AGV es generalmente menor que en el rumen. Hay una menor proporción de ácido butírico y valérico mientras que el ácido acético, y los ácidos ramificados están en mayor proporción (INRA, 1978). Sin embargo, estas proporciones y cantidades varían mucho en función de la dieta. DEGREGORIO et al. (1982) observaron una menor proporción de C₂-C₃ y una mayor proporción molar de ácido butírico cuando se alimentaba a la oveja con elevada proporción de concentrado.

Finalmente, en el intestino grueso son absorbidos la mayor parte del agua que llega junto con minerales, ácidos grasos volátiles y el amoníaco producido en exceso. También absorbe los aminoácidos, ácidos grasos y vitaminas procedentes de la lisis de los organismos (INRA, 1978).

4. VALOR NUTRITIVO DE LA PAJA

Durante la maduración de la planta se produce un engrosamiento y lignificación de las paredes celulares, traduciéndose en un mayor contenido en hidratos de carbono estructurales y lignina, y en una disminución del contenido en hidratos de carbono solubles y PB, así como de minerales y oligoelementos (DEMARQUILLY y PETIT, 1976; THEANDER y AMAN, 1984). Consecuentemente, cuando la planta de cereal ha alcanzado la madurez su parte vegetativa es extremadamente pobre en nutrientes.

4.1 COMPOSICION QUIMICA

La composición química de una paja de cereal se caracteriza por presentar un contenido en nitrógeno bajo, con 4 a 9 g N/kg MS (SUNDSTÖL, 1988a), y una elevada proporción de pared celular que oscila entre 600 y 810 g de NDF/Kg MS. Dicha pared celular está notablemente lignificada, presentando unos valores en ADL de 70 a 110 g/Kg MS (JACKSON, 1977). En los Cuadros 1 y 2 se expresan la composición química de diversos tipos de paja y el fraccionamiento de la fibra (GOERING y VAN SOEST, 1970) presentados por SUNDSTÖL (1988a) y JACKSON (1977), respectivamente.

El contenido en minerales es también muy bajo (Cuadro 3) y no permite cubrir las necesidades de mantenimiento del animal (ANDRIEU y DEMARQUILLY, 1987) ni mantener una óptima fermentación en el rumen (DURAND y KOMISARCZUKA, 1990).
CUADRO 1. Composición química (g/Kg MS) de la paja de cereal según el procedimiento de WEENDE. (Referencia: SUNDSTØL, 1988a).

<table>
<thead>
<tr>
<th>TIPO DE PAJA</th>
<th>MS</th>
<th>Cz</th>
<th>PB</th>
<th>EE</th>
<th>FB</th>
<th>NEE</th>
<th>DMO</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterránea 890 80 36 424 45.3 ALIBES y TISSERAND (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinamarca 850 31 33 19 453 454 45 ANDERSEN y JUST (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo Primav. 68 40 5 446 441 WAINMAN et al. (1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo Inv. 75 38 9 412 448 WAINMAN et al. (1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEBADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterránea 858 85 44 402 45.4 ALIBES y TISSERAND (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinamarca 850 40 19 452 448 50.0 ANDERSEN y JUST (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada Primav 50 51 12 420 457 WAINMAN et al. (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada Inv. 65 35 12 376 622 WAINMAN et al. (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVENA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterránea 82 30 420 47.9 ALIBES y TISSERAND (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinamarca 850 37 20 414 469 49.0 ANDERSEN y JUST (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena Primav 58 49 10 371 512 WAINMAN et al. (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena Inv. 62 37 11 371 512 WAINMAN et al. (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTENO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinamarca 850 38 19 440 467 44.0 ANDERSEN y JUST (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CUADRO 2. Composición química (g/100 g MS) de algunos subproductos determinados siguiendo el procedimiento de fibra detergente de GOERING Y VAN SOEST (1970). (Referencia: JACKSON, 1977).

<table>
<thead>
<tr>
<th>SUBPRODUCTO</th>
<th>CONTENIDO CELULAR</th>
<th>PAREDES CELULARES (1)</th>
<th>NEMOSI LULOSAS (2)</th>
<th>CELULOZA</th>
<th>LIGNINA</th>
<th>SUICE</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paja de trigo</td>
<td>20 80 36 39 10 6 SHARMA (1974)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paja de cebada</td>
<td>19 81 27 44 7 3i F. CARMONA y GREENHALGH (1972)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paja de avena</td>
<td>27 73 16 41 11 3i SAXENA et al (1971)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paja de arroz</td>
<td>21 79 26 33 7 13 SHARMA (1974)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Los valores de las paredes celulares (Fibra Neutro Detergente) y contenidos celulares (solubles neutro detergente) de la paja de trigo y avena están corregidos por alicue neutro detergente soluble.
(2) Los valores de lignina de la paja de cebada y avena son ADL, mientras que el resto son lignina permanganato.
(3) Valores no determinados. Son estimados a partir de la suma de celulosa y lignina de la fibra ácido detergente.

4.2 VALOR NUTRITIVO

La riqueza en pared celular lignificada junto con su pobreza en N y en minerales conlleva a que la paja presente una digestibilidad y una ingesta baja (GREENHALGH, 1984).

NICHOLSON (1984) en una recopilación bibliográfica de muestras de paja de distintas especies y con diferentes calidades de conservación, observó unos valores de DMO "in vitro" que oscilaban entre 25 p. 100 en una paja de avena sometida a la lluvia y 50 p. 100 en una paja de avena de buena calidad (Cuadro 4). Los valores de DMO de distintos tipos de paja determinados en ensayos "in vivo" sobre corderos, presentados por ALIBES y TISSERAND (1990), oscilan entre 47 y 56 p. 100.

Paralelamente a la baja digestibilidad, la ingestión voluntaria también es baja debido, principalmente, al elevado tiempo de permanencia en el rumen y al volumen limitado del rumen (CHESSON y ØRSKOV, 1984). Según ANDRIEU y DEMARQUILLY (1987), las ingestiones medias de paja en forma larga registradas en corderos adultos oscila entre 30 y 32 g MS/Kg PV^{0.7}, variando en función de la cantidad de concentrado y de la adaptación de los corderos a la dieta.

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>CEBADA</th>
<th>AVENA</th>
<th>ARROZ</th>
<th>CENTENO</th>
<th>TRIGO PRIM.</th>
<th>TRIGO INV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenizas</td>
<td>0.60</td>
<td>0.59</td>
<td>1.89</td>
<td>0.39</td>
<td>0.61</td>
<td>0.50</td>
</tr>
<tr>
<td>(g/kg DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.15</td>
<td>0.11</td>
<td>1.30</td>
<td>0.34</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>Ca</td>
<td>0.29</td>
<td>0.39</td>
<td>2.4</td>
<td>2.8</td>
<td>3.2</td>
<td>2.1</td>
</tr>
<tr>
<td>P</td>
<td>0.08</td>
<td>0.09</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Mg</td>
<td>1.0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>K</td>
<td>14.0</td>
<td>21.9</td>
<td>13.2</td>
<td>9.8</td>
<td>11.8</td>
<td>10.1</td>
</tr>
<tr>
<td>Na</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Cl</td>
<td>7.7</td>
<td>8.1</td>
<td>-</td>
<td>2.5</td>
<td>6.1</td>
<td>3.5</td>
</tr>
<tr>
<td>S</td>
<td>1.4</td>
<td>2.5</td>
<td>1.3</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de paja</th>
<th>% PB</th>
<th>Rango</th>
<th>% ADF</th>
<th>Rango</th>
<th>% DMOIV</th>
<th>Rango</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo inv 1977</td>
<td>14</td>
<td>2.5</td>
<td>2.1-3.0</td>
<td>36</td>
<td>30-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo inv 1976</td>
<td>25</td>
<td>2.5</td>
<td>1.9-4.3</td>
<td>40</td>
<td>37-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo primav 1976</td>
<td>20</td>
<td>2.7</td>
<td>1.9-3.7</td>
<td>36</td>
<td>28-42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo primav 1977</td>
<td>20</td>
<td>4.0</td>
<td>3.0-6.1</td>
<td>42</td>
<td>36-47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena 1978</td>
<td>20</td>
<td>3.3</td>
<td>2.8-4.1</td>
<td>45</td>
<td>30-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena 1977</td>
<td>20</td>
<td>5.8</td>
<td>5.2-6.2</td>
<td>45</td>
<td>43-47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada 1978</td>
<td>8</td>
<td>4.4</td>
<td>3.7-5.0</td>
<td>40</td>
<td>33-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada 1977</td>
<td>18</td>
<td>5.9</td>
<td>5.1-7.0</td>
<td>47</td>
<td>41-42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEANDER y AMAN (1978)

<table>
<thead>
<tr>
<th>Tipo de paja</th>
<th>% PB</th>
<th>Rango</th>
<th>% ADF</th>
<th>Rango</th>
<th>% DMOIV</th>
<th>Rango</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo inv</td>
<td>1</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo primav</td>
<td>1</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>1</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada</td>
<td>5</td>
<td>3.1</td>
<td>1.9-5.0</td>
<td>45</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centeno</td>
<td>1</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cebada</td>
<td>5</td>
<td>2.6</td>
<td>1.5-4.9</td>
<td>57</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo dañada lluvia</td>
<td>2</td>
<td>2.6</td>
<td>2.3-3.0</td>
<td>60</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada</td>
<td>5</td>
<td>2.9</td>
<td>2.0-4.0</td>
<td>54</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>3</td>
<td>3.2</td>
<td>0.9-4.7</td>
<td>55</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena dañada lluvia</td>
<td>2</td>
<td>2.7</td>
<td>2.5-2.8</td>
<td>80</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>24</td>
<td>3.0</td>
<td>3.3-3.9</td>
<td>37</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>12</td>
<td>3.8</td>
<td>3.7-4.1</td>
<td>40</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada</td>
<td>20</td>
<td>4.9</td>
<td>4.2-5.4</td>
<td>38</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>87</td>
<td>5.4</td>
<td>4.0-6.0</td>
<td>34</td>
<td>30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>82</td>
<td>5.4</td>
<td></td>
<td>48</td>
<td>32-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cebada</td>
<td>12</td>
<td>4.6</td>
<td>2.8-5.1</td>
<td>48</td>
<td>32-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>22</td>
<td>4.8</td>
<td>3.5-5.2</td>
<td>48</td>
<td>32-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centeno</td>
<td>11</td>
<td>4.2</td>
<td>3.1-5.0</td>
<td>42</td>
<td>32-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>144</td>
<td>4.1</td>
<td>2.4-4.8</td>
<td>41</td>
<td>32-56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notas:
- Los valores citados por WHITE et al. (1981) corresponden a la digestibilidad de la MSA "in vitro".
4.3 FACTORES QUE INFLUYEN SOBRE LA CALIDAD DE LA PAJA

La paja se ha considerado durante mucho tiempo como un subproducto de escasa variabilidad a nivel de su composición química y calidad. Sin embargo, Jackson (1977) y otros autores (Pearce et al., 1979; White et al., 1981; Shand et al., 1987) han destacado la importancia de la composición química variando en función de la especie, variedad, localización y prácticas culturales y de manejo.

4.3.1 ESPECIE

Las diferencias existentes entre la paja de las diferentes especies cereales son bien conocidas (Pearce et al., 1979; White et al., 1981; Shand et al., 1987). La avena junto a la cebada son las especies que mejor valor nutritivo presentan, con una DMO que oscila entre 45 y 50 p. 100. El trigo y el centeno presentan una DMO inferior, con unos valores medios respectivos de 40 y 42 p. 100.

4.3.2 VARIEDAD

En algunas ocasiones, la variedad tiene mayor influencia que la especie (Pearce et al., 1979; White et al., 1981; Kjos et al., 1987). Diversos autores (Pearce et al., 1979; White et al., 1981; Ørskov et al., 1990) estudiando paja de cebada, avena y trigo, observaron que la variedad utilizada era responsable de la amplia variación del valor nutritivo.

4.3.3 FRACCIONES BOTÁNICAS

La paja es un producto heterogéneo formado por hojas (limbos y vainas), nudos, entrenudos y restos de espigas. Estas fracciones forman parte de la paja en distintas proporciones y, además, presentan características estructurales químicas diferentes entre ellas (Cuadro 5), influyendo en la composición química del conjunto de la paja. La hoja es la fracción más rica en PB y más pobre en constituyentes de la pared celular y, por tanto, es la fracción más fácilmente degradable (Thiago y Kellaway, 1982; Kernan et al., 1984; Ramanzin et al., 1986; Shand et al., 1987; Bhargava et al., 1988). Por ello, la proporción de hoja presente en la paja puede determinar su calidad (Kernan et al., 1984; Capper et al., 1988; Ramanzin et al., 1986; Bhargava et al., 1988).

4.3.4 CLIMA

La climatología registrada durante el año es otro factor que influye en la calidad de la paja (Nicholson, 1984; Sundstøl, 1988a; Ørskov et al., 1990). Las bajas temperaturas favorecen la calidad de la paja (Sundstøl, 1988a), mientras que la lluvia registrada tras la cosecha del grano provoca el lavado de nutrientes (Pearce et al., 1979; Kjos et al., 1987), siendo más importante en los componentes soluble que en los insolubles (Ørskov et al., 1990). Ello podría ser responsable de la menor degradabilidad observada en los años de mayor pluviometría (Kjos et al., 1987; Ørskov et al., 1990).

<table>
<thead>
<tr>
<th>Constituyente</th>
<th>Trigo</th>
<th>Cebada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entrenudo</td>
<td>Nudo</td>
</tr>
<tr>
<td>g/Kg MS</td>
<td>g/Kg MS</td>
<td></td>
</tr>
<tr>
<td>Canízulas</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td>Proteína bruta</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>Celulosa</td>
<td>411</td>
<td>327</td>
</tr>
<tr>
<td>Hemicelulosa</td>
<td>245</td>
<td>286</td>
</tr>
<tr>
<td>Lignina Klason</td>
<td>216</td>
<td>217</td>
</tr>
<tr>
<td>Silece</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

CUADRO 5. Composición química de las fracciones de la paja de trigo y de cebada (Referencia: THEANDER y AMAN, 1984)

<table>
<thead>
<tr>
<th>Fecha de corte</th>
<th>PB</th>
<th>NDF</th>
<th>ADF</th>
<th>Lignina</th>
<th>Hemicelulosa</th>
<th>Celulosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 de Junio</td>
<td>160</td>
<td>563</td>
<td>304</td>
<td>55</td>
<td>259</td>
<td>250</td>
</tr>
<tr>
<td>4 de Julio</td>
<td>149</td>
<td>655</td>
<td>370</td>
<td>57</td>
<td>285</td>
<td>314</td>
</tr>
<tr>
<td>11 de Julio</td>
<td>118</td>
<td>617</td>
<td>356</td>
<td>57</td>
<td>261</td>
<td>299</td>
</tr>
<tr>
<td>18 de Julio</td>
<td>102</td>
<td>669</td>
<td>397</td>
<td>80</td>
<td>273</td>
<td>317</td>
</tr>
<tr>
<td>25 de Julio</td>
<td>86</td>
<td>682</td>
<td>420</td>
<td>73</td>
<td>262</td>
<td>348</td>
</tr>
<tr>
<td>1 de Agosto</td>
<td>75</td>
<td>729</td>
<td>430</td>
<td>68</td>
<td>290</td>
<td>363</td>
</tr>
<tr>
<td>8 de Agosto</td>
<td>57</td>
<td>819</td>
<td>519</td>
<td>98</td>
<td>300</td>
<td>421</td>
</tr>
<tr>
<td>11 de Agosto</td>
<td>51</td>
<td>806</td>
<td>486</td>
<td>88</td>
<td>320</td>
<td>398</td>
</tr>
<tr>
<td>28 de Agosto</td>
<td>52</td>
<td>868</td>
<td>540</td>
<td>97</td>
<td>328</td>
<td>443</td>
</tr>
</tbody>
</table>

CUADRO 6. Composición química (g/Kg MS) de paja de cebada cosechada en diferentes fechas. (Referencia: THEANDER y AMAN, 1984)
En gran parte del mundo los residuos de las cosechas de cereal son el alimento más disponible e, incluso en algunas ocasiones, el único para la alimentación de los rumiantes. Sin embargo, la ingestión de dichos productos en los rumiantes es muy baja, lo que, acompañado de su baja digestibilidad, impide que se puedan cubrir las necesidades de mantenimiento (ECONOMIDES et al., 1981). Por tanto, en dietas constituidas por paja como forraje único se registra una escasa transformación animal (WANAPAT et al., 1980). Todo ello justifica el gran interés en maximizar la digestión microbiana y la ingestión de dichos subproductos.

La mejora de las dietas constituidas fundamentalmente por paja puede realizarse, según CHENOST y DULPHY (1987), mediante:

- Una adecuada suplementación.
- Provocando una mayor accesibilidad de los constituyentes parietales por las enzimas digestivas mediante diferentes tipos de tratamiento (físico, químico y biológico).

5.1 SUPLEMENTACION

La utilización de la paja como alimento debe valorarse en relación a su coste económico y a su contenido en energía en relación a los alimentos a los cuales puede substituir en una misma dieta (SMITH y BALCH, 1984). Dado que los residuos de los cereales presentan un alto contenido en constituyentes de la pared celular y un escaso contenido celular y en nitrógeno, uno de los principales objetivos que debe tener el suplemento de las dietas de paja, es el de proveer de nutrientes esenciales, que completen y equilibren los productos procedentes de la fermentación en rumen, y además, debe mantener y, en lo posible, incrementar la ingestión del forraje pobre de la dieta (PRESTON y LENG, 1984).

En las dietas constituidas por forrajes pobres se debe intentar maximizar la degradación de las paredes celulares por los microorganismos del rumen, para ello, es necesario una suplementación nitrogenada (ECONOMIDES et al., 1981: PRESTON y LENG, 1984; CHENOST, 1989) y en minerales (PRESTON y LENG, 1984; CHENOST, 1989; DURAND, 1989) que permita el desarrollo y la actividad óptima de dichos microorganismos.

Parte del aporte nitrogenado puede realizarse en forma de nitrógeno no proteico, siendo la urea la fuente principal de este tipo de nitrógeno (BARRY y JOHNSTONE, 1976; HODEN y GIRAUD, 1979; PRESTON y LENG, 1984; MBATYA et al., 1985a; WILLIAMS et al., 1986; CHENOST, 1987). Sin embargo, también es necesario el aporte de una fuente de proteína alimentaria (ABIDIN y KEMPTON, 1981; WILLIAMS, 1983/84; NIELSON et al., 1984; SILVA y BÅRSKOV, 1988; SILVA et al., 1989) y, por tanto, de aminoácidos disponibles para los microorganismos del rumen (SILVA y BÅRSKOV, 1988; PRESTON y LENG, 1984; RAMIHONE y CHENOST, 1988).

Diversos autores (ECONOMIDES et al., 1981; MBATYA et al., 1985a; SILVA et al., 1989) observaron un incremento en la ingestión de paja cuando se adicionaban pequeñas cantidades de urea en la dieta. Por el contrario, BARRY y JOHNSTONE (1976), HORTON y NICHOLSON (1981), MIRA et al. (1983), PERDOK y LENG (1988), no observaron ninguna mejora. WILLIAMS et al. (1986) anotaron que interesaría buscar una fuente de nitrógeno no proteico mejor aceptada por el animal que la urea. Por otra parte, la adición de una fuente proteica degradable en rumen también favorece un incremento en la ingestión de paja (SMITH y BALCH, 1984; ALAWA et al., 1987).

En los estudios realizados sobre la adición de proteína no degradable en rumen, RAMIHONE y CHENOST (1988) y SILVA et al. (1989) observaron que la adición de dicho tipo de proteínas mejoraba la ingestión y digestibilidad de la paja, y PERDOK y LENG (1986) obtuvieron además, una mejora de la eficiencia de utilización del alimento y un crecimiento superior en los animales que recibían este tipo de dietas. Por el contrario, VAN HOUTERT et al. (1990) no observaron ninguna modificación en la ingestión de paja cuando se suplementaba con proteína no degradable en rumen.

La cantidad de suplemento nitrogenado necesario depende de la cantidad de energía fermentable presente en el rumen (BÅRSKOV y GRUBB, 1978; CHENOST, 1987) no observaron ningún efecto de la adición de nitrógeno en la dieta de paja y, según los mismos autores, era consecuencia de la limitación del crecimiento microbiano debido a la escasa disponibilidad de la energía disponible. Por ello, para obtener una máxima digestión de la paja, debe sincronizarse la tasa de fermentación con la formación de amoníaco y/o péptidos y aminoácidos (PRESTON y LENG, 1984).

Es muy frecuente la suplementación de dietas constituidas por forrajes pobres, con una fuente rica en energía. Dicho tipo de suplementación puede provocar una disminución de la actividad celulolítica del rumen y, por tanto, puede reducir la degradación de la fibra. Según BYERS et al. (1982) (en WILLIAMS et al., 1988) cuando se suministra bajo niveles de energía (1.5 x mantenimiento) no se registra dicho efecto asociativo negativo mientras que cuando el nivel de ingestión de energía aumenta (2.5-3 x mantenimiento) se registra dicho efecto. Como consecuencia, la digestibilidad del fibra depende en gran medida del contenido en hidratos de carbono solubles presentes en la dieta (WILLIAMS, 1983/84).

Los estudios realizados sobre la suplementación con hidratos de carbono fácilmente degradables en rumen presentan resultados variables. Diversos autores (WANAPAT et al., 1980; FAHMY et al., 1984; ZORRILLA-RIOS et al., 1989) observaron que la incorporación de altas proporciones de dichos concentrados provocaba un efecto negativo sobre la ingestión y digestibilidad de la paja. Por el contrario, otros autores (BARRY y JOHNSTONE, 1976; ECONOMIDES et al., 1981; WILLIAMS 1983/84; MBATYA et al., 1985a; WILLIAMS et al., 1986; WILLIAMS et al., 1986) observaron incrementos en la ingestión y digestibilidad de la paja como consecuencia de la suplementación con cereal o remolacha. Estas relativas contradicciones pueden ser debidos, en parte, a que la magnitud del efecto de los suplementos sobre la celulólisis varía en función del tipo de forraje, registrándose una mayor depresión en los forrajes con menor tasa de degradación de la materia seca (MOULD
5.2 TRATAMIENTO FÍSICO

El procesado físico de la paja es uno de los tratamientos más utilizados por los ganaderos. Consiste en la trituración mecánica del alimento para proporcionar un producto troceado, picado o molido. Dicha trituración puede estar acompañada o no por una granulación.

El principal efecto de la reducción del tamaño de la partícula es aumentar la ingestión del forraje fibroso (HOGAN y WESTON, 1967; MORRIS y MOWAT, 1980; WALKER, 1984). Sin embargo, MIRA et al. (1983) observaron en vacuno que la ingestión de paja en forma larga era superior a la de la paja troceada a 4 cm de longitud. Las diferencias en estas respuestas podrían estar asociadas a los cambios en la digestión de los constituyentes de la pared celular (HOGAN y WESTON, 1987).

El aumento observado en la ingestión está acompañado por un incremento del ritmo de tránsito del alimento y un menor tiempo de permanencia del alimento en rumen (HOGAN y WESTON, 1967; WALKER, 1984; CHENOST y DULPHY, 1987; FONDEVILA et al., 1990).

El procesado físico también concurre un aumento de la relación superficie/volumen, favoreciendo el ataque microbiano y, por tanto, la fermentación. Sin embargo, no se registra una mejora de la digestibilidad si no hay un elevado grado de molienda (WALKER, 1984). En general, se observa una reducción de la digestibilidad, tanto de la materia seca, como de la fracción celular (MORRIS y MOWAT, 1980; WALKER, 1984; KRISTENSEN y NORGARD, 1987; FONDEVILA et al., 1990). A pesar de ello, el contenido en energía neta puede ser mejorado debido a que hay un descenso en la producción de metano y un aumento de la eficacia de utilización de la energía metabolizable (WAINMAN y BLAXTER, 1972).

El tamaño de la partícula a administrar al animal, según WALKER (1984), debe estar bien regulado con el fin de poder obtener un balance óptimo entre el aumento de la ingestión y la eficiencia del ritmo de paso a través del tracto digestivo para, así, alcanzar una utilización óptima de los residuos lignocelulósicos.

Otros tratamientos físicos también utilizados son la aplicación de vapor o cocción a presión y la aplicación de rayos ionizantes. Dichos procesos ejercen una acción hidrolítica y promueven un aumento de la digestibilidad del producto final (WALKER, 1984). A pesar de ser eficaces (OJI y MOWAT, 1978; OJI et al., 1979; KLOPPENSTEIN y OWEN, 1981) su aplicación está limitada por su alto coste económico que los hace inviables.

5.3 TRATAMIENTOS QUÍMICOS

La mejora de la calidad nutritiva de la paja mediante tratamientos químicos ha sido ampliamente revisado por diversos autores (JACKSON, 1977; KLOPPENSTEIN, 1978; GREENHALGH, 1984; SUNDSTØL y OWEN, 1984; SUNDSTØL, 1988 a,b). Los productos químicos más empleados para los tratamientos son los álcalis.

El tratamiento alcalino produce cambios en la estructura de la pared celular (CHESSON y BØRSKU, 1984). La acción que caracteriza al tratamiento es la solubilización parcial de la hemicelulosa y quízis de la lignina (JACKSON, 1977; HORTON, 1981; CHESSON y BØRSKU, 1984; THEANDER y AMAN, 1984). Bajo la acción de los álcalis se produce la rotura de los radicales éter entre unidades de fenilpropano, lo que conlleva a la rotura de las uniones entre ligninas y hemicelulosas y a la formación de grupos fenoles libres (THEANDER y AMAN, 1984).

El grado de solubilización de la hemicelulosa y de la lignina es muy variable y depende de la composición química de los forrajes pobres antes de ser tratados (JACKSON, 1977), de los aspectos cualitativos de la hemicelulosa y de la lignina (JACKSON, 1977) y de las asociaciones físico-químicas de los distintos componentes dentro de la pared celular (JACKSON, 1977; CHESSON y BØRSKU, 1984).

Los álcalis más conocidos y utilizados son el hidróxido sódico y el amoníaco. Otros, como el hidróxido cálcico, hidróxido potásico y carbonato sódico, pueden también utilizarse: sin embargo, presentan una serie de inconvenientes de tipo económico o de manejo, lo que impide que puedan ser una buena alternativa a los dos primeros tratamientos químicos.

SUNDSTØL (1988b) presenta una descripción de la historia de los tratamientos químicos:

1895: En Alemania, LEHMAN presentó resultados de paja tratada mediante ebullición con 2 p.100 de hidróxido sódico.

1906: Probablemente hubo la primera descripción del tratamiento con amoníaco.

1919: BECKMAN describió un método en el cual la paja se sumergía en una solución de 1.5 p.100 de hidróxido sódico a temperatura ambiente durante tres días.

1964: Se describió un tratamiento con hidróxido sódico en solución acuosa sin ninguna forma de lavado, llamándose "tratamiento seco".

1969: Se desarrolló el método en pila del tratamiento con amoníaco.
1979-81: Se describió el método "Dip" del tratamiento con hidróxido sódico que no producía polución.

5.3.1 DESCRIPCIÓN DE LOS TRATAMIENTOS QUÍMICOS

5.3.1.1 TRATAMIENTO CON HIDRÓXIDO SÓDICO

SUNDSTØL (1988b) distingue distintas modalidades del tratamiento con hidróxido sódico o sosa y las divide en tres grandes grupos: húmeda, semiseca y seca.

A.- Tratamiento húmedo:

- **Método Beckman**: Inmersión del material en solución de hidróxido sódico a 1.5-2.5 p. 100 seguido por un lavado con agua. Dicho método tiene una serie de inconvenientes importantes como puede ser la pérdida registrada de 15-20 p. 100 de la materia seca, la necesidad de un dispositivo importante de agua y presenta problemas importantes de polución.

- **Método Dip**: Inmersión del material en una solución de hidróxido sódico a 1.5 p. 100, sin lavado y posterior período de almacenamiento para que el material escurra el exceso de agua.

B.- Tratamiento semiseco:

Se ensila el material a tratar con solución de hidróxido sódico en un silo. El contenido en humedad del producto final es de 40-70 p. 100. La dosis a aplicar es de 3 a 5 p. 100 y el tiempo mínimo de tratamiento de una semana.

C.- Tratamiento seco:

- **Método industrial**: El material, picado o molido, se rocía con una solución de 16 p. 100 de hidróxido sódico. En un vagón se mezcla la paja con la solución y posteriormente se vierte en el concentrado para formar ya la dieta completa, o bien se granula solo. Cuando se granula, se somete el producto tratado a alta temperatura lo que provoca la reacción inmediata entre el material y el álcali. La concentración de hidróxido sódico óptima estaría comprendida entre 4 y 6 P. 100 de materia seca de paja. Dicho método se caracteriza por la combinación entre el tratamiento físico y el tratamiento químico.

- **Método de grana**: La solución se puede aplicar en el campo cuando se lleva a cabo el proceso de empacado mediante un dispositivo aplicado en el tractor. Otra forma es aplicar la solución sobre el material a tratar y mezclarlo a mano con la ayuda de una horca.

5.3.1.2 TRATAMIENTO CON AMONIACO

El amoníaco se puede utilizar bajo su forma pura (amoníaco anhídroro), en solución acuosa (amoníaco ecuoso) o a partir de compuestos precursors de amoníaco como la urea o la orina (SUNDSTØL, 1988b).

A.- Tratamiento con amoníaco anhídroro

El tratamiento con amoníaco anhídroro más extendido es el método noruego descrito por SUNDSTØL et al. (1978). Se inyecta amoníaco anhídroro (3-3.5 p. 100 de MS) en una pila formada del material a tratar que previamente ha sido herméticamente cerrada. Para ello, se realiza la pila sobre una lámina de polietileno que sobresale 0.7 m; finalizadas ésta, se recubre con otra lámina de plástico y se enrolla a un listón de madera conjuntamente con la lámina inferior y se fija con tierra para evitar las posibles entradas de aire. Este tratamiento también se puede aplicar sobre rotopacas individuales.

Otro método de aplicación es el llamado tratamiento en horno. Se realiza con calor (90°C) y se inyecta el amoníaco anhídroro dentro del horno durante 17 h.

B.- Tratamiento con amoníaco acuoso

Presenta la ventaja frente al amoníaco anhídroro que no necesita contenedores especiales de presión. La forma de aplicación es la misma que la utilizada en el tratamiento con amoníaco anhídroro.

C.- Tratamiento con urea

La urea se transforma en amoníaco de acuerdo con la siguiente reacción:

\[
\text{NH}_2\text{CONH}_2 + \text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{CO}_2
\]

ureasa

Su utilización en grana se basa en la mezcla de la solución de urea con paja u otros forrajes de baja calidad. Transcurrido un tiempo la acción enzimática de la ureasa transforma la urea en amoníaco.

Antes de llevar a cabo el tratamiento, es necesario la realización de la solución acuosa de urea. Para ello se debe conocer la cantidad de materia seca a tratar, la dosis de urea a aplicar y la humedad final a la que se quiere realizar el tratamiento.
6. TRATAMIENTO QUÍMICO, CONDICIONES NECESARIAS PARA EL TRATAMIENTO CON UREA

Los tratamientos químicos más utilizados para la alimentación animal son el tratamiento con hidróxido sódico y el tratamiento con amoníaco. La mayoría de autores (JACKSON, 1977; SUNDSTÖL y OWEN, 1984; SUNDSTÖL, 1988a) coinciden en afirmar que el principal efecto del tratamiento alcalino sobre el valor nutritivo es el aumento de la digestibilidad y de la ingestión del forraje pobre. Sin embargo, la magnitud del efecto varía en función de muchos factores tales como la calidad inicial del residuo lignocelulósico (KERAN et al., 1979; MANDELL et al., 1988), tipo de álcali utilizado (FAHMY y BRSKOV, 1984; WANAPAT et al., 1985), método de tratamiento (WANAPAT et al., 1985) y condiciones del tratamiento (SUNDSTÖL et al., 1978; ALIBES et al., 1989), así como del animal utilizado para la evaluación (SILVA et al., 1989) y de la dieta suministrada (PERDOK y LENC, 1988; ZORRILLA-RIOS et al., 1989). En el Cuadro 7 se presentan los resultados de digestibilidad de la materia seca, ingestión y ganancia de peso vivo de corderos alimentados con dietas constituidas por subproductos tratados (Ft GREENHALGH, 1984).

En este capítulo nos centraremos en los tratamientos con el ion amonio, principalmente con el tratamiento con urea, ya que los tratamientos con hidróxido sódico y amoníaco han sido ampliamente estudiados (JACKSON, 1977; KLOFFENSTEIN, 1978; SUNDSTÖL y OWEN, 1984; SUNDSTÖL, 1988a) y no son el objeto del presente trabajo.

6.1 CONDICIONES NECESARIAS PARA EL TRATAMIENTO CON ION AMONIO

Para el tratamiento alcalino, la urea debe sufrir una uredólisis, la cual depende de diversos factores tales como la presencia, en cantidad suficiente, de la enzima ureasa, la temperatura ambiental y la humedad del material tratado. Por tanto, dichos factores junto con la dosis aplicada y el tiempo de reacción pueden determinar la eficacia del tratamiento.

6.1.1 DOSIS

En el tratamiento con amoníaco, la mayoría de autores coinciden en afirmar que existe una escasa mejora en la digestibilidad cuando el incremento de la dosis es superior al 3-4 p. 100 de MS. WAISS et al. (1972) estudiaron en paja de arroz una serie de tratamientos con amoníaco acuoso aplicado a dosis de 2.6 y 5.2 p. 100 y observaron que la mejoría adicional de la digestibilidad obtenida con la mayor dosis era muy pequeña con respecto a la aplicación del 2.6 p. 100. Posteriormente, SUNDSTÖL et al. (1978) y KIANG et al. (1981) observaron un incremento notable de la digestibilidad de la materia orgánica cuando la dosis de amoníaco incrementaba hasta 2.5 p. 100. Por encima de esta dosis, SØRSKOV et al. (1983) no registraron ninguna mejora adicional significativa. Por el contrario, en otros estudios (SUNDSTÖL et al., 1978; KIANG et al., 1981; PATerson et al., 1981; BORHAM y SUNDSTÖL, 1982; CHERMITI y CORDESSE, 1988) se observó un efecto positivo cuando la dosis aumentaba hasta 4 p. 100, siendo dicho efecto menos notable que el registrado en el intervalo de 0 a 2.5 p. 100 (SUNDSTÖL et al., 1978; KIANG et al., 1981). Mejores dosis de aplicación no provocan mejoras notables en la digestibilidad del material tratado (SUNDSTÖL et al., 1978; NELSON et al., 1984;
CUADRO 7. Efecto del tratamiento sobre la digestibilidad de la materia seca (DMS), la ingestión y la ganancia media diaria (GMD) registrada en ovinos que reciben una dieta constituida por paja en distintas proporciones (Reference: GREENHALGH, 1984).

<table>
<thead>
<tr>
<th>TIPO DE PAJA</th>
<th>% de paja en la dieta</th>
<th>ALCALI</th>
<th>DOGS</th>
<th>DMS dieta</th>
<th>INGESTION</th>
<th>GMD</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroz picado</td>
<td>38</td>
<td>38</td>
<td>NaOH</td>
<td>50</td>
<td>72.4</td>
<td>1.87</td>
<td>0.184</td>
</tr>
<tr>
<td>Arroz picado</td>
<td>72</td>
<td>72</td>
<td>NaOH</td>
<td>50</td>
<td>82.4</td>
<td>2.03</td>
<td>0.134</td>
</tr>
<tr>
<td>Trigo</td>
<td>75</td>
<td>75</td>
<td>NaOH</td>
<td>40</td>
<td>47.7</td>
<td>0.466</td>
<td>0.142</td>
</tr>
<tr>
<td>Trigo</td>
<td>70</td>
<td>70</td>
<td>NaOH</td>
<td>70</td>
<td>61.0</td>
<td>0.910</td>
<td>0.035</td>
</tr>
<tr>
<td>Trigo</td>
<td>50</td>
<td>50</td>
<td>NaOH</td>
<td>80</td>
<td>62.0</td>
<td>0.560</td>
<td>0.077</td>
</tr>
<tr>
<td>Avena</td>
<td>66</td>
<td>66</td>
<td>NaOH</td>
<td>120</td>
<td>46.0</td>
<td>0.793</td>
<td>0.050</td>
</tr>
<tr>
<td>Cañote de maíz</td>
<td>75</td>
<td>75</td>
<td>NaOH</td>
<td>40</td>
<td>72.4</td>
<td>1.87</td>
<td>0.184</td>
</tr>
<tr>
<td>Arroz granulado</td>
<td>38</td>
<td>38</td>
<td>NH₃</td>
<td>50</td>
<td>58.4</td>
<td>1.16</td>
<td>0.089</td>
</tr>
<tr>
<td>Cañote de maíz</td>
<td>75</td>
<td>75</td>
<td>NH₃</td>
<td>40</td>
<td>91.0</td>
<td>0.632</td>
<td>0.023</td>
</tr>
<tr>
<td>Trigo</td>
<td>80</td>
<td>80</td>
<td>NH₃</td>
<td>70</td>
<td>75.8</td>
<td>0.833</td>
<td>0.095</td>
</tr>
<tr>
<td>Trigo</td>
<td>80</td>
<td>80</td>
<td>NH₃</td>
<td>26</td>
<td>90.0</td>
<td>0.773</td>
<td>0.108</td>
</tr>
<tr>
<td>Cebo de maíz</td>
<td>80</td>
<td>80</td>
<td>NH₃</td>
<td>45</td>
<td>57.0</td>
<td>0.803</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Aunque el efecto de la dosis de amoníaco depende de la humedad (BORHAM y SUNDSTØL, 1982; DRYDEN y LENG, 1988) de la temperatura ambiental (WAYAGEPETERSEN y VESTERGAARD THOMSEN, 1977; SUNDSTØL y COXWORTH, 1984), y del tiempo de reacción (WAISS et al., 1972) se puede concluir que la dosis óptima está compuesta entre 3 y 5 p. 100 (OJL et al., 1977; BORHAM y SUNDSTØL, 1982; CORDESSE et al., 1983).

En cuanto a la dosis de urea los resultados son menos claros. MACDEARMID et al. (1988) realizaron una serie de tratamientos con urea a dosis de 2, 5 y 7 p. 100 y observaron un incremento de la digestibilidad de la MS, MO y NDF de acuerdo con la dosis aplicada. Dichos autores concluyen que la dosis del 2 p. 100 de urea había sido insuficiente para suplementar el nitrógeno necesario para los microorganismos del rumen y para prevenir el amoniacamiento de la paja. Por el contrario, WILLIAMS et al., (1984a), no registraron ningún efecto de la dosis de la urea (3.5 a 10.6 p. 100) sobre la degradabilidad de la paja tratada. ABDULLI y KHORCHANI (1987) obtuvieron un aumento de la DMSIV cuando se incrementaba la dosis hasta 4 p. 100, mientras que a dosis de 8 p. 100 de urea se registraba una disminución de los contenidos en NDF y en hemicelulosas pero no se observaba un incremento adicional de la DMSIV. Esto podría ser debido, según CHERMITE et al. (1989), a que el aumento de la dosis de urea provoca un aumento no lineal de la digestibilidad "in vitro", registrándose una respuesta máxima a una dosis del 6 p. 100.

La dosis de amoníaco y de urea también influye en el contenido en NT y en la cantidad de Nitrógeno que es retenido en el material tratado. En general, el aumento de la dosis aplicada incrementa el contenido en NT, tanto en los tratamientos realizados con amoníaco (KIANGL et al., 1981) como en los tratamientos realizados con urea (WILLIAMS et al., 1984a; CHERMITE et al.; 1989). Sin embargo HORN et al. (1983) no registraron ningún aumento del contenido en NT cuando se incrementaba la dosis de amoníaco aplicada de 3.2 a 7.1 p. 100.

La bibliografía consultada sobre el efecto de la dosis de urea o amoníaco en la fijación de Nitrógeno presenta resultados poco homogéneos. MACDEARMID et al. (1988) y ABDULLI y KHORCHANI (1987) observaron que la fijación de N era mayor a las mayores dosis de urea aplicadas. Por el contrario, OJL et al. (1977), KIANGL et al. (1981) y JAYASURIYA y PEARCE (1983) obtuvieron un efecto inverso. Otros resultados propugnan que el aumento de la dosis de urea aplicada no afecta a la fijación de Nitrógeno (CHERMITI et al., 1989).

6.1.2 HUMEDAD

El contenido en humedad del material influye en el efecto de la amonificación. La variación de dicho contenido puede ser parcialmente responsable de la variación del efecto del tratamiento (BIRKELO et al., 1988), pudiendo no registrarse ningún efecto cuando el tratamiento con amoníaco se realiza sobre un material con escasa humedad (MANN et al., 1988).

El incremento de la humedad del material a tratar favorece la penetración del gas amoníaco (WAISS et al., 1972) así como el contacto entre el ion amonio y la pared celular (MANDELL et al., 1988), aunque un exceso de humedad puede causar un efecto negativo
sobre el tratamiento (SUNDSTØL et al., 1978). Según ØRSKOV et al. (1983), cuando el material presenta un bajo contenido en humedad es preferible tratar con amoníaco acuoso mientras que si el contenido en humedad es relativamente elevado el amoníaco anhidro puede distribuirse más homogéneamente.

Numerosos autores observaron un efecto positivo sobre la eficacia del tratamiento al aumentar el contenido en humedad del material a tratar (WAISS et al., 1972; SOLAIMAN et al., 1979; KIANGI et al., 1981; BORHAM y SUNDSTØL, 1982; CORDÈSSE et al., 1983; HORN et al., 1983; MANDELL et al., 1988). Sin embargo, dicho efecto era más notable cuando el incremento se realizaba en materiales muy secos (WAISS et al., 1972), mientras que cuando se alcanzaban humedades elevadas el efecto no era tan notable, pudiendo registrarse daños en el almacenado y problemas de manejo (SUNDSTØL y COWXWORTH, 1984; MACDEARMID et al., 1986).

El contenido en humedad recomendable en el tratamiento con amoníaco es muy variable dependiendo principalmente de la dosis aplicada (KIANGI et al., 1981; DRYDEN y LENG, 1986) y de la forma de aplicación del amoníaco (BORHAM y SUNDSTØL, 1982 ØRSKOV et al., 1983). En el Cuadro 8 se expresan diversas condiciones óptimas para el tratamiento con amoníaco presentadas por distintos autores.

CUADRO 8. Condiciones óptimas del tratamiento con amoníaco recomendadas por diversos autores.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>DOSIS (g/Kg)</th>
<th>T (°C)</th>
<th>TIEMPO</th>
<th>HUMEDAD (%)</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuoso</td>
<td>50</td>
<td>ambiental</td>
<td>30</td>
<td>30</td>
<td>WAISS et al. (1972)</td>
</tr>
<tr>
<td>Anhidro</td>
<td>25-40</td>
<td><5</td>
<td>56</td>
<td>>25-30</td>
<td>SUNDSTØL et al. (1978)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-15</td>
<td>28-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-30</td>
<td>7-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acuoso</td>
<td>33</td>
<td>21-23</td>
<td>1-10</td>
<td>54</td>
<td>SOLAIMAN et al. (1979)</td>
</tr>
<tr>
<td>Acuoso</td>
<td>40</td>
<td>17</td>
<td>42</td>
<td>7.5</td>
<td>BORHAM y SUNDSTØL (1982)</td>
</tr>
<tr>
<td>Anhidro</td>
<td>50</td>
<td>3</td>
<td>140</td>
<td>15</td>
<td>MANDELL et al. (1988)</td>
</tr>
</tbody>
</table>

El tratamiento con urea es mucho más dependiente del contenido en humedad que el tratamiento con amoníaco ya que para la liberación de amoníaco a partir de la urea (ureólisis) es necesario la presencia de agua. La mayoría de autores afirman que el aumento del contenido en humedad favorece la ureólisis (CLOETE et al., 1983; CLOETE y KRTIZZINGER, 1984; WILLIAMS et al., 1984a; ABDOLI y KHORCHANI, 1987; DIAS DA SILVA et al., 1988; CHERMITI et al., 1989) y por tanto el efecto del tratamiento.

Al igual que en el tratamiento con amoníaco, el efecto del incremento del contenido en humedad es mayor cuando se realiza a humedades bajas. IBRAHIM et al. (1986), no obtuvieron ninguna mejora en la digestibilidad "in vitro" cuando trataban paja de trigo a 4 p. 100 de urea y 10 p. 100 de humedad, mientras que cuando incrementaron la humedad a 30 p. 100 registraron un aumento notable de dicho parámetro, no observándose mejoras adicionales cuando la humedidad incrementaba hasta 50 p. 100. ABDOLI y KHORCHANI (1987), DIAS DA SILVA et al. (1988) y CHERMITI et al. (1989) no observaron efecto del incremento del contenido en humedad cuando aplicaban humedades entre 45 y 75, 40 y 60, y 25 y 50 p. 100 respectivamente para los citados autores.

El contenido en humedad óptimo para este tipo de tratamiento depende de la dosis de urea aplicada (ABDOLI Y KHORCHANI, 1984), de la temperatura ambiental (CLOETE y KRTIZZINGER, 1984) y del tiempo de reacción (CLOETE et al., 1983). En relación a ello, WILLIAMS et al. (1984b) observaron un pobre efecto del tratamiento con urea a 7 p. 100 y 30 p. 100 de humedad, y según dichos autores, era debido a la adición de una cantidad inadecuada de agua. CLOETE Y KRTIZZINGER (1984), tampoco observaron ningún efecto del aumento del contenido en humedad cuando el tratamiento se realizaba a 4°C y concluyeron que el aumento de la temperatura y de la humedad favorecieron el efecto del tratamiento. En el Cuadro 9 se exponen las condiciones óptimas para el tratamiento con uréa recomendadas por distintos autores.

CUADRO 9. Condiciones óptimas para el tratamiento con urea, según diversos autores.

<table>
<thead>
<tr>
<th>DOSIS (g/Kg)</th>
<th>HUMEDAD (%)</th>
<th>TEMPERATURA (°C)</th>
<th>TIEMPO (días)</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>30</td>
<td>-</td>
<td>7</td>
<td>IBRAHIM et al. (1986)</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>37</td>
<td>30</td>
<td>ABDOLI y KHORCHANI (1987)</td>
</tr>
<tr>
<td>30-40</td>
<td>25-30</td>
<td>Medianos</td>
<td>60</td>
<td>ALIÈES Y MUÑOZ (1988)</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>22</td>
<td>52-57</td>
<td>D.D.SILVA et al. (1988)</td>
</tr>
<tr>
<td>60</td>
<td>25</td>
<td>15-25</td>
<td>60</td>
<td>CHERMITI et al. (1989)</td>
</tr>
</tbody>
</table>

La influencia del contenido en humedad sobre la fracción nitrogenada del material tratado es muy variable. IBRAHIM et al. (1986) obtuvieron un contenido en NT inferior cuando el tratamiento se realizaba a humedad baja (10 p. 100); Por el contrario, CLOETE y KRTIZZINGER (1984) y ABDOLI y KHORCHANI (1987) observaron un efecto inverso. A su vez, el efecto del incremento de la humedad sobre la retención de N en la paja también varía entre tratamientos, pudiendo no registrarse ningún efecto (CHERMITI et al., 1989), un efecto positivo (HORN et al., 1983) o un efecto negativo (WILLIAMS et al., 1984a).
6.1.3 TEMPERATURA

El aumento de la temperatura acelera el efecto del tratamiento (SUNDSTØL et al., 1978; CLOETE y KRITZINGER, 1984; SUNDSTØL y COXWORTH, 1984). WAAGEPETERSEN y VESTERGAARD THOMSEN (1977) observaron en el tratamiento con amoníaco un efecto positivo del aumento de la temperatura hasta 45°C cuando el tiempo de reacción era corto (3-7 días). A temperaturas bajas (alrededor de 0°C) la acción del tratamiento es lenta y puede determinar el pobre efecto obtenido tanto en el tratamiento con amoníaco (SUNDSTØL et al., 1978; ALIBES et al., 1983/84; MANDELL et al., 1988) como en el tratamiento con urea (CLOETE y KRITZINGER, 1984; WILLIAMS et al., 1984b; COTTYN y DE BOEVER, 1988; ZAMAN y OWEN, 1990). MANDELL et al. (1988) concluyeron que las bajas temperaturas posiblemente limitaban la reacción entre el amoníaco y el material a tratar.

Numerosos autores registraron una importante interacción, entre la temperatura y el tiempo de reacción necesario (WAAGEPETERSEN y VESTERGAARD THOMSEN, 1977; SUNDSTØL et al., 1978; BORHAM y SUNDSTØL, 1982; CLOETE et al., 1983; SUNDSTØL y COXWORTH, 1984). Dicha interacción puede traducirse en que parte del efecto de la temperatura puede compensarse con un incremento en el tiempo de reacción (CLOETE et al., 1983; SUNDSTØL y COXWORTH, 1984).

El contenido en NT también está influenciado por la temperatura ambiental. HORTON (1978) exponía que el aumento del contenido en NT de la paja tratada era menor cuanto menor era la temperatura. MANDELL et al. (1988) también anotaron que la escasa mejora en el contenido en NT obtenida en el tratamiento con amoníaco era probablemente debida a la baja temperatura registrada durante el tratamiento. ALIBES et al. (1983/84) realizaron unos tratamientos con amoníaco anhidro en verano (35°C) y en invierno (7°C) y observaron que el contenido en NT era superior en la paja tratada a mayor temperatura.

En los tratamientos con urea, la actividad ureásica puede disminuir debido tanto a una baja como a una alta temperatura. CLOETE y KRITZINGER (1984) observaron una menor actividad ureásica cuando el tratamiento con urea se realizaba a 4°C y a 35°C y concluyeron que a pesar de ello la reacción de la amoniacación era de alguna manera favorecida por las altas temperaturas.

6.1.4 TIEMPO DE REACCION

El tiempo de reacción es un factor muy importante que afecta a la eficacia de la amoniacación (SUNDSTØL et al., 1978). El tiempo necesario para una buena eficacia del tratamiento depende, en gran parte, de la temperatura (SUNDSTØL et al., 1978; BORHAM y SUNDSTØL, 1982; CLOETE et al., 1983; SUNDSTØL y COXWORTH, 1984). En el Cuadro 10 se expresan los tiempos de reacción necesarios para el tratamiento con amoníaco en función de la temperatura ambiental, según SUNDSTØL et al. (1978).

<table>
<thead>
<tr>
<th>TEMPERATURA (°C)</th>
<th>TIEMPO (semanas)</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>8</td>
</tr>
<tr>
<td>5-15</td>
<td>4-8</td>
</tr>
<tr>
<td>15-30</td>
<td>1-4</td>
</tr>
<tr>
<td>>30</td>
<td>1</td>
</tr>
</tbody>
</table>

CUADRO 10. Tiempos de reacción necesarios para el tratamiento con amoníaco, en función de la temperatura ambiental (Referencia: SUNDSTØL et al., 1978).

El periodo de reacción necesario está relacionado con la temperatura, dosis y humedad. WAISS et al. (1972) observaron que el efecto de la dosis de amoníaco y del contenido en humedad sobre la solubilidad enzimática disminuye conforme aumenta el tiempo de reacción, WAAGEPETERSEN y VESTERGAARD THOMSEN (1977) notaban una relación entre la temperatura, dosis y tiempo de reacción, siendo este último más importante a dosis y temperatura bajas.

De forma general, el incremento del tiempo de reacción provoca un aumento del contenido en NT (SOILAIMAN et al., 1979), una reducción del contenido en pared celular (KIANGI et al., 1981) y favorece la solubilidad enzimática (BORHAM y SUNDSTØL, 1982).

En cuanto al tratamiento con urea, CLOETE et al. (1983) observaron una influencia del contenido en humedad sobre el tiempo necesario para el tratamiento. El aumento del tiempo de reacción favorece la hidrólisis de la urea (OJI y MOWAT, 1977; DIAS DA SILVA et al., 1988; MASCARENHAS-FERREIRA et al., 1989). OJI y MOWAT (1977) registraron una ureólisis del 70 p. 100 en el segundo día de tratamiento, y la cual se completaba cuando transcurriam 20 días. HADJIPANAYIOTOU (1982) también observó que el grado de ureólisis era notable hasta el día 30, a partir del cual sólo se hidrolizaba una cantidad mínima de urea. Dicho autor concluyó que el efecto de la urea era completo a los 30 días de su aplicación.

Según DIAS DA SILVA et al. (1988) y MASCARENHAS-FERREIRA et al. (1989) la reducción del contenido en NDF depende en gran medida del tiempo de reacción y, además, observaron un efecto significativo sobre la mejora del valor nutritivo cuando el periodo de tratamiento incrementaba de 45 a 60 días, registrándose un valor máximo de digestibilidad "in vitro" a los 52-57 días post-tratamiento.

6.1.5. ADICION DE UREASAS

Para la hidrólisis de la urea es necesaria la acción de la enzima ureasa. Dicha enzima está presente de forma natural en el material vegetal, pudiendo disminuir su actividad cuando aparece que la actividad ureásica la temperatura ambiental es superior a 30°C inferior a 4°C según CLOETE y KRITZINGER (1984).
En la actualidad, no se conoce en que condiciones es necesaria la adición de una fuente externa de ureasas para la hidrólisis adecuada de la urea. La bibliografía obtenida es escasa y presenta unas condiciones de tratamiento y unos resultados muy variables. Mientras que diversos autores utilizan el haba china de soja molida como fuente externa de ureassas (WILLIAMS et al., 1984b; DIAS DA SILVA et al., 1988; BESLE et al., 1990; CHERMITI et al., 1989) otros utilizan la enzima ureasa pura (KIANGH et al., 1981; JAYASURYIYA y PEARCE, 1983). La dosis aplicadas también son muy diversas y oscilan entre 0.6 p. 100 (DIAS DA SILVA et al., 1988) y 5 p. 100 (WILLIAMS et al., 1984b).

Algunos autores no observaron ningún efecto de la adición de una fuente externa de ureasas sobre el grado de ureólisis (WILLIAMS et al., 1984b; CHERMITI et al., 1989). Por el contrario, otros autores apuntaron una mejora de dicha ureólisis (DIAS DA SILVA et al., 1988; BESLE et al., 1990) o una reducción del tiempo de reacción (JAYASURYIYA y PEARCE, 1983; CHERMITI et al., 1989). Diversos estudios han demostrado que la adición de una fuente externa de ureasas tenía un efecto notable sobre el contenido en NDF (CHERMITI et al., 1989) la digestibilidad (BESLE et al., 1990; CHERMITI et al., 1989) y la ingestión (BESLE et al., 1990). Por el contrario, en otros ensayos no se observó ningún efecto sobre el contenido en NDF (DIAS DA SILVA et al., 1988) ni sobre la digestibilidad (WILLIAMS et al., 1984b; DIAS DA SILVA et al., 1988). CHERMITI et al. (1989) concluyen que la adición de ureassas mejoraba la ureólisis pero no aseguraba la transformación total de la urea en amonio.

7. MEJORA DEL VALOR NUTRITIVO MEDIANTE LOS TRATAMIENTOS QUÍMICOS

7.1 EFECTO DEL TRATAMIENTO SOBRE LA DIGESTIBILIDAD E INGESTIÓN DE LA PAJA

La mayor parte de la bibliografía consultada demuestra que el tratamiento con el ion amonio, y, en general, el tratamiento alcalino, provoca una solubilización de la hemicelulosa (JACKSON, 1977; GRAHAM y AMAN, 1983/84; BIRKELÖ et al., 1986; GIVENS et al., 1985; CHERMITI et al., 1989), traduciéndose en una reducción limitada de la fracción NDF (SOLAIMAN et al., 1979; PATIERSON et al., 1981; WANAPAT et al., 1985; REID et al., 1988; LLAMAS-LAMAS y COMBS, 1990).

El tratamiento, en definitiva, provoca una mayor accesibilidad de los glúcidos de las paredes lignificadas para el ataque de los microorganismos del rumen (VAN SOEST et al., 1983/84; DIAS DA SILVA et al., 1988; GRENET y BARRY, 1990). Ello, en parte, puede ser consecuencia del hinchamiento intracristalino de las microfibrillas de celulosa o de algunos cambios estructurales en las fibras de celulosa (DREWEND y LENG, 1988; INNOCENTI et al., 1989).

En la mayoría de los estudios revisados se concluye que el tratamiento alcalino provoca un aumento de los coeficientes de digestibilidad de la MS y MO del residuo lignocelulósico tratado. En el Cuadro 11 se expresan los coeficientes de digestibilidad de la MO y la MS ingerida obtenida en distintos estudios.

CUADRO 11. Coeficientes de digestibilidad de la materia orgánica (DMO %) y materia seca ingerida (MSI) (g MS/kg PV^{0.9}) obtenidos en diversos estudios.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MATERIAL TRATADO</th>
<th>DETERMINACIÓN</th>
<th>DMO</th>
<th>MSI</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo</td>
<td>Paja de distintas especies</td>
<td>DMV</td>
<td>42.4</td>
<td>-</td>
<td>LAWLOR y O'BREIN 1979</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>56.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>58.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>DMV</td>
<td>39.9</td>
<td>-</td>
<td>SOLAIBAIN et al. 1979</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>52.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja centeno</td>
<td>DMV</td>
<td>40.4</td>
<td>-</td>
<td>KERNAN et al. 1981</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>54.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>DMV</td>
<td>38.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>48.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>DMV</td>
<td>47.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>54.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>DMV</td>
<td>37.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>47.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>"in vivo" ovino</td>
<td>44.0</td>
<td>0.54</td>
<td>HADJIPANAYIOTOU, 1982</td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>58.0</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (2.5%)</td>
<td></td>
<td></td>
<td>51.8</td>
<td>50.8</td>
<td>BRISCOE et al. 1983</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (2.5%)</td>
<td></td>
<td></td>
<td>50.5</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>52.2</td>
<td>48.8</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>52.4</td>
<td>52.2</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>"in vivo" ovino</td>
<td>45.9</td>
<td>29.7</td>
<td>ALBES et al. 1983/84</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>50.8</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Cañamo</td>
<td>DMV</td>
<td>54.2</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>64.3</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>DMV</td>
<td>42.5</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3.5%)</td>
<td></td>
<td></td>
<td>50.8</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>"in vivo" ovino</td>
<td>42.0</td>
<td>20.5</td>
<td>DRYDEN y KEMPION 1983/84</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (4.0%)</td>
<td></td>
<td></td>
<td>60.0</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja de distintas especies</td>
<td>DMV</td>
<td>48.0</td>
<td>-</td>
<td>BRIBOSON et al. 1983/84</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope</td>
<td></td>
<td></td>
<td>53.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope</td>
<td></td>
<td></td>
<td>59.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope</td>
<td></td>
<td></td>
<td>55.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>"in vivo" ovino</td>
<td>48.0</td>
<td>-</td>
<td>WILLIAMS, 1983/84</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>52.0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MATERIAL TRATADO</th>
<th>DETERMINACIÓN</th>
<th>DMO</th>
<th>MSI</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo</td>
<td>Zona malo</td>
<td>DMV</td>
<td>42.2</td>
<td>-</td>
<td>NELSON et al. 1984</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (2%)</td>
<td></td>
<td></td>
<td>51.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>51.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (4%)</td>
<td></td>
<td></td>
<td>55.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>DMV</td>
<td>27.7</td>
<td>-</td>
<td>HADJIPANAYIOTOU, 1984</td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>45.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>DMV</td>
<td>47.7</td>
<td>-</td>
<td>WILLIAMS et al. 1984a</td>
</tr>
<tr>
<td>Urea (5%)</td>
<td></td>
<td></td>
<td>55.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (7%)</td>
<td></td>
<td></td>
<td>56.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (10.6%)</td>
<td></td>
<td></td>
<td>55.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>DMV</td>
<td>10.6</td>
<td>-</td>
<td>WILLIAMS et al. 1984b</td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>47.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (7%)</td>
<td></td>
<td></td>
<td>48.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>52.9</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>"in vivo" ovino</td>
<td>40.2</td>
<td>38.0</td>
<td>BENNET y HOOPER 1985</td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>38.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>47.8</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>"in vivo" ovino</td>
<td>42.7</td>
<td>58.9</td>
<td>DAS DA SILVA y SUNDESTOR, 1988</td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>58.4</td>
<td>79.4</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (3%)</td>
<td></td>
<td></td>
<td>50.9</td>
<td>79.4</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Cañamo</td>
<td>DMV</td>
<td>47.0</td>
<td>-</td>
<td>DAS DA SILVA et al. 1988</td>
</tr>
<tr>
<td>Urea (5%)</td>
<td></td>
<td></td>
<td>50.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (6%)</td>
<td></td>
<td></td>
<td>59.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (6%) + maíz (0.5%)</td>
<td></td>
<td></td>
<td>59.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urea (6%) + maíz (0.5%)</td>
<td></td>
<td></td>
<td>59.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja de distintas especies</td>
<td>"in vivo" ovino</td>
<td>42.0</td>
<td>-</td>
<td>GIVENS et al. 1988</td>
</tr>
<tr>
<td>N<sub>1</sub></td>
<td></td>
<td></td>
<td>57.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>"in vivo" terneras</td>
<td>49.7</td>
<td>-</td>
<td>MANDELL et al. 1988</td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (5%)</td>
<td></td>
<td></td>
<td>53.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (5%)</td>
<td></td>
<td></td>
<td>56.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (5%)</td>
<td></td>
<td></td>
<td>59.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (5%)</td>
<td></td>
<td></td>
<td>59.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja celeste</td>
<td>"in vivo" terneras</td>
<td>52.9</td>
<td>2.45</td>
<td>MACLEAN et al. 1988</td>
</tr>
<tr>
<td>Urea (5%)</td>
<td></td>
<td></td>
<td>55.5</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>Urea (7%)</td>
<td></td>
<td></td>
<td>50.9</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>N<sub>1</sub>, arrope (4%)</td>
<td></td>
<td></td>
<td>59.3</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Paja trigo</td>
<td>"in vivo" ovino</td>
<td>48.3</td>
<td>38.3</td>
<td>CREMATI et al. 1988</td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>54.4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>Urea (4%)</td>
<td></td>
<td></td>
<td>52.6</td>
<td>40.3</td>
<td></td>
</tr>
</tbody>
</table>
El incremento registrado en la ingestión de paja como respuesta al tratamiento es muy variable y, según la bibliografía, puede oscilar entre 9 p. 100 (STEPHENSON et al., 1984) y 90 p. 100 (MALES y GASKINS, 1982). Los incrementos observados por diversos autores fueron de 70 p. 100 (LAWLOR y O’SHEA, 1979; FAHY y O’RYSKOV, 1984), 50 p. 100 (O’RYSKOV et al., 1983), 30 p. 100 (HORN et al., 1989), 19 p. 100 (HORTON y STEACY, 1979) y 12 p. 100 (ZORRILLA-RIOS et al., 1986a). Por el contrario, otros autores no observaron ninguna mejora en la ingestión de paja (HORTON, 1979; SOLAIMAN et al., 1979; BENAHMED y DULPHY, 1985; MANN et al., 1985). Estas bajas ingestiones podrían ser debidas a una emonición incompleta de la paja (ZORRILLA-RIOS et al., 1986a), al olor del amoníaco debido a la falta de aireación (SOLAIMAN et al., 1979) o en el caso del tratamiento con urea, debido al mal sabor de la urea sin transformar (BENAHMED y DULPHY, 1985).

La amplia variación en las respuestas al tratamiento a nivel de ingestión es consecuencia, por una parte, a la gran diversidad de las condiciones experimentadas de evaluación y, por otra parte, a los factores que influyen en el tratamiento. Dentro del primer grupo pueden englobarse el contenido en NT de la dieta (MANN et al., 1988), el nivel de suplementación (ZORRILLA-RIOS et al., 1986b), el tipo de suplementación (FAHY et al., 1984), el tipo de animal (SILVA et al., 1989) y temperatura ambiental durante la evaluación (LLAMAS-LAMAS y COMBS, 1990). En cuanto a los factores del tratamiento que afectan a la ingestión son el tipo de ácido utilizado (FAHY y O’RYSKOV, 1984), la dosis aplicada (STEPHENSON et al., 1984), la humedad del material tratado (ABDOLI et al., 1988) y la temperatura ambiental a la cual se lleva a cabo el tratamiento (ALIBES et al., 1983/84).

El aumento de la digestibilidad y de la ingestión se traduce en un aumento de la ingestión de materia orgánica digestible (MOD) (ALIBES et al., 1983/84; DRYDEN y KEMPTON, 1983/84). O’RYSKOV et al. (1983) y FAHY y O’RYSKOV (1984) observaron que el tratamiento con amoníaco provocaba un incremento en la ingesta de MOD superior a 80 p. 100 con respecto a la paja sin tratamiento. DIAS DA SILVA (1988) observó un incremento del 38 p. 100 cuando se trataba de centeno a 5.5 p. 100 de urea, y MACDEARMID et al. (1988) obtuvieron un aumento de 0.23 y 0.28 unidades cuando se trataba la paja a 7 p. 100 de urea y 4 p. 100 de amoníaco, respectivamente.

7.2 CONTENIDO EN NITROGENO DE LA PAJA TRATADA Y SU UTILIZACION

Una de las principales ventajas que presenta el tratamiento con amoníaco frente al tratamiento con hidróxido sódico es que aporta nitrógeno al producto tratado (JACKSON, 1977; SUNDESTOL et al., 1978; SUNDESTOL y OWEN, 1984). Toda la bibliografía consultada está de acuerdo en que el tratamiento con amoníaco o con urea provoca un incremento del contenido en NT del producto tratado, aunque, según JAYASURYA y PEARCE (1983), el tratamiento es ineficiente a nivel de la fijación del N añadido sobre el material vegetal.

El porcentaje de fijación de N depende de las condiciones del tratamiento tales como la dosis (SAENGER et al., 1982; WANAPAT et al., 1985; MACDEARMID et al., 1988), la humedad del tratamiento (SOLAIMAN et al., 1979; WILLIAMS et al., 1984a; CHERMITI y CORDESSE, 1988), la temperatura (HORTON, 1978; CLOETE y KRITZINGER, 1984) y el tiempo del tratamiento (SOLAIMAN et al., 1979; O’RYSKOV et al., 1983). Por otra parte, también influyen el tipo de producto tratado (WANAPAT et al., 1985; CHERMITI y CORDERESSE, 1988), las condiciones de almacenado tras el tratamiento (GORDON y CHESSEX, 1983; MASON et al., 1988) y el proceso de desecación (MALES y GASKINS, 1982; JAYASURYA y PEARCE, 1982; ABDOLI y KORCHANI, 1987; DIAS DA SILVA et al., 1988). Por el contrario, el método de aplicación del tratamiento parece que no influye en el porcentaje de N fijado (O’RYSKOV et al., 1983).

Los porcentajes de fijación de N revisados, tanto del tratamiento con amoníaco como del tratamiento con urea, son muy variables y pueden ser inferiores al 30 p. 100 (ALBERTI y MUÑOZ, 1986; ABDOLI y KORCHANI, 1987; GIVENS et al., 1988; MICHAELE-DOREAU y GUEDES, 1989), entre 30 y 50 p. 100 (SOLAIMAN et al., 1979; HADJIFANAYIOTOU, 1982; DRYDEN y LENG, 1986; LLAMAS-LAMAS y COMBS, 1990) o superiores a 50 p. 100 (SAENGER et al., 1982; PERDOK y LENG, 1986; ABDOLI et al., 1986; CHERMITI y CORDESSE, 1988).

Esta N fijada se incorpora a la paja de distintas formas (GORDON y CHESSEX, 1983) aunque la mayor parte se encuentra en forma de N soluble (DRYDEN y KEMPTON, 1983/84; JEWELL y CAMLING, 1986; DRYDEN y LENG, 1988; MICHAELE-DOREAU y GUEDES, 1989). Dicho N soluble está compuesto principalmente por N amoniacal (N-NH3) (WAISS et al., 1.972; SOLAIMAN et al., 1979; NELSON et al., 1984, 1985; MICHAELE-DOREAU y GUEDES, 1989) y por una fracción de N no determinada (DRYDEN y KEMPTON, 1983/84; NELSON et al., 1984, 1985; MICHAELE-DOREAU y GUEDES, 1989), el cual está menos fuertemente unido a la pared celular que el N unido a la pared celular (NELSON et al., 1984).

El aumento del contenido en N de las heces y la consiguiente disminución de la digestibilidad aparente de la PB de la dieta observado cuando la paja trata da entra a formar parte de la dieta (OJI et al., 1977; NELSON et al., 1984; CHERMITI y CORDESSE, 1988; MICHAELE-DOREAU y GUEDES, 1989; CHENOST y HASSEN, 1990) se justifica mediante diversas hipótesis. El aumento de N fecal puede ser consecuencia de que las proteínas presentes en el forraje se vuelven insolubles tras el tratamiento debido al aumento de la temperatura (BENAHMED y DULPHY, 1985) y/o al incremento del contenido en N unido a la pared celular registrado tras el tratamiento (DULPHY et al., 1984; MASON...
et al., 1989). Sin embargo, dichas justificaciones no son compartidas por MICHALET-DOREAU y GUEDES (1989) quienes no observaron ninguna insolubilización de la proteína del forraje tras el tratamiento y, además anotaron, junto con CHENOST y HASSEN (1990) que el aumento en N-ND1 contribuyó en muy poca proporción al incremento del N fecal.

Las hipótesis más recientes apuntan a una importante contribución del N bacteriano en el N fecal (DIAS DA SILVA y SUNDSTÖL, 1986; ZORRILLA-RIOS et al., 1989; CHENOST y HASSEN, 1990). Ello puede ser consecuencia a la mayor síntesis de proteína microbiana en el rumen, ciego y colon (DIAS DA SILVA y SUNDSTÖL, 1986; ZORRILLA-RIOS et al., 1989), a la mayor proporción de materia orgánica digerible potencial que escapa del rumen y se fermenta en el tracto digestivo inferior (ZORRILLA-RIOS et al., 1989) o al aumento de la secreción endógena en el tracto digestivo (DIAS DA SILVA y SUNDSTÖL, 1986). CHENOST y HASSEN (1990) concluyeron que una fracción importante del N degradable aportado por el tratamiento es inutilizado por los microorganismos del rumen y es excretado en heces. MICHALET-DOREAU y GUEDES (1989) finalizaron el estudio de la utilización nitrogenada de la paja tratada con amoniaco con la duda de si el N fijado en forma no determinada era realmente aprovechable por los microorganismos del rumen.

El efecto del tratamiento con amoniaco o con urea sobre la retención de nitrógeno en el animal es variable y, según DRYDEN y KEMPSTON (1983/84), sólo se puede mejorar cuando el balance nitrogenado es bajo o negativo. DULPHY et al. (1984) observaron que en las dietas con paja tratada con urea había una retención de N baja y semijunta a la registrada con las dietas de paja testigo. Por el contrario, MASON et al. (1989) y ZORRILLA-RIOS et al. (1989) obtuvieron una mejora en dicha retención cuando se suministraba paja tratada con amoniaco en la dieta.

7.3 UTILIZACIÓN DE PAJA TRATADA PARA DIETAS DE MANTENIMIENTO Y PRODUCCIÓN

Los estudios realizados en animales en producción alimentados con paja tratada con álcalis son limitados (GREENHALGH, 1984). WILLIAMS (1983/84) anotaba que la paja sólo se usaba eficientemente cuando constituía una alta proporción de la dieta; siendo dicha proporción la que determina el interés del tratamiento químico para los animales de producción (GARRET et al., 1979; OWEN y KATEGILE, 1984). Diversos estudios realizados mostraron que el tratamiento alcalino sólo tenía un efecto positivo sobre la producción animal cuando la dieta estaba constituida por una alta proporción de paja (HADJIPANAYIOTOU, 1982; KRISTENSEN, 1984; WILLIAMS et al., 1986; ABDOLI et al., 1988; CHENOST, 1989). Por tanto, hay una limitación práctica de la utilización del tratamiento alcalino para mejorar los resultados de producción (GARRET et al., 1979).

El uso de la paja en dietas de producción se restringe a las situaciones en las cuales se desean niveles moderados de producción (WILLIAMS 1983/84), ya que su bajo valor nutritivo conlleva a que no se pueda usar como fuente de energía para la producción intensiva de vacuno de carne ni para la alta producción de leche (KRISTENSEN, 1984). ANDERSEN et al. (1989), en un estudio sobre el uso de la paja tratada para la alimentación de vacuno de leche, observaron que la sustitución de paja por paja tratada en la dieta provocaba un significativo cambio en la producción de leche y en su contenido en grasa. Dichos autores, también, concluyeron que la dieta constituida por paja tratada con respecto a la dieta de heno provocaba una reducción de la producción de leche al inicio
II- OBJETIVOS
En el área mediterránea la producción forrajera se caracteriza por presentar una gran diversidad de especies y una producción baja, sujeta a una fuerte estacionalidad. Como consecuencia, la oferta de forraje para la alimentación animal es deficitaria durante gran parte del año. Por el contrario, la producción de paja de cereal es muy elevada y, en épocas de escasez de forraje, dicho subproducto puede convertirse en un recurso estratégico para la alimentación del ruminante.

Sin embargo, la paja como alimento presenta una digestibilidad e ingestión voluntaria débil, consecuencia de su estructura y composición química. Ello impide que dicho subproducto por sí solo no pueda cubrir las necesidades de mantenimiento del animal, siendo necesario para ello una suplementación adecuada y/o la aplicación de alguna tecnología adicional concreta.

La problemática expuesta pone de manifiesto la necesidad de maximizar la ingestión así como la digestión microbiana de la paja, con el fin de poder incrementar las cantidades a incluir en las dietas para ruminantes.

Uno de los métodos más conocidos para mejorar la ingestión y la digestibilidad de la paja es su tratamiento químico con álcalis. En los últimos años, el tratamiento con amoníaco anhidro ha tenido un desarrollo muy amplio. Dicho tratamiento provoca unas mejoras notables tanto a nivel de la digestibilidad como de la ingestión. Sin embargo, la realización práctica del tratamiento presenta una serie de inconvenientes: la peligrosidad en el manejo del producto químico, la necesidad de instalaciones especiales para el almacenamiento del mismo, el escaso número de puntos de venta y el coste global de la aplicación.

En el área mediterránea, una posible alternativa es la utilización de la urea como precursor del amoníaco. El tratamiento con urea presenta una serie de ventajas frente al tratamiento con amoníaco; entre ellas cabe destacar la facilidad de adquisición de la urea, su manejo sencillo y sin riesgos, no necesita ninguna infraestructura especial y su posible menor coste económico.
Por lo anteriormente expuesto, y con el fin de poner a punto la utilización práctica del tratamiento de paja de cereal con urea, se planteó el presente trabajo con los siguientes objetivos:

- Estudiar el efecto del tratamiento con urea sobre la composición química y la calidad nutritiva (digestibilidad e ingestión voluntaria) de la paja de cereal, comparándolo con el efecto del tratamiento con amoníaco anhidro.

- Determinar las condiciones técnicas óptimas para la realización del tratamiento con urea en los siguientes aspectos: dosis de urea a aplicar, contenido en humedad de la paja a tratar e influencia de la temperatura ambiente sobre el efecto del tratamiento con urea.

- Determinar la influencia de la adición de una fuente externa de ureasas sobre el efecto del tratamiento con urea.

- Buscar posibles alternativas a la forma clásica de realización del tratamiento con urea: utilización de la urea en forma sólida o en solución acuosa, posibilidad de eliminar el recubrimiento plástico de la pita y viabilidad del tratamiento con urea sobre rotopacas de paja.

III- PARTE EXPERIMENTAL
PARTE EXPERIMENTAL (1):
1 DESCRIPCION DE LOS TRATAMIENTOS REALIZADOS

1.1 TRATAMIENTO CON AMONIACO ANHIDRO

El tratamiento con amoníaco anhidro se realizó siguiendo el método propuesto por SUNDSTOL et al. (1978). Para ello, se construye una pila de aproximadamente 1 t de paja sobre una lámina de polietileno transparente de 0.7 mm de espesor y se recubre con otra de las mismas características, de tal forma que al enrollarse con la primera se consigue el cierre hermético de la pila. A continuación se procede a inyectar el amoníaco anhidro en la pila introduciendo una sonda metálica perforada a diferentes niveles. Finalizado el tratamiento, la pila permanece cerrada un periodo mínimo de dos meses.

La cantidad de amoníaco anhidro que se aplicaba en la pila se refería siempre a la cantidad de materia seca a tratar, que se calculaba a partir de la pesada de las pacas y de la determinación del contenido en humedad de la misma, mediante un amplio muestreo en el campo y posterior desecación en horno ventilado a 60°C hasta peso constante.

1.2 TRATAMIENTO CON UREA

1.2.1 TRATAMIENTO CON UREA EN SOLUCION ACUOSA EN PILA

El tratamiento con urea se llevó a cabo según la técnica descrita por HADJIPANAYIOTOU (1984) con urea comercial del 46 p. 100 de riqueza en nitrógeno. Previo al tratamiento, se disuelve la urea en agua en cantidades calculadas de acuerdo con la doceis de urea y la humedad a la cual se quiera realizar el tratamiento. Por otra parte, para garantizar la homogeneidad del tratamiento se calcula previamente la cantidad total de materia seca a tratar de igual forma que en el tratamiento con amoníaco anhidro, y se divide por el número de pisos de la pila, obteniendo la solución de urea-necesaria para tratar cada uno de los pisos.

Para llevar a cabo el tratamiento se coloca el primer manto de pacas de la pila, sobre una lámina de plástico y se distribuye homogéneamente la solución de urea mediante una regadera o una manguera con boquilla. Seguidamente se coloca el segundo piso y se repite el proceso. Finalizada la pila se cubre de igual manera que la descrita en el tratamiento con amoníaco anhidro, permaneciendo tapada durante un periodo mínimo de dos meses.

1.2.2 TRATAMIENTO CON UREA EN SOLUCION ACUOSA DURANTE EL EMPACADO

En el tratamiento efectuado al empacar se aplicaba la solución acuosa de urea sobre la paja en el momento de su entrada en la empacadora (HORN et al., 1983). A diferencia del tratamiento en pila, en el cual únicamente se moja la superficie de la paca, con este método se consigue que toda la paja se impregne de la solución. Para realizar el tratamiento se introduce la solución en un depósito colocado en la propia empacadora, accionándose el sistema por el grupo de presión del propio tractor. Un sistema de boquillas situado en la parte superior del sinfín (impulsor de la paja) asegura una distribución homogénea de la solución de urea.
1.2.3 TRATAMIENTO CON UREA EN FORMA SOLIDA

El tratamiento con urea en forma sólida se realiza siguiendo el mismo proceso descrito en el tratamiento con urea en pila, con la única modificación de que la urea no se disuelve en agua sino que se aplica directamente en forma sólida (grano) sobre cada piso de pacas y posteriormente se riega con agua en función de la humedad a la que se quiera realizar el tratamiento. Si la humedad deseada del tratamiento es igual a la de la paja inicial no se adiciona agua.

1.2.4 TRATAMIENTO CON UREA Y ADICION DE UNA FUENTE DE UREASAS

Consiste en adicionar una fuente de ureasas al tratamiento con urea (en solución o en forma sólida). La fuente de ureasas utilizada fue el haba cruda de soja, molida con una criba de 2.5 mm. Su distribución se realizaba siempre en forma sólida antes de humedecer las pacas.

2 ENSAYOS DE DIGESTIBILIDAD E INGESTION VOLUNTARIA

2.1 ANIMALES UTILIZADOS

Para realizar los ensayos "in vivo" se utilizaron morrecos castrados F1 del cruce “Fleischachaf x Rasa Aragonesa”, con pesos comprendidos entre 40 y 55 kg. En Septiembre, antes de iniciar los ensayos, los animales eran desparasitados convenientemente y de forma periódica se les administraba 3 cc de complejo vitamínico comercial.

En cada ensayo de digestibilidad e ingestión voluntaria los animales eran distribuidos al azar en lotes, formados por un mínimo de 3 animales y un máximo de 8, en función del número de tratamientos a evaluar. Cuando el lote estaba formado por menos de 6 animales, el ensayo se realizaba en dos periodos sucesivos. Tras cada periodo, los animales eran siempre redistribuidos al azar.

Los animales eran pesados al inicio y final de cada fase de digestibilidad y de ingestión voluntaria. Las pesadas siempre se realizaban a primera hora de la mañana (8 h) antes de la distribución matinal de la comida.

2.2 DIETAS

La dieta estaba constituida por el subproducto a valorar, suplementado con 184 g de MS de concentrado por animal y día. Cuando se ofrecía paja sin tratar, se le adicionaba 9 g de paja por animal y día con la finalidad de equilibrar el aporte de N no proteico (NPN) en todas las dietas.

El subproducto ofrecido a los animales era previamente troceado a 5-8 cm de longitud. Cuando se realizaba la fase de digestibilidad los animales recibían una cantidad restringida del subproducto de tal manera que la dieta fuera próxima a nivel de mantenimiento, según las necesidades propuestas por el INRA (1983). Por el contrario, cuando se llevaba a cabo la prueba de ingestión voluntaria se suministraba "ad libitum", permitiéndose un rehusado del 10-15 p 100 y se mantenía fijo el aporte de concentrado.

Los animales siempre tenían acceso libre al agua y a bloques comerciales de sal enriquecidos con oligoelementos.

2.3 JAULAS UTILIZADAS

Durante los periodos de realización de los ensayos, los animales permanecían en jaulas individuales con comederos que permitían el control individual de la ingesta diaria de paja y de concentrado. Se utilizaron dos tipos de jaulas, las metabólicas en las cuales el animal estaba atado y permitían la recogida individual de heces, orina y rehusado; y las de ingestión voluntaria en las cuales el animal tenía libertad de movimiento y sólo permitía el control individual de la ingesta.

2.4 MANEJO EXPERIMENTAL

El periodo de adaptación a cada una de las dietas tenía una duración aproximada de 15 días, tras los cuales se iniciaba la fase de digestibilidad, que comprendía la recolección diaria de rehusado, heces y orina durante 10 días. Finalizada dicha fase, los animales eran alojados en jaulas de ingestión voluntaria y, tras 5-10 días de adaptación, se controlaba la dieta ofrecida y rehusada diaria durante 10 días. El último día los animales eran pesados y redistribuidos al azar para iniciar un nuevo periodo experimental.

La dieta era distribuida en dos veces al día (8 y 15 h). El concentrado se ofrecía 15 minutos antes que el subproducto con la finalidad de que fuera ingerido en su totalidad. El rehusado y, en su caso las heces y orina, se recogían a las 8 h, antes de la distribución matinal de la dieta.

2.5 RECOGIDA Y PREPARACION DE MUESTRAS

2.5.1 ALIMENTO OFRECIDO

Durante la fase de digestibilidad, se recogía diariamente una muestra de subproducto la cual era desecada en una estufa de ventilación forzada a 60°C hasta peso

1 Composición: Vit A: 30.000 UI; Vit D₃: 10.000 UI; Vit E: 5 mg; Vit B₁: 25 mg; Vit B₂: 4 mg; Pantenol: 25 mg; Excipiente: 1 ml.

2 Composición del concentrado (% MS): Cebada: 63.7; Torta de soja: 25.0; Carbonato Cálcico: 2.8; Fosfato bicálcico: 5.07; Sulfato magnésico: 1.23; Sal: 0.83; complejo mineral-vitamínico: 1.60.
constante. Una vez finalizado el periodo de recogida, las muestras desecadas se acumulaban para cada tratamiento y se molían con un molino de cuchillas (Fritsch Pulverisette 15) equipado con criba para obtener una partícula de 1 mm de diámetro. Las muestras así obtenidas eran identificadas y almacenadas para los posteriores análisis de laboratorio.

El concentrado se muestreaba diariamente, se acumulaba por período y se desecaba de manera análoga a los subproductos.

2.5.2 REHUSADO

El rehusado se recogía diariamente a primera hora de la mañana y se pesaba individualmente. Las muestras diarias eran desecadas y acumuladas de forma similar al alimento ofrecido y siguiendo el mismo proceso de molienda.

2.5.3 HECES

Durante los 10 días de la fase de digestibilidad se procedía a la recogida de heces. Diariamente, a las 8h, se retiraban las heces de cada animal, se pesaban, y se recogía un 30 p.100 que se desecaba a 60°C en estufa de ventilación forzada. Las muestras ya desecadas se acumulaban por lotes y tratamientos. Posteriormente se homogenizaban, molián, identificaban y almacenaban de igual forma que las anteriores.

2.5.4 ORINA

Durante la fase de digestibilidad la orina se recogía individualmente. Para ello se utilizaban recipientes de plástico que contenían 100 ml de una solución acuosa de ácido sulfúrico al 2 p.100 y de formaldehido de 0.3 p.100. Una vez recogida la orina se procedía a la determinación del volumen excretado, separando un 10 p.100 de dicho volumen, el cual era identificado y almacenado en una cámara frigorífica a 4°C.

2.6 CALCULO DE LOS PARAMETROS DIGESTIVOS

Después de cada período de medidas se calculaban los coeficientes de digestibilidad y la ingestión.

El cálculo de los coeficientes de digestibilidad de la materia seca (DMS) de la materia orgánica (DMO), de la fibra neutra detergente (DNDF) y de la proteína bruta (DPB), según el procedimiento siguiente:

1°. Digestibilidad de la Materia seca de la dieta (DMSd)

\[
\text{MS} \text{ ingerida} - \text{MS} \text{ excretada} \times 100 \\
\text{MS} \text{ ingerida}
\]

2°. Materia orgánica ofrecida (MO_{1})

\[
\text{% concentrado x MO del concentrado} + \text{% subproducto x MO del subproducto}
\]

3°. Materia orgánica ingerida (MO)

\[
\text{\% MO} = \frac{\text{MO}_{2} - (\text{\% rehusado x MO del rehusado)}}{100 - \text{\% rehusado}} \times 100
\]

4°. Digestibilidad de la Materia orgánica de la dieta (DMOd)

\[
\text{\% DMOd} = \frac{100 - \text{\% DMS dieta x MO heces)}}{\text{\% MO}} \times 100
\]

De igual forma se calculaba la DNDF y DPB.

El cálculo de los coeficientes de digestibilidad de la materia seca y materia orgánica del subproducto se realizaba por diferencia, aplicando las siguientes fórmulas:

- Digestibilidad de la Materia Seca del subproducto (DMSs) =

\[
\frac{\text{[MS dieta x DMS dieta]} - \text{[MS concentrado x DMS concentrado]}}{\text{MS concentrado x DMS concentrado}} \times 100
\]

- Digestibilidad de la materia orgánica del subproducto (DMOs)

\[
\frac{\text{[MO dieta x DMO dieta]} - \text{[MO concentrado x DMO concentrado]}}{\text{MO concentrado x DMO concentrado}} \times 100
\]

Los coeficientes de digestibilidad del concentrado utilizados fueron de 85 y 87 p.100 para la materia seca y materia orgánica, respectivamente. Estos coeficientes se calcularon a partir del cómputo del pienso y siguiendo las indicaciones INRA (1978).

La ingestión se calculó individualmente restando a la materia seca ofrecida la materia seca rehusada. Estas ingestiones globales se refieren siempre al peso metabólico (Kg PV0.75).
Tanto en la fase de digestibilidad como de ingestión voluntaria se calculó el nivel de alimentación (N.A.) que recibían los animales, de acuerdo con las necesidades propuestas por el INRA (1989). Previamente se estimaba la materia orgánica digestible ingerida (MODI) por peso metabólico (Kg PV₀.75) tanto de la dieta como del subproducto:

\[
\text{MODI dieta (g/kg PV₀.75)} = \text{MO dieta} \times \text{DMOd} \times \text{MS, (dieta) (g/KgPV₀.75)}.
\]

\[
\text{MODI subp (g/kg PV₀.75)} = \text{MO subp} \times \text{DMOs} \times \text{MS, (subp)(g/kg PV₀.75)}.
\]

y posteriormente se aplicaba la siguiente fórmula (INRA, 1978):

\[
\text{MODI dieta (g/kg PV₀.75)} \quad \text{N.A.} = \frac{\text{23 g de MOD/kg PV₀.75}}{}
\]

correspondiendo los 23 g MOD/kg PV₀.75 a las necesidades de mantenimiento.

2.7 CALCULO DEL BALANCE NITROGENADO

El nitrógeno (N) aparentemente retenido por el animal se determinó de forma individual para cada cordero al finalizar la fase de digestibilidad, de acuerdo con la siguiente fórmula:

\[
\%	ext{N retenido} = \frac{\text{NT consumido} - \text{NT excretado}}{\text{NT consumido}} \times 100
\]

Siendo el NT excretado la suma del N excretado en orina y del N excretado en heces.

2.8 ANALISIS ESTADISTICOS

3 DETERMINACIONES ANALITICAS

3.1 PREPARACION DE LAS MUESTRAS

Todas las muestras, tanto de alimentos como de heces, una vez desecadas a 60°C fueron molidas con un molino Fritsch pulverizette provisto de un tamiz de 1 mm de diámetro, metálicos, ordinados a temperatura de laboratorio (18 - 20°C para realizar los posteriores análisis de laboratorio).

3.2 METODOS ANALITICOS Y DETERMINACIONES QUIMICAS.

El análisis de los principios nutritivos fue realizado mediante las técnicas convencionales del esquema WEENDE, de acuerdo con las normas de la AOAC (1984). Todos los análisis de cada muestra se llevaron a cabo por duplicado.

3.2.1 MATERIA SECA (MS)

Se determinó por desecación en estufa de ventilación forzada a 60°C hasta peso constante. Para la determinación de la MS de las muestras de laboratorio, la desecación se realizó en estufa de 105°C hasta peso constante. En todos los casos, el contenido en humedad del tratamiento se refiere a la humedad inicial de la paja más el agua añadida.

3.2.2 CENIZAS

Se determinaron, a partir de las muestras utilizadas para la determinación de materia seca, mediante incineración en horno mufa a 550°C.

3.2.3 NITROGENO TOTAL (NT)

La determinación del nitrógeno se realizó mediante el método Kjeldahl, siguiendo la modificación del ácido bórico y empleando selenio como catalizador. El principio nutritivo proteína bruta se define como el contenido en nitrógeno Kjeldahl multiplicado por el factor 6.25.

La estimación del porcentaje de N retenido en la paja tras el tratamiento se calculó restando el NT de la paja inicial y, en su caso, el N-urea residual, al contenido en NT de la paja tras el tratamiento. El resultado obtenido se relacionaba con el N añadido en forma de urea o amoníaco, siguiendo la fórmula:

\[
\%	ext{N retenido en la paja} = \frac{\text{NT} - (\text{NT inicial} + \text{N-urea residual})}{\text{N añadido}} \times 100
\]

3.2.4 FRACCIONAMIENTO DE LA FIBRA

Basándose en la anatomía de la célula, GOERING y VAN SOEST (1970) desarrollaron un sistema analítico que permitía separar la pared celular del contenido celular. Definieron los conceptos de fibra neutro detergente, (NDF) fibra ácido detergente (ADF) y lignina ácido detergente (ADL).

3.2.4.1 NDF:

Es la proporción del alimento insoluble en una disolución del detergente sulfato de
lauril-sodio tamponado a pH 7, tras ebullición suave durante una hora. Se considera este concepto como sinónimo de pared celular vegetal, excepto pectinas.

3.2.4.2 ADF:

Proporción de alimento insoluble en caliente en una solución del detergente bromuro de trimetil-cetil-amonio en ácido sulfúrico 1H tras ebullición suave durante una hora. Dicha facción es sinónima de lignocelulosa.

3.2.4.3 ADL:

Basándose en la propiedad de la celulosa de ser soluble en ácido sulfúrico al 72 p.100 se fraccionó la fibra ácido - detergente, en celulosa, lignina, cutina y minerales.

La diferencia entre las fibras neutro y ácido detergente, expresadas libres de cenizas, proporciona una estimación del contenido en hemicelulosas.

3.2.5 UREA RESIDUAL

Se determinó por espectrofotometría con 4-dimetilamino benzaldehído previa extracción con ácido clorhídrico 0.02 M. Se midió la absorbancia a 435 mn según el método propuesto por WATT y CHISP (1954).

3.3 PREDICIÓN DE LA DIGESTIBILIDAD

Se realizó mediante los tres métodos biológicos más conocidos.

3.3.1 DIGESTIBILIDAD "in vitro" DE LA MATERIA SECA (DMSIVI)

Se utilizó el método TILLEY Y TERRY (1963), que consiste en una primera incubación de 0.5 g de muestra a 39°C durante 48 horas, en 50 cc de una mezcla de líquido ruminal y una solución tampón (McDOUGAL, 1949) en proporciones 1:4 respectivamente. El residuo insoluble resultante, se somete a una segunda incubación en 50 cc de una solución de pepsina (1:10000) en clorhídrico (0.1 N) en las mismas condiciones de temperatura y duración.

Finalmente se filtra la muestra, lavándola abundantemente con agua destilada y la MS del residuo resultante, desecada en estufa 105°C durante 48 horas, se considera que corresponde a la fracción indigestible de MS inicial. El líquido ruminal fue extraído de moruecos castrados, provistos de cárne en el saco dorsal del rumen, alimentados con una dieta de heno de alfalfa y concentrado (70:30).

3.3.2 SOLUBILIDAD ENZIMÁTICA DE LA MATERIA SECA (DMS-celulasa)

Se utilizó el método enzimático descrito por AUFREME (1983) que consta de un tratamiento de la muestra durante 24 h al baño maría a 40°C con 0.2 p.100 de pepsina en ácido clorhídrico 1 N que permite un ataque más fácil por la celulasa. Después de filtrada y lavada con agua destilada se somete a la digestión con la preparación celulásica, preparada con acetato de sodio 0.05 M a pH 4.6 a razón de 100 mg de celulasa "Onozuka R 10" por 100 ml de este tampón.

3.3.3 DESAPARICIÓN DE LA MATERIA SECA DE LAS MUESTRAS INCUBADAS EN EL RUMEN: DIGESTIBILIDAD "IN SITU" (DMS-in sacco).

La desaparición de materia seca de las muestras de alimentos, sometidas a una incubación de 48 h en el rumen, se determinó mediante la técnica de las bolsas de nylon (DEMARQUILLY y CHENOST 1969) que consiste en la suspensión de dichas bolsas en el rumen de moruecos castrados, alimentados con una dieta compuesta por heno de alfalfa y concentrado (70:30), según las recomendaciones de MICHALET-DOREAU et al. (1987).

Los sacos utilizados tenían unas dimensiones de 6x11 cm y se realizaban con una tela de nylon que se caracterizaba por presentar un tamaño de poro de 49 μm. En cada saco se introducía 3 g del alimento a evaluar y cada alimento se evaluaba en tres moruecos castrados, canulados en rumen y con dos repeticiones por animal. Cada saco permanecía en rumen 48 h.
PARTE EXPERIMENTAL (2):

EXPERIENCIAS
I: EVALUACION DE TRATAMIENTOS DE PAJA REALIZADOS EN LABORATORIO
I.1 ESTUDIO COMPARATIVO DE LOS TRATAMIENTOS DE PAJA DE CEBADA CON AMONIACO ANHIDRO Y CON UREA EN SOLUCION ACUOSA. EFECTO DE LA HUMEDAD Y DE LA DOSIS DE UREA

I.1.1 OBJETIVO

Comparar el efecto del tratamiento de paja de cebada con urea, realizado a tres dosis y tres niveles de humedad, con el tratamiento realizado con amoníaco-anhídrico a una única dosis y a tres niveles de humedad.

I.1.2 MATERIAL Y MÉTODOS

Se trataron con amoníaco anhídrico o con urea en solución 13 muestras de 2 Kg de paja de cebada (cv Georgia), troceada a 2 cm de longitud. Las muestras se conservaron en bolsas de plástico (60x100 cm) cerradas, a temperatura ambiente de laboratorio (18°C) durante un periodo de 3 meses. En el Cuadro I.1.1 se expresa el esquema experimental seguido.

CUADRO I.1.1. Esquema experimental seguido en la Experiencia I.1 sobre muestras de 2 Kg de paja de cebada.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>DOSIS (g/kgMS)</th>
<th>HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Testigo</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>2 Amoníaco anhídrico</td>
<td>39.9</td>
<td>9.2</td>
</tr>
<tr>
<td>3 Amoníaco anhídrico</td>
<td>44.7</td>
<td>22.3</td>
</tr>
<tr>
<td>4 Amoníaco anhídrico</td>
<td>40.8</td>
<td>32.7</td>
</tr>
<tr>
<td>5 Urea</td>
<td>43.4</td>
<td>22.2</td>
</tr>
<tr>
<td>6 Urea</td>
<td>43.4</td>
<td>31.1</td>
</tr>
<tr>
<td>7 Urea</td>
<td>43.4</td>
<td>42.7</td>
</tr>
<tr>
<td>8 Urea</td>
<td>65.1</td>
<td>21.2</td>
</tr>
<tr>
<td>9 Urea</td>
<td>65.1</td>
<td>31.6</td>
</tr>
<tr>
<td>10 Urea</td>
<td>65.1</td>
<td>43.1</td>
</tr>
<tr>
<td>11 Urea</td>
<td>80.0</td>
<td>21.8</td>
</tr>
<tr>
<td>12 Urea</td>
<td>80.0</td>
<td>32.5</td>
</tr>
<tr>
<td>13 Urea</td>
<td>80.0</td>
<td>43.1</td>
</tr>
</tbody>
</table>

Los tratamientos con amoníaco anhídrico se realizaron inyectando el gas a través de la bolsa de plástico que contenía la muestra de paja y que estaba cerrada herméticamente.

En los tratamientos con urea se preparaba una solución acuosa de urea, en función de la dosis y del contenido en humedad deseados. Esta solución se aplicaba de forma manual, humedeciendo la muestra de paja con la solución y procurando alcanzar la máxima homogeneidad posible. Finalmente, la muestra se introducía en la bolsa de plástico y se conservaba de igual forma que la descrita para el amoníaco anhídrico.

Transcurrido un periodo mínimo de tres meses, se abrieron las bolsas y se procedió a extraer las diferentes submuestras, que eran desecadas hasta peso constante en horno de ventilación forzada a 60°C y molidas de la forma descrita en el Apartado 3 de la Metodología General.

Los análisis químicos y biológicos realizados fueron: cenizas, NT, NDF, ADF, ADL, N-ADF N-ADL, N-urea residual, DMSiV y DMS-calusas. Los métodos utilizados se describen en el Apartado 3.2 de la Metodología General. Por otra parte también se determinó el contenido en NT directamente sobre submuestras no desecadas, expuestas al aire durante 24 h (oreadas) y troceadas previamente de forma manual con cinco repeticiones para cada muestra.

I.1.3 RESULTADOS

En el Cuadro I.1.2 se expresa la composición química de la paja de cebada sin tratar (testigo) y tratada con amoníaco-anhídrico o con urea (muestras desecadas a 60°C).

Todos los tratamientos provocaron una reducción del contenido en NDF, un aumento del contenido en NT y un aparente incremento en las fracciones ADF y ADL. El contenido en humedad a la cual se llevaba a cabo el tratamiento influyó en la magnitud de las modificaciones observadas.

En los tratamientos con amoníaco, la reducción del contenido en NDF estuvo en relación directa con el aumento progresivo de la humedad, presentando unos valores absolutos de 84.6 p. 100 en la paja testigo y 80.3, 74.1 y 71.1 p. 100 en los tratamientos a humedades del 10, 20 y 30 p. 100, respectivamente. Las fracciones ADF y ADL mostraron una tendencia a aumentar con el tratamiento y con la humedad, siendo dicho aumento más notable en la fracción ADL. El contenido en NT se incrementó con respecto a la paja testigo en 0.81, 1.22 y 1.19 puntos en los tratamientos realizados a las humedades crecientes respectivas. Por otra parte, no existió un efecto claro del tratamiento ni de la humedad sobre el contenido en N-ADF. Sin embargo, el N-ADL aumentó como respuesta al tratamiento y no obtuvo una respuesta clara al incremento de la humedad, presentando unos valores medios de 0.21 p. 100 en la paja testigo y de 0.52, 0.55 y 0.77 p.100 en los tratamientos realizados a 10, 20 y 30 p. 100 de humedad.

En los tratamientos con urea en solución acuosa, el contenido en NDF disminuyó en todas las dosis aplicadas, siendo dicha reducción aparentemente más acusada en la humedad intermedia (30 p.100). Las fracciones de ADF y ADL mostraron una tendencia a aumentar con el incremento del contenido en humedad, aunque no presentaron una respuesta clara a las dosis de urea aplicadas. Por otra parte, el contenido en NT presentó un aumento lógico como consecuencia a la aplicación de dosis crecientes de urea y, en general, disminuyó al incrementar el contenido en humedad del tratamiento. Los contenidos en N-ADF y N-ADL mostraron respuestas aportes a todos los tratamientos, aunque no se registraron efectos claros de la dosis ni de la humedad. Cabe resaltar el aumento registrado en el contenido en N-ADF que estuvo comprendido entre 0.35 y 0.79 puntos porcentuales.
El grado de ureólisis (porcentaje de urea transformada) (Figura I.1.1) tuvo una respuesta negativa al incremento de la dosis de urea aplicado y positiva al aumento del contenido en humedad del tratamiento.

![Gráfico de ureólisis](image)

FIGURA I.1.1. Grado de ureólisis observado en paja de cebada tratada con urea, a dosis crecientes y con tres niveles de humedad.

Los resultados de las determinaciones de carácter biológico (DMSIV y DMS-cellulasas) se representan en la Figura I.1.2. Los valores de DMSIV de los tratamientos con amoníaco anhídrido fueron muy similares, con 50.8, 50.6 y 52.9 p. 100 para las humedades de 10, 20 y 30 p. 100, respectivamente. Por el contrario, los tratamientos con urea se observó una influencia de la dosis de urea y de la humedad, registrándose los valores máximos a la dosis de 80 g de urea/Kg de MS y a la humedad del 30 p. 100. Las determinaciones DMS-cellulasas únicamente se realizaron en los tratamientos con urea y sus resultados obtenidos estuvieron de acuerdo con lo observado en las determinaciones "in vitro", apreciándose también unos valores máximos a la dosis de 80 g de urea/Kg de MS y a la humedad del 30 p. 100.
Paralelamente, se llevó a cabo un análisis de la retención o fijación de N en la paja. Dicha retención se determinó en muestras ordeadas durante 24h y en muestras desecadas a 60°C y se estimó a partir de la cantidad de N añadido y de los contenidos en NT de la paja únicamente ordeada y de la paja desecada a 60°C. En los tratamientos con urea, debido a que la urea no transformada no la consideramos como retenida o fijada en la paja, se eliminó el contenido en N-urea residual del contenido en NT de la paja.

En la Figura I.1.3 y I.1.4 se representa la retención de N en muestras de paja de cebada tratadas con amoníaco anhidro y con urea, ordeadas y desecadas a 60°C.
En los tratamientos con urea, las muestras oreadas respondieron de forma positiva al incremento de la dosis de urea y del contenido en humedad del tritamiento y presentaron siempre una mayor retención de N que las muestras desecadas. Por otra parte, las muestras desecadas (Figura 1.1.4) no respondieron homogéneamente ni a la dosis de urea ni a la humedad del tratamiento. En los tratamientos realizados a 43 g de urea/Kg de MS, mayor porcentaje de retención correspondió a la humedad del 30 p. 100 con 26.4 p. 100, mientras que los tratamientos a 20 y 40 p. 100 de humedad presentaron unos valores de 22.7 y 22.4 p. 100, respectivamente. Cuando se aplicaba una dosis de urea de 65 g/Kg de MS la retención de N disminuía conforme aumentaba el contenido en humedad del tratamiento, presentando valores de 45.0, 24.4 y 22.0 p. 100 a las humedades crecientes respectivas, mientras que cuando se aplicaba la mayor dosis de urea se observaba un comportamiento inverso al anterior con una retención de 10.6, 18.2 y 26.4 p. 100 para los tratamientos a humedades del 20, 30 y 40 p. 100, respectivamente.

1.1.4 DISCUSSION

La disminución del contenido en NDF y el aumento del contenido en NT como consecuencia de los tratamientos con amoniaco anhídrico y con urea (Cuadro 1.1.2) responde al efecto general del tratamiento alcalino sobre la paja de cereal (SUNDSTØL y OWEN, 1984).

En los tratamientos con amoniaco anhídrico la reducción del contenido en NDF, en general tanto más acusada cuanto mayor fue el contenido en humedad, está en concordancia con los resultados obtenidos por otros autores, (KIANGI et al., 1981; DRYDEN y LENG, 1988) y podría ser debido a que la humedad favorece el contacto entre el ion amonio y la pared celular (MANDELL et al., 1988), lo que posteriormente se traduce en una mayor solubilización de la hemicelulosa (SOLAIMAN et al., 1979).

El ligero incremento del contenido en NDF observado en algunos tratamientos con urea y humedad del orden del 40 p. 100 es difícil de explicar, aunque puede ser debido al efecto negativo del exceso de humedad señalado por SUNDSTØL et al. (1978). Algunos autores observaron que el incremento del contenido en humedad por encima de 25 p. 100 (CHERMITI et al., 1989) 60 p. 100 (IBRAHIM et al., 1986) carecía de interés. Sin embargo, para otros autores el nivel máximo estaría situado alrededor del 40 p. 100 de humedad (ABDOULI y KORCHANI, 1987; DIAS DA SILVA et al., 1988). Estas diferencias podrían ser debidas a las variaciones de las condiciones del tratamiento, tales como la temperatura (CLOETE y KRITZINGER, 1984), la dosis (ABDOULI y KORCHANI, 1987) y el tiempo de reacción (CLOETE et al., 1983).

El aumento del contenido en ADF puede ser el reflejo de la solubilización de la hemicelulosa (SOLAIMAN et al., 1979; MANDELL et al., 1988), siendo más notable en las humedades más elevadas. El contenido en AD también aumentó con el tratamiento y la humedad y, según MANDELL et al. (1988), podría ser consecuencia de la reacción de Maillard.

El contenido en NT de la paja se incrementó notablemente como consecuencia del tratamiento. Sin embargo, el efecto de la humedad sobre el contenido en NT varió según el tipo de tratamiento. En el tratamiento con amoniaco se observó un incremento del NT cuando se aumentaba la humedad hasta 20 p. 100. SOLAIMAN et al. (1979) y MANDELL et al. (1988), también observaron un incremento del contenido en NT cuando la humedad del tratamiento aumentaba hasta 30 y 50 p. 100, respectivamente. En la presente experiencia el incremento de 20 a 30 p.100 de humedad no provocó ninguna mejora adicional. Una posible explicación puede ser que en el tratamiento a mayor humedad existía una mayor pérdida de nitrógeno. En relación a ello, MALES y GASKINS (1982) observaron unos contenidos en NT semejantes en muestras de paja tratadas con amoniaco a 58 y 21 p.100 de humedad.

Por el contrario, en el tratamiento con urea, el aumento del contenido en humedad provocó una reducción del NT, lo que está de acuerdo con diversos autores (ABDOULI y KORCHANI, 1987; CLOETE y KRITZINGER, 1984). Esta reducción puede ser el resultado a la menor cantidad de N-urea residual, la cual se contabiliza en el contenido en NT, y a las consiguientes pérdidas de N, puesto que una alta proporción del N retenido está en forma de N-NH₃ (MICHALET-DOREAU y GUEDES, 1989). Dicha reducción también está relacionada con el incremento del grado de ureólisis (Figura 1.1.1), citado por numerosos autores (CLOETE y KRITZINGER, 1984; WILLIAMS et al., 1984; ABDOU et al., 1987; DIAS DA SILVA et al., 1988; CHERMITI et al., 1989) y que se manifiesta por una mayor transformación de urea en amonio.

El N retenido en la paja oreada 24h (Figura 1.1.3) aumentó a medida que se incrementaba el contenido en humedad, tanto en los tratamientos con amoniaco como con urea, estando de acuerdo con los resultados obtenidos por MALES y GASKINS (1982), CORDESSE et al. (1983), HORN et al. (1983) e IBRAHIM et al. (1986). Por el contrario, ABDOU y KONCHANI (1987) observaron que el N retenido no estaba influenciado por el contenido en humedad cuando se analizaba en muestras oreadas. Los diferentes resultados quedarían determinados por el largo periodo de oro adoptado por los citados autores.

Las muestras desecadas a 60°C presentaron siempre una menor fijación de N frente a las oreadas y, según JAYASURIYA y PEARCE (1983), sería una consecuencia de que la desecación a alta temperatura provoca pérdidas notables de N soluble. El efecto de la humedad sobre dicha fijación no fue claro, pudiendo ser debido a que una gran parte del N fijado está en forma volatilizable (WILLIAMS et al., 1984a; DIAS DA SILVA et al., 1988; MICHALET-DOREAU y GUDEUS, 1989).

El incremento del contenido en humedad en el tratamiento con amoniaco no afectó a los valores de DMSIV. WAIS et al. (1972) concluyeron que el incremento de la humedad favorece la solubilidad enzimática de la MS tras los primeros días del tratamiento, mientras que a los 30 días no había efecto. KIANGI et al. (1981) tampoco observaron influencia de la humedad cuando ésta se incrementaba de 20 a 40 p.100. Por el contrario, otros autores observaron un efecto positivo del contenido en humedad (SOLAIMAN et al., 1979; CORDESSE et al., 1983; MANDELL et al., 1988). El incremento del contenido en humedad puede ser debido a que existen otros factores que pueden influir, tales como la dosis de amoniacal aplicada (DRYDEN y LENG, 1986) y la forma de aplicación del amoniacal (BORHAM y SUNDSTØL, 1982).

En cuanto al tratamiento con urea, la DMSIV incrementó conforme aumentaba la humedad hasta un 30 p.100, a partir de la cual se mantenía o disminuía ligeramente. IBRAHIM et al. (1986), ABDOU y KONCHANI (1987), DIAS DA SILVA et al. (1988) y CHERMITI et al. (1989), tampoco obtuvieron una mejora de la digestibilidad cuando incrementaban la humedad por encima de 30, 40, 25, y 45 p.100, respectivamente para los autores anteriores.
El incremento de la dosis de urea provocó, de acuerdo con WILLIAMS et al. (1964a) y CHERMITI et al. (1989), un aumento del contenido en NT. También se registró una tendencia a disminuir el contenido en NDF e influyó negativamente en el grado de ureolisis, como ya señalaron WILLIAMS et al. (1964a) y ABDOULI y KORCHAN (1987). La humedad, al igual que la dosis, afectó al N retenido en sentido distinto según se tratase de muestras ordeadas o desecadas a 60°C. En las muestras ordeadas se registró un ligero incremento conforme aumentaba la dosis de urea. ABDOULI y KORCHAN (1987) y MACDEARMID et al. (1988) llegaron a la misma conclusión con muestras liofilizadas y ordeadas respectivamente. Sin embargo, en muestras desecadas a 80°C no se observó una respuesta clara a la dosis. CHERMITI et al. (1989) tratando paja a 40, 80, 80 g de urea/Kg MS y desecando a 50°C tampoco observaron efecto de la dosis sobre el N retenido.

La digestibilidad respondió positivamente al incremento de la dosis de urea. MACDEARMID et al. (1988) obtuvieron una respuesta similar cuando trataron paja a 20, 50, y 70 g de urea/Kg MS. ABDOULI y KORCHAN (1987) obtuvieron una respuesta positiva cuando incrementaron la dosis de 20 a 40 g de urea/Kg MS y no encontraron respuesta cuando se incrementaba la dosis de urea de 40 a 80 g/Kg MS. Estas distintas respuestas podrían sugerir (CHERMITI et al. 1989) que el incremento de la dosis provocase un aumento de la DMSIV no lineal.

El tratamiento con amoniaco anhídrido proporcionó unos resultados ligeramente superiores a los obtenidos con el tratamiento con urea, estando ello de acuerdo con numerosos autores (KIAKI et al., 1981; BENAHMED y DULPHY 1985; WANAPAT et al., 1985; COTTYN y DE BOEVER, 1988). Dicha autores señalaron como posibles causas de este comportamiento la baja dosis de urea aplicada, la débil ureolisis registrada o la falta de actividad ureásica.

1.1.5 CONCLUSIONES

- En el tratamiento con amoniaco anhídrido realizado a dosis del orden de 40 g/Kg MS el incremento de la humedad de 9 a 33 p. 100 no provocó una mejora notable de la DMSIV de la paja.

- El tratamiento con urea realizado a 65 y 80 g de urea/Kg MS y a 30 p. 100 de humedad proporcionó mejoras cualitativas comparables a las obtenidas mediante el tratamiento con amoniaco anhídrido.

- El tratamiento con urea, independientemente de la dosis, fue aparentemente más eficaz cuando se realizaba a una humedad del 30 p. 100.

1.2 ESTUDIO DE LAS CONDICIONES OPTIMAS PARA EL TRATAMIENTO CON UREA EN SOLUCION

1.2.1 OBJETIVO

Determinar la influencia de la humedad del tratamiento, de la temperatura ambiental y de la adición de una fuente externa (habe crude de soja) de ureasas sobre la eficacia del tratamiento con urea en solución acuosa realizado sobre paja de cereal.

1.2.2 MATERIAL Y METODOS

El estudio se llevó a cabo mediante la realización de dos ensayos. En el primero (Ensayo A) se estudió la influencia de la temperatura, humedad y adición de una fuente de ureasas sobre la eficacia del tratamiento con urea en solución (30 g/Kg MS) realizado sobre paja de trigo. En el segundo ensayo (Ensayo B) se estudió la influencia de la humedad y de la adición de ureasa externa sobre el efecto del tratamiento con urea, realizado a mayor dosis de urea (50 g/Kg MS) que el anterior y sobre paja de trigo y de cebada.

Todos los tratamientos se realizaron con urea comercial de una riqueza en N del 46 p. 100 y la fuente de ureasa utilizada fue haba crude de soja molida a 2.5 mm. La aplicación, tanto de la urea como del haba crude de soja, se realizó de forma manual. Para obtener la máxima homogeneidad posible del tratamiento, la paja era triturada previamente, mediante un molino de martillos con una criba de 2 cm de diámetro. El producto tratado se conservó en botes de plástico de doble tapón.

ENSAYO A:

Se trataron 24 muestras de 1.5 kg de paja de trigo (cv. Anze) procedente del Valle medio del Ebro (Zaragoza). Se aplicó urea en solución acuosa para obtener 10, 20, 30 y 40 p. 100 de humedad, con o sin adición de haba crude de soja y se sometieron durante dos meses a tres temperaturas ambientales distintas (11, 25 y 35°C). En el Cuadro 1.2.1 se expresa el esquema experimental seguido. Las temperaturas se eligieron en función de la época natural de cosecha y se consiguieron mediante la utilización de cámaras climáticas a temperatura constante. La dosis de urea aplicada fue de 30 g/Kg de MS y la dosis de haba crude de soja de 33 g/Kg de MS.

Transcurrido un periodo de dos meses el material tratado era muestreado, desecado en estufa de ventilación forzada a 60°C y molido a un tamaño de partícula 1 mm mediante un molino de cuchillas.

Los análisis químicos y determinaciones analíticas realizados fueron: cenizas, NT, NDF, ADF, ADL, N-urea residual, DMSIV, DMS-celulásas y DMS-in sacco (48h). Los métodos analíticos utilizados se describen en el Apartado 3.2 de la Metodología General. También se determinó el NT sobre muestra ordeadas durante 24 h sin previa desecación en estufa.
CUADRO 1.2.1 Diseño experimental seguido en el Ensayo A sobre paja de trigo tratada con urea (30 g/Kg MS) a distintas condiciones de humedad, temperatura y adición de haba cruda de soja (Experiencia I.2).

<table>
<thead>
<tr>
<th>TEMPERATURA</th>
<th>HUMEDAD (%)</th>
<th>HABA CRUDA DE SOJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°C</td>
<td>10</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td>25°C</td>
<td>10</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td>35°C</td>
<td>10</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>33 g/Kg MS</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>33 g/Kg MS</td>
</tr>
</tbody>
</table>

Los resultados obtenidos fueron sometidos a Análisis de la Varianza, siguiendo diseño factorial triple (3x4x2) (STEEL y TORRIE, 1980) mediante el paquete estadístico "Statistical Analysis System" (SAS) (1987). Debido a que se carecía de repeticiones se asumió la triple interacción como error. Para determinar los efectos principales las dobles interacciones no significativas se acumulaban al error. Cuando la doble interacción era significativa no se continuaba el análisis (BAUCROFT, citado por SOKAL y ROHFL, 1979).

ENSAYO B:

Se trataron muestras de 0.5 kg de paja de trigo procedentes de una parcela de regadío y de cebada procedente de una parcela de secano (300 mm de pluviometría) con urea en solución acuosa a una dosis de 50 g/Kg MS y una humedad final teórica de 20, 30 y 40 p.100. Sobre la paja de cebada también se estudió la adición o no de 30 g de haba cruda de soja/Kg MS (Cuadro I.2.2).

CUADRO 1.2.2. Diseño experimental seguido en el Ensayo B sobre paja de trigo y de cebada tratada con urea (Experiencia I.2).

<table>
<thead>
<tr>
<th>DOSIS UREA</th>
<th>HUMEDAD (%)</th>
<th>HABA CRUDA SOJA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>50 g/Kg MS</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>-</td>
</tr>
</tbody>
</table>

La preparación del tratamiento fue similar a la descrita en el Ensayo A excepto que los botes eran almacenados a temperatura ambiental de laboratorio (18-20°C) durante un período mínimo de dos meses. La preparación de las muestras y las determinaciones analíticas de laboratorio fueron las mismas que las realizadas en el ensayo anterior.
1.2.3 RESULTADOS

ENSAYO A:

Las modificaciones en los contenidos en NDF y NT debidas a los diferentes tratamientos se representan en la Figura 1.2.1 y en el Cuadro 1.2.3 se expresan las significaciones resultantes de los análisis estadísticos realizados.

FIGURA 1.2.1. Contenidos en NDF (a) y NT (b) de paja de trigo tratada con urea a cuatro humedades, con o sin hara cruda de soja y sometida a tres temperaturas.
El aumento de la temperatura de 15 a 35°C tuvo un efecto significativo sobre los contenidos en MO, NDF y NT (P<0.001). El NT incrementó de acuerdo con el aumento de la temperatura, presentando unos contenidos medios de 0.95, 1.01 y 1.32 p.100 en los tratamientos realizados a 15, 25 y 35°C, respectivamente. Paralelamente, el contenido en NDF se comportó de forma inversa con valores en los tratamientos a 15, 25 y 35°C de 78.7, 76.1 y 75.8 p.100, respectivamente.

El grado de ureólisis (Figura I.2.2) no tuvo una respuesta clara al incremento de la temperatura, registrándose una interacción significativa (P<0.01) temperatura x humedad.

El aumento del contenido en humedad del tratamiento únicamente tuvo un efecto significativo (P<0.001) sobre el contenido en NT, presentando unos contenidos medios respectivos de 1.42, 1.01, 0.99 y 0.97 p.100 en las humedades de 10, 20, 30 y 40 p.100. Los restantes componentes estudiados no mostraron ninguna respuesta (P>0.05). Por otra parte, el grado de ureólisis presentó las dobles interacciones temperatura x humedad y humedad x ureasas significativas (P<0.01).

La adición de haba crude de soja únicamente afectó al contenido en NDF (P<0.001) presentando unos valores medios de 76.0 y 77.8 p.100 para los tratamientos con y sin adición de haba crude de soja, respectivamente. Los restantes componentes químicos no presentaron modificación alguna como consecuencia de la adición de una fuente externa de ureasas.

Las estimaciones de la digestibilidad de la sustancia seca (DMSIV, DMS-cellulasas y DMS-in sacco) se representan en la Figura I.2.3. Como puede observarse, dichas determinaciones no mostraron un comportamiento paralelo entre sí ni presentaron respuestas claras. La determinación DMSIV tuvo una respuesta significativa (P<0.05) a la adición de haba crude de soja y una interacción temperatura x humedad significativa (P<0.05). Por otra parte, las determinaciones de DMS-cellulasas y DMS-in sacco respondieron significativamente (P<0.05) al factor humedad mientras que la temperatura y la adición de haba crude de soja presentaron una interacción significativa (P<0.05).

Se estudió la retención de N de igual forma que la descrita en la Experiencia I.1. En la Figura I.2.4. se representa el porcentaje de N retenido. Las muestras desecadas a 60°C presentaron una menor retención que las muestras únicamente oreadas, principalmente en los tratamientos realizados a humedades superiores al 10 p.100. En los tratamientos realizados a 15°C el aumento del contenido en humedad hasta un 30 p.100 provocó un incremento notable de la retención de N. Sin embargo, en las restantes temperaturas únicamente se registraba un aumento notable cuando el contenido en humedad se incrementaba hasta 20 p.100. Por otra parte, la adición de haba crude de soja tuvo su principal efecto en todos los tratamientos realizados a 10 p.100 de humedad y en los realizados a 15°C, donde se observó un efecto positivo en las humedades inferiores al 30 p.100. Finalmente, el aumento de la temperatura también influyó positivamente, presentando las mayores retenciones los tratamientos realizados a 35°C seguidos por los de 25°C y los de 15°C.

FIGURA I.2.2. Grado de ureólisis registrado en paja de trigo tratada con urea, a cuatro humedades, con o sin haba crude de soja (ureasa) y sometida a tres temperaturas.
FIGURA 1.2.3. DMSIV (a), DMS-celulásas (b) y DMS-in sacco (c) obtenidas en paja de trigo tratada con urea, a cuatro humedades, con o sin haba cruda de soja (ureasa) y sometida a tres temperaturas.

FIGURA 1.2.4. Retención de Nitrógeno registrado en la paja de trigo oreada (ureasa Ore.) o desecada a 60°C (ureasa Des.) tras el tratamiento con urea, a cuatro humedades, con o sin haba cruda de soja y sometidos a temperatura de 15°C (a), 25°C (b) y 35°C (c).
ENSAYO B:

El contenido en NDF (Figura 1.2.5) de las muestras testigo fueron 79.3, y 79.0, p. 100 en la paja de trigo y de cebada, respectivamente.

![Diagrama de contenido en NDF](image1)

FIGURA 1.2.5. Contenido en NDF de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad.

Como consecuencia del tratamiento dichos contenidos disminuyeron entre 2.4 y 7.1 puntos en la paja de trigo, y entre 0.6 y 5.9 puntos en la paja de cebada. La amplitud de dichas reducciones estuvo influída por el contenido en humedad del tratamiento. En los dos tipos de paja la máxima reducción se observó en los tratamientos realizados a 30 p. 100 de humedad con unos contenidos de 72.2 y 76.1 p. 100 en la paja de trigo y de cebada, respectivamente.

La adición de haba cruda de soja estudiada en los tratamientos de paja de cebada provocó, siempre, una reducción aproximada de 3 puntos del contenido en NDF con respecto a sus tratamientos homólogos (Figura 1.2.6).

![Diagrama de contenido en NT](image2)

FIGURA 1.2.6. Efecto de la adición de haba cruda de soja (ureasa) sobre el contenido en NDF de paja de cebada tratada con urea a tres niveles de humedad.

El contenido en NT de los dos subproductos estudiados fue de 0.66 y 0.87 y p. 100 en la paja de trigo y de cebada, respectivamente. Dichos contenidos incrementaron notablemente como consecuencia del tratamiento y disminuyeron con el incremento del nivel de humedad al cual se realizaba el tratamiento (Figura 1.2.7).

![Diagrama de contenido en NT](image3)

FIGURA 1.2.7. Contenido en NT de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad.
La adición de haba cruda de soja en la paja de cebada provocó un aumento del contenido en NT únicamente cuando los tratamientos se realizaban a 30 y 40 p.100 de humedad, con valores respectivos de 1.84 y 1.74 p.100, mientras que los tratamientos sin adición de haba cruda de soja presentaron valores de 1.54 y 1.36 p.100 respectivamente (Figura I.2.8).

% NT

% Humedad

1
2
2.5
3

10 20 30 40

+ ureasa + ureasa

FIGURA I.2.8. Efecto de la adición de haba cruda de soja (ureasa) sobre el contenido en NT de paja de cebada tratada con urea a tres niveles de humedad.

El contenido en N-urea residual se comportó de forma parecida al NT, disminuyendo conforme aumentaba el contenido en humedad del tratamiento. Como consecuencia, el grado de ureolisis registrado fue creciente con el aumento de la humedad del tratamiento (Figura I.2.9).

FIGURA I.2.9. Efecto del contenido de humedad sobre el grado de ureolisis registrado en la paja de trigo y cebada tratada con urea.

En los dos tipos de paja estudiados se observó que a 30 p.100 de humedad ya se alcanzaba un grado de ureolisis de 96-100 p.100. En la paja de cebada, la adición de haba cruda de soja únicamente provocó un aumento del grado de ureolisis cuando el tratamiento se realizaba a 20 p.100 de humedad, con unos porcentajes de 78 y 29 correspondientes a los tratamientos con y sin adición de haba cruda de soja (Figura I.2.10). A humedades superiores no se registraron efectos notables de la adición de dicha fuente de ureasas.

FIGURA I.2.10. Efecto de la adición de haba cruda de soja (ureasa) sobre el grado de ureolisis registrado en la paja de cebada tratada con urea a tres niveles de humedad.
Las estimaciones de la DMS realizadas mediante el método "in vitro" mostraron que el tratamiento con urea tenía siempre un aparente efecto positivo. En los subproductos estudiados el incremento del contenido en humedad hasta un 30 p.100 provocó un incremento del valor de DMSIV. Sin embargo, mayores incrementos del nivel de humedad no provocaron mejoras adicionales (Figura I.2.11).

FIGURA I.2.11. DMSIV de paja de trigo y cebada sin tratar (testigo) y tratada con urea a tres niveles de humedad.

Por otro lado, la adición de haba cruda de soja sólo provocó un aumento notable de DMSIV cuando el tratamiento de la paja de cebada se realizaba a 20 p.100 de humedad, presentando unos valores de 51.1 y 47.7 p.100 en los tratamientos con y sin edición de haba cruda de soja (Figura I.2.12).

Las determinaciones de la DMS-cellulasas tuvieron un comportamiento similar al observado en la determinación "in vitro" aunque con ligeras diferencias (Figura I.2.13).
Los tratamientos de paja de trigo mostraron que el incremento de la humedad de 20 a 30 p.100 provocaba una reducción de 1.8 puntos, mientras que en los tratamientos realizados sobre paja de cebada se observó un incremento de 3.4 puntos para el mismo intervalo. Sin embargo, cuando la humedad del tratamiento incrementaba hasta 40 p.100 no se producía ninguna modificación adicional. Finalmente, dicha determinación no demostró ningún efecto claro de la adición de haba de soja en los tratamientos de paja de cebada (Figura I.2.14).

![Diagrama de la adición de haba cruda de soja (ureasa) sobre la DMS-celulasas de paja de cebada tratada con urea a tres niveles de humedad.](image1)

FIGURA I.2.14. Efecto de la adición de haba cruda de soja (ureasa) sobre la DMS-celulasas de paja de cebada tratada con urea a tres niveles de humedad.

La DMS-in sacco (Figura I.2.15) mostró que el tratamiento con urea tenía un efecto positivo y que dicho efecto era mayor a medida que incrementaba la humedad a la cual se realizaba el tratamiento. También se observó que en los dos subproductos, el mayor incremento de la DMS-in sacco se registraba cuando el contenido en humedad aumentaba de 20 a 30 p.100. La adición de haba cruda de soja provocó un aumento de 1.2 y de 4.7 puntos en los tratamientos de paja de cebada realizados a 20 y 30 p.100 de humedad, mientras que a 40 p.100 de humedad se observó una reducción de 6.4 puntos (Figura I.2.16).

![Diagrama de la adición de haba cruda de soja (ureasa) sobre la DMS-in sacco de paja de cebada tratada con urea a tres niveles de humedad.](image2)

FIGURA I.2.16. Efecto de la adición de haba cruda de soja (ureasa) sobre la DMS-in sacco de paja de cebada tratada con urea a tres niveles de humedad.
1.2.4 DISCUSION

El aumento del contenido en NT y la reducción del NDF como respuesta al incremento de la temperatura, sería resultado de una mayor optimización de la reacción entre el ion amonio y los constituyentes de la pared celular. Numerosos autores (SUNDSTÔL y COXWORTH, 1984; COTTYNY y DE BOEVER, 1988; MANDELL et al., 1988; ZAMAN y OWEN, 1990) concluyeron que las bajas temperaturas ambientales registradas durante los tratamientos limitan su efecto.

Aunque podría esperarse que la ureolisis incrementara con la temperatura, se apreció una interacción temperatura x humedad significativa, observándose que los tratamientos realizados a 35°C presentaban el mayor o menor grado de ureolisis según la humedad a la cual se llevase a cabo el tratamiento (10 ó 40 p.100, respectivamente). CLOETE y KRITZINGER (1984) apuntaban la posibilidad de que hubiera una reducción de la actividad ureásica cuando se sometía el tratamiento a temperatura de 35°C. En la presente experiencia pudo haberse una ligera disminución de dicha actividad, la cual se manifestó cuando la humedad no era el factor limitante (40 p.100), mientras que a baja humedad (10 p. 100) no era tan evidente ya que en dicho caso el factor más limitante sería el contenido en humedad.

El NT fue el único componente químico que respondió al incremento de la humedad, comportándose de forma inversa al aumento de dicha humedad. CLOETE y KRITZINGER (1984) y ABDULLI y KORCHANI (1987) también observaron una disminución del NT conforme incrementaba la humedad. Al igual que en la EXPERIENCIA 1.1, dicha disminución era consecuencia de la reducción del N-urea residual y a la mayor pérdida de N-NH₃.

La adición de harina cruda de soja como fuente de ureasas no tuvo efecto en los componentes químicos determinados excepto en el contenido en NDF. Aunque no se determinó la actividad ureásica de la paja, la escasa respuesta obtenida induce a pensar o bien que la actividad ureásica propia del subproducto era suficiente o bien que la dosis y/o la actividad ureásica de la harina cruda de soja era insuficiente. WILLIAMIS et al. (1984a y b) y DIAS DA SILVA et al. (1988) no observaron ningún efecto de la adición de harina cruda de soja cuando se aplicaba a dosis de 50 y 6 g/Kg MS, respectivamente. Sin embargo en nuestro ensayo, la ligera disminución del contenido en NDF tras la adición de harina cruda de soja muestra que la dosis, aunque pudo ser algo débil, fue eficaz. En relación a ello, CHERMITI et al. (1989) observaron una reducción notable del contenido en NDF cuando se adicionaba 3 p.100 de harina cruda de soja en distintos tratamientos con urea realizados sobre la paja de trigo.

La digestibilidad de la materia seca se estimó mediante los tres métodos biológicos más fiables: "in vitro", "celulasas" e "in sacco" (UDEN, 1984; REID et al., 1988).

Ninguno de los tres métodos proporcionaron resultados claros ni paralelos entre sí. Los valores de DMS obtenidos en la determinación con "celulasas" fueron siempre inferiores a los procedentes de las determinaciones "in vitro" y éstos, a su vez, inferiores a los de la determinación "in sacco". REKEN (1977) demostró que los valores procedentes de la determinación con celulasas eran siempre inferiores a los procedentes de la determinación "in vitro". Por otra parte, UDEN (1984) anotaba que la regresión entre la digestibilidad en celulasas e "in vitro" normalmente incluían la constante positiva del orden de 30 unidades de digestibilidad. La superioridad de los valores de digestibilidad determinada "in sacco" frente a los "in vitro" también fue anotada por GRAHAM y AMAN (1983/84) cuando estudiaban paja de cebada tratada con 3 p.100 de amoníaco. El método más fiable varía según los autores. REID et al. (1988), concluyen que la predicción de la NDF era mejor mediante celulasas comparado con "in vitro" y NIR. FARMY y BRSKOV (1984) y TUAN et al. (1988) anotaban que los valores de DMS-in sacco a las 48 h era una aproximación más real a la determinación "in vivo".

La DMS de la paja de trigo, presentó interacciones humedad x temperatura x soja significativas, en función de la determinación de que se tratase. En general, el efecto de la temperatura es acelerar (CLOETE y KRITZINGER, 1984; SUNDSTÔL y COXWORTH, 1984) y favorecer la acción del tratamiento (SUNDSTÔL et al., 1978 y MANDELL et al., 1988). En el presente ensayo el tiempo de tratamiento fue siempre de dos meses y por tanto no se observó la influencia de la temperatura sobre el tiempo de reacción. Tampoco se registró el efecto favorable de la temperatura sobre el tratamiento, mencionado por diversos autores (ALÎBES et al., 1983/84; WILLIAMIS et al., 1984b; COTTYNY y DE BOEVER, 1988; ZAMAN y OWEN, 1990): esto pudo ser debido a que el rango de temperaturas utilizadas fue insuficiente para evidenciar dicho efecto. Algunos autores (DIAS DA SILVA y SUNDSTÔL, 1988; MACDEARMID et al., 1988; CHERMITI et al., 1989) obtuvieron buenos resultados cuando trataban con urea a temperaturas del orden de 10-15°C, lo que indica que la temperatura mínima (15°C) del presente ensayo no era limitante si el tiempo de reacción era de dos meses. La temperatura de 35°C, aunque según CLOETE y KRITZINGER (1984) pudo disminuir la actividad ureásica, tampoco tuvo una influencia notable.

El efecto del incremento de la humedad fue positivo sobre los valores de la DMS tanto en la determinación enzimática, "celulasas" como "in sacco"(48h), mientras que en la determinación de la DMSIV se registró una interacción significativa humedad x temperatura. A niveles bajos de humedad, el incremento de dicho contenido provocaba una mejora de la DMS, alcanzándose, en general, unos valores máximos en los tratamientos realizados a 30 p.100 de humedad. Esto atiende a que una vez alcanzado el contenido óptimo, la posterior adición de agua no conlleva ninguna mejora adicional de la DMS, lo que estaría de acuerdo con WAISS et al. (1972), SUNDSTÔL y COXWORTH (1984), IBRAHIM et al. (1986) y CHERMITI et al. (1989) quienes tampoco observaron mejoras adicionales cuando se adicionaba agua a partir del nivel de humedad óptima.

La adición de harina cruda de soja, tuvo un efecto positivo en la determinación "in vitro", mientras que en las dos restantes determinaciones se registró una interacción significativa temperatura x ureasa. La variación de los resultados de la DMS podría relacionarse con la adición de grano de soja a la paja, ya que hay un aporte de aminoácidos al medio (CHERMITI et al., 1989), pudiendo influir en distinto grado según el medio utilizado para la determinación de la DMS.

La retención de N estudiado en los tratamientos realizados sobre paja de trigo fue superior en las muestras ordeadas durante 24h que en muestras desecadas a 60°C. Al igual que en la EXPERIENCIA 1.1, sería consecuencia de que la mayor parte del N fijado o retenido está en forma de N-NH₃ (WILLIAMIS et al., 1984; DIAS DA SILVA et al., 1988; MICHALET-DOREAU y Quadé, 1989) y cuando se somete al calor se volatiliza fácilmente (JAYASURYA y PEARCE, 1983) y, por tanto, hay una menor retención de N en las muestras desecadas.

En las muestras ordeadas, el incremento de la temperatura favoreció la retención de N, aunque la máxima retención se observó en el tratamiento realizado a 15°C, 30 p.100 de humedad y adición de harina cruda de soja. Dicho resultado es difícil de explicar aunque
podría ser un reflejo del máximo efecto de la soja sobre la retención de N. Según JAYASURIYA Y PEARCE (1983) la adición de ureasas reduciría las pérdidas de N registradas en el tiempo. En las muestras desecadas, la temperatura tuvo igual efecto que en las muestras húmedas, observándose una mayor retención de N a mayor temperatura, lo que está de acuerdo con CLOETE et al. (1983).

El incremento de la humedad hasta 30 p.100 en los tratamientos realizados a 15°C, y hasta 20 p.100 cuando la temperatura del tratamiento era de 25 y 35°C, favoreció la fijación del N. El efecto favorable del incremento de la humedad hasta 20 ó 30 p.100 en función de la temperatura muestra, la interrelación que existe entre la humedad y la temperatura. Una de las posibles explicaciones es que cuando el tratamiento se realiza a baja temperatura es necesario un mayor contenido en humedad para facilitar la reacción y la retención de N. Las muestras desecadas a 60°C presentaron siempre una menor respuesta al incremento de la humedad que las muestras húmedas 24h, estando de acuerdo con los resultados de WILLIAMS et al. (1984a) y DIAS DA SILVA et al. (1988).

El efecto de la adición de haza cruda de soja únicamente se evidenció cuando el tratamiento se realizaba a bajas humedades (10 p.100). También se observó un mayor efecto en las muestras desecadas a 60°C que en las muestras húmedas. Según JAYASURIYA Y PEARCE (1983) la soja tenía un efecto adicional sobre el N retenido sugiriendo que favorecía la unión del N añadido con el subproducto tratado.

En el ensayo B se utilizó una dosis de 50 g de urea/Kg MS, algo superior a la del ensayo A, ya que se pretendía asegurar que la dosis no limitara el efecto del tratamiento. En la mayoría de los tratamientos revisados en la bibliografía se utilizaban dosis superiores a la de 30 g de urea/Kg MS (MACDEARMID et al., 1988; CHERMITI et al., 1989).

Los dos subproductos utilizados, (paja de trigo de regadío y paja de cabada de secano) respondieron positivamente al tratamiento con urea, aunque el efecto variase en función de la humedad y del tipo de material.

La influencia del incremento de la humedad en los dos tipos de paja fue similar a la observada en el ensayo A aunque en este caso el efecto fue más claro. El tratamiento realizado a 30 p.100 de humedad se comportó como el más eficaz a nivel de los contenedores en NDF y en NT, en el grado de ureolisis y en DMSIV y DMS-in sacco. Estos resultados concuerdan con los obtenidos por IBRAHIM et al. (1988) y CHERMITI et al. (1989). Por el contrario WILLIAMS et al. (1984a) y ABDOLLI y KORCHANNI (1987) observaron un efecto positivo con el aumento del contenido en humedad hasta aproximadamente 50 p.100.

La respuesta al tratamiento fue similar en los dos tipos de paja, excepto a nivel de la DMS que fue ligeramente mayor en la paja de cabada, la cual presentaba una DMS inicial inferior. Muchos autores apuntan que la calidad inicial del subproducto a tratar influye en la respuesta al tratamiento, siendo dicha respuesta mayor cuanto menor es la calidad inicial (LUFAYDEUJU, 1985; RAMANZIN et al., 1986; KJOS et al., 1987; WALLER et al., 1988).

La paja de cabada procedía de una parcela de secado con una pluviometría del orden de 300 mm por lo que surgió la duda si dicha paja presentaba suficiente actividad ureolítica para el tratamiento con urea (50 g de urea/Kg MS); por ello se adicionó o no haza cruda de soja a dosis de 30 g/Kg MS. El efecto de la adición de ureasas fue más notable que en el ensayo A lo que hace pensar, que la paja de cabada de secano presentaba una menor actividad ureolítica que la paja de trigo de regadío. En todos los casos la respuesta a la adición de haza cruda de soja fue siempre mayor a niveles de humedad bajos no teniendo, en general, efecto a humedades por encima de 30 p.100. Estos resultados muestran la dependencia entre la adición de ureasas y la humedad del tratamiento anteriormente ya citada.

1.2.5 CONCLUSIONES

- Los resultados del ensayo A ponen de manifiesto que los factores humedad, temperatura, y adición de haza cruda de soja están interrelacionados.

- En el ensayo B se observó que los resultados de los tratamientos a 30 p.100 de humedad fueron mejor que los obtenidos en los tratamientos realizados a 20 y 40 p.100 de humedad.

- La adición de haza cruda de soja mejoraba la eficacia del tratamiento cuando éste se realizaba a humedad baja (20 p.100) mientras que a humedades superiores su efecto era mínimo o nulo.
II: EVALUACIONES "IN VIVO" DEL VALOR NUTRITIVO DE LA PAJA DE CEREAL TRATADA CON UREA
II.1 ESTUDIO COMPARATIVO DEL TRATAMIENTO CON AMONIACO ANHIDRO O CON UREA EN SOLUCION EFECTUADO SOBRE PAJA DE CEBADA

II.1.1 OBJETIVO

Analizar comparativamente el efecto del tratamiento con amoníaco anhidro y del tratamiento con urea en solución, aplicada en pila o al empacar, sobre el valor alimenticio de una paja de cebada.

II.1.2 MATERIAL Y MÉTODOS

Se utilizó paja de cebada (cv Georgia) procedente de un cultivo de regadío ubicado en la finca del Servicio de Investigación Agraria (SIA) (Montañana, Zaragoza).

Se realizaron tres tratamientos, uno con amoníaco anhidro, otro con urea en solución aplicada en pila y el último con urea en solución aplicada al empacar, siguiendo los procedimientos descritos en el Apartado 1 de la Metodología General. El tamaño de las pilas fue aproximadamente de 1 t y las características de los tratamientos realizados se describen en el Cuadro II.1.1.

Las tres pilas tratadas junto a la paja sin tratar (testigo) fueron evaluadas sobre cuatro lotes de cuatro moruecos castrados durante dos períodos, siguiendo la metodología descrita en el Apartado 2 de la Metodología General.

Los resultados obtenidos fueron analizados mediante Análisis de la Varianza a una vía seguido por un test-Duncan, siguiendo los procedimientos descritos por STEEL y TORRIE (1980).

CUADRO II.1.1. Características de los tratamientos con amoníaco anhidro y con urea en solución, aplicada en pila o al empacar, realizados sobre paja de cebada (Experiencia II.1).

<table>
<thead>
<tr>
<th></th>
<th>Amoníaco anhidro</th>
<th>Urea en solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MS al cosechar</td>
<td>77.6</td>
<td>85.5</td>
</tr>
<tr>
<td>% MS tras el tratamiento</td>
<td>77.6</td>
<td>64.5</td>
</tr>
<tr>
<td>Dosis aplicada (g/Kg MS)</td>
<td>35.6</td>
<td>55.0</td>
</tr>
<tr>
<td>N añadido (g/Kg MS)</td>
<td>29.3</td>
<td>25.7</td>
</tr>
<tr>
<td>Días del tratamiento</td>
<td>115</td>
<td>119</td>
</tr>
</tbody>
</table>
II.1.3 RESULTADOS

Como se deduce del Cuadro II.1.2, los tres tratamientos tuvieron un efecto positivo sobre la composición química de la paja. El contenido en NDF sufrió una reducción con respecto al testigo de 11.9, 7.4 y 5.3 puntos en los tratamientos con amoníaco anhidro, con urea en pila y con urea al empacar, respectivamente. También se registró un aumento del contenido en NT. Mientras que la paja testigo tuvo un contenido de 0.49 p/100, los tres tratamientos presentaron, respectivamente, 1.60, 1.56 y 2.64 p/100 de NT. Por otra parte, el grado de ureásis registrada en los tratamientos con urea fue de 0.4 p/100 en el realizado en pila y de 0.1 p/100 en el realizado en el momento de empacar. El porcentaje de N fijado fue de 40, 26 y 25 p/100 correspondientes a los tratamientos con amoníaco anhidro, con urea en solución aplicada en pila y con urea aplicada al empacar, respectivamente.

CUADRO II.1.2.

Composición química (%) del concentrado y de la paja de cebada sin tratar (testigo) y tratada con amoníaco anhidro o con urea en solución, aplicada en pila o al empacar (Experiencia II.1).

<table>
<thead>
<tr>
<th>Composición Química (%)</th>
<th>Concentrado</th>
<th>Paja de cebada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Testigo</td>
<td>amoníaco anhidro</td>
</tr>
<tr>
<td></td>
<td>en pila</td>
<td>al empacar</td>
</tr>
<tr>
<td>Cenizas</td>
<td>12.25</td>
<td>4.00</td>
</tr>
<tr>
<td>NDF</td>
<td>5.78</td>
<td>86.10</td>
</tr>
<tr>
<td>ADF</td>
<td>-</td>
<td>52.20</td>
</tr>
<tr>
<td>ADL</td>
<td>-</td>
<td>8.60</td>
</tr>
<tr>
<td>NT</td>
<td>2.95</td>
<td>0.49</td>
</tr>
<tr>
<td>N-urea residual</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-ADF</td>
<td>-</td>
<td>0.17</td>
</tr>
<tr>
<td>N-ADL</td>
<td>-</td>
<td>0.47</td>
</tr>
<tr>
<td>% N retenido</td>
<td>-</td>
<td>40</td>
</tr>
</tbody>
</table>

CUADRO II.1.3.

Número de animales utilizados y características de la dieta ingerida por los moruecos en la fase de digestibilidad (Experiencia II.1).

<table>
<thead>
<tr>
<th>N° de animales</th>
<th>Testigo</th>
<th>amoníaco anhidro</th>
<th>Urea en solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>PV (Kg)</td>
<td>72.5</td>
<td>66.8</td>
<td>67.5</td>
</tr>
<tr>
<td>% Concentrado ingerido</td>
<td>29.6</td>
<td>26.3</td>
<td>27.2</td>
</tr>
<tr>
<td>% PB de la dieta</td>
<td>9.9</td>
<td>12.3</td>
<td>11.8</td>
</tr>
<tr>
<td>Nivel de alimentación</td>
<td>0.7</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Los resultados obtenidos de los ensayos "in vivo" realizados bajo las condiciones anteriores se expresan en el Cuadro II.1.4. Los tres tratamientos provocaron un aumento significativo (P<0.001) del coeficiente de DMO de la paja, presentando unos incrementos de 14.3, 11.7 y 12.8 puntos en los tratamientos con amoníaco anhidro, con urea en pila y con urea al empacar, respectivamente. Comparando los tres tratamientos se observó una superioridad del tratamiento con amoníaco anhidro (P<0.05) frente a los tratamientos con urea, y no se registraron diferencias entre las dos modalidades del tratamiento con urea (P>0.05).

El efecto del tratamiento sobre la ingesta de MS de paja fue significativo (P<0.001), destacando por su superioridad el tratamiento con amoníaco anhidro con una ingesta de 43 g MS/Kg PV\(\text{v}\), la cual fue significativamente superior (P<0.05) a las restantes. Los tratamientos con urea en pila y al empacar presentaron unas ingestiones de 34.5 y 28.5 g MS/Kg PV\(\text{v}\) respectivamente, no diferenciándose este último (P>0.05) de la ingesta de paja testigo, que fue de 29.2 g MS/Kg PV\(\text{v}\). El aumento del coeficiente de DMO y de la ingesta de MS de la paja se tradujo, lógicamente, en un incremento de la materia orgánica digestible ingerida (MOI), presentando unos valores significativamente (P<0.05) diferentes entre sí, con 10.9, 24.1, 17.4 y 14.8 g MOI/Kg PV\(\text{v}\) en la paja testigo, la tratada con amoníaco anhidro, la tratada con urea en pila y la tratada con urea al empacar, respectivamente.

Las características de la dieta ingerida por los moruecos en la fase de digestibilidad se exponen en el Cuadro II.1.3. Las dietas fueron equilibradas en cuanto a la proporción de forraje:concentrado se refiere; sin embargo, fueron bastante desiguales en contenido en PB y en el nivel de alimentación.
CUADRO II.1.4. Coeficientes de digestibilidad e ingestión voluntaria de paja de cebada sin tratar (testigo) y tratada con amoníaco anhidro o con urea en solución aplicada en pila o al empacar (Experiencia II.1).

<table>
<thead>
<tr>
<th></th>
<th>Testigo</th>
<th>amoníaco anhidro</th>
<th>Tratamiento con</th>
<th>Efecto Tto.</th>
<th>↓ CME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>en pila</td>
<td>al empacar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeficientes de digestibilidad (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO dieta</td>
<td>54.1*</td>
<td>64.7*</td>
<td>69.1*</td>
<td>62.5*</td>
<td>1.59</td>
</tr>
<tr>
<td>N dieta</td>
<td>70.4*</td>
<td>54.8*</td>
<td>64.0*</td>
<td>75.7*</td>
<td>2.81</td>
</tr>
<tr>
<td>MO paja</td>
<td>41.0*</td>
<td>55.3*</td>
<td>52.7*</td>
<td>53.8*</td>
<td>1.86</td>
</tr>
<tr>
<td>Ingestión voluntaria (g/Kg PV*75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS dieta</td>
<td>35.2*</td>
<td>52.7*</td>
<td>42.5*</td>
<td>38.0*</td>
<td>3.94</td>
</tr>
<tr>
<td>MS paja</td>
<td>28.5*</td>
<td>43.0*</td>
<td>34.5*</td>
<td>29.2*</td>
<td>4.46</td>
</tr>
<tr>
<td>MOD dieta</td>
<td>17.7*</td>
<td>32.5*</td>
<td>24.3*</td>
<td>21.8*</td>
<td>2.16</td>
</tr>
<tr>
<td>MOD paja</td>
<td>10.9*</td>
<td>24.1*</td>
<td>17.4*</td>
<td>14.8*</td>
<td>2.45</td>
</tr>
</tbody>
</table>

NS = P > 0.05; ** = P < 0.01; *** = P < 0.001.

En el Cuadro II.1.5 se exponen los resultados del balance nitrogenado de las dietas. El hecho de que los moruecos castrados no sean los más adecuados para este tipo de determinaciones unido a las amplias diferencias registradas en el N ingerido dificultan la interpretación de los resultados. Se observó un balance nitrogenado positivo cuando las dietas presentaron urea sin transformar (testigo y tratamiento con urea al empacar), mientras que en las restantes dietas el balance fue aparentemente negativo.

CUADRO II.1.5. Balance de nitrógeno de los moruecos obtenido en la fase de digestibilidad (en muestras desecadas a 60°C) de paja sin tratar (testigo), tratada con amoníaco anhidro o con urea en solución, aplicada al empacar y en pila (Experiencia II.1).

<table>
<thead>
<tr>
<th>g/Kg PV*75</th>
<th>Testigo</th>
<th>amoníaco anhidro</th>
<th>Urea en solución</th>
<th>Efecto Tto.</th>
<th>↓ CME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>al pila</td>
<td>al empacar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N ingerido</td>
<td>(n = 8)</td>
<td>(n = 8)</td>
<td>(n = 7)</td>
<td>(n = 8)</td>
<td></td>
</tr>
<tr>
<td>N en heces</td>
<td>0.67*</td>
<td>0.90*</td>
<td>0.82*</td>
<td>1.12*</td>
<td>0.07</td>
</tr>
<tr>
<td>N en orina</td>
<td>0.20*</td>
<td>0.40*</td>
<td>0.29*</td>
<td>0.27*</td>
<td>0.02</td>
</tr>
<tr>
<td>N total</td>
<td>0.38*</td>
<td>0.52*</td>
<td>0.54*</td>
<td>0.77*</td>
<td>0.06</td>
</tr>
<tr>
<td>N retenido</td>
<td>0.57*</td>
<td>0.92*</td>
<td>0.83*</td>
<td>1.04*</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>+0.08*</td>
<td>-0.03*</td>
<td>-0.01*</td>
<td>+0.08*</td>
<td>0.08</td>
</tr>
<tr>
<td>N retenido (%)</td>
<td>+12.1</td>
<td>-3.0</td>
<td>-2.5</td>
<td>+7.2</td>
<td>-</td>
</tr>
</tbody>
</table>

n = Número de animales
a = b = c = d = P < 0.05
NS = P > 0.05; * = P > 0.05; ** = P < 0.01; *** = P < 0.001
↓ CME = raíz cuadrada del cuadrado medio del error.

II.1.4 DISCUSSION

Los tres tipos de tratamientos utilizados, amoníaco anhidro y urea en pila y al empacar, mejoraron el valor nutritivo y la digestibilidad de la paja, destacando el tratamiento con amoníaco. BENAHMED Y DULPHY (1985), WANAPAT et al. (1985) y COTTYN y DE BOEVER (1988) también observaron una superioridad del tratamiento con amoníaco frente al realizado con urea.

En cuanto a los dos métodos de aplicación de la solución de urea, los resultados obtenidos en la aplicación en el momento de empacar fueron irregulares. Un comportamiento similar fue señalado por COTTYN y DE BOEVER (1988). En el tratamiento con solución amoniacal al empacar, HORN et al. (1983) concluyen que para obtener buenos resultados era necesario controlar bien la cantidad de solución aplicada. En nuestro caso, puesto que el caudal de salida de la solución era constante, sería necesario que lo fuera también la velocidad de empacado, y que el material a empacar estuviera distribuida homogéneamente en el suelo.

En general, los componentes químicos (Cuadro II.1.2) variaron de acuerdo con el efecto general del tratamiento con amoníaco señalado por SUNDSTÖL y OWEN (1984). Sin embargo, no se observó ninguna modificación en el ADF, mientras que el contenido en ADL presentó un ligero incremento como consecuencia del tratamiento. Otros autores también han señalado resultados variables. Mientras que PATERSOM et al. (1981) y NELSON et al. (1986) no observaron ninguna modificación en el contenido en ADF tras el tratamiento con amoníaco, SOLAIMAN et al. (1979), BIRKELD et al. (1986) y MANDELL
et al. (1988) obtuvieron un incremento del contenido en ADF tras el tratamiento con urea. La tendencia del contenido en ADL a aumentar tras el tratamiento está de acuerdo con SOLAIMAN et al. (1979) y JEWELL y CAMPLING (1988) y en desacuerdo con HORTON et al. (1982), WANAPAT et al. (1985), REDD et al. (1988) y MASCARENHAS-FERREIRA et al. (1989), quienes encontraron que el ADL o bien no se modificaba o bien disminuía. No obstante, las modificaciones en ADF y ADL son siempre débiles y no siempre reflejan el efecto del tratamiento.

La tasa de fijación de N en la paja estimada en el tratamiento con amonio de los ensayos fue superior a la presentada en la bibliografía (18-25 p.100) por numerosos autores (SOLAIMAN et al., 1979; ALBERTI y MUÑOZ, 1988; GIVENS et al., 1988; MASON et al., 1988; MICHELET-DOREAU y GUEDES, 1989). Por el contrario, en el tratamiento con urea se observó una tasa de fijación del N a la presentada por HADJIPANAYIOTOU (1982), ABDUL et al. (1986) y MACDEARMID et al. (1988). Lo anteriormente expuesto puede justificar que no se obtuviera una fijación del N superior en el tratamiento con urea (WANAPAT et al., 1985), aunque también pudo influir que en la presente experiencia no se incluyó el N-amoniaco residual con N fijado mientras que en la bibliografía no se precisa dicho aspecto.

El incremento significativo de la DMO y de la ingesta de MS de la paja, como consecuencia del tratamiento, están de acuerdo con la mayoría de autores (LAWOR y O'SHEA, 1979; HADJIPANAYIOTOU, 1982; DIAS DA SILVA y SUNDSTOL, 1986; MACDEARMID et al., 1988). Sin embargo, la amplitud de la mejora varió en función del tipo de tratamiento. El tratamiento con amonio de urea presentó una superioridad clara (P<0.05) a los dos con urea; la cual estaría de acuerdo con ensayos precedentes (WANAPAT et al., 1985; COTTYN y DE BOEVER, 1988).

La eficacia del tratamiento con urea dependió de la forma de aplicación de la solución de urea. La DMO de la paja fue ligeramente superior, aunque no significativamente, en el tratamiento realizado al emparcar. Ello podría indicar, de acuerdo con MACDEARMID et al. (1988), que la dosis de urea aplicada en el tratamiento al emparcar era ligeramente superior a la del tratamiento en pila.

Por el contrario, el tratamiento realizado al emparcar no provocó ninguna mejora a nivel de la ingesta de paja, siendo similar a la de la paja testigo y significativamente inferior (P<0.05) a la ingesta registrada en la paja tratada en pila. Estas diferencias podrían ser consecuencia de que en el tratamiento con urea al emparcar existió mayor cantidad de urea sin transformar, la cual pudo producir mal sabor a la paja y provocar un cierto rechazo por parte de los corderos. WILLIAMS et al. (1986) también observaron una reducción de la ingesta como consecuencia de la adición de urea a la dieta, en límites comparables a los observados en nuestro experimento.

La digestibilidad aparente de NT de la dieta se comportó de acuerdo con el contenido en urea presente en la dieta, clasificándose las dietas, de mayor a menor digestibilidad aparente, en el siguiente orden: paja tratada con urea al emparcar, paja testigo, paja tratada en pila y paja tratada con amonio. La baja digestibilidad aparente observada en la dieta de la paja tratada con amonio confirma los resultados obtenidos por OJI et al. (1977), NELSON et al. (1984), CHERMITI y CORDESSE (1988), MICHALET-DOREAU y GUEDES (1989) y CHENOST y HASSEN (1990).

En relación a la DPB de la dietes de paja tratada con urea, DIAS DA SILVA y SUNDSTOL (1986) señalaron un aumento de dicha digestibilidad cuando se comparaba la paja tratada con urea con la paja testigo, mientras que cuando a esta última se adicionaba urea en el pesaje se registraba una PB de la dieta inferior en la paja tratada. Otros autores (HADJIPANAYIOTOU, 1982; BENAHEMED y DULPHY, 1985; CHERMITI et al., 1989) observaron que el tratamiento con urea provocaba un aumento de la digestibilidad aparente de la PB de la dieta, estando de acuerdo con los resultados obtenidos en el tratamiento al emparcar y presentando todos ellos una cierta cantidad de urea sin transformar. Sin embargo, en la presente experiencia se puede decir que el desequilibrio en el contenido en NT entre las dietas fue bastante notable, lo que pudo ser una de las principales fuentes de variabilidad de dicha digestibilidad.

El aumento del N excretado en heces como consecuencia del tratamiento pudo ser debido, de acuerdo con DIAS DA SILVA y SUNDSTOL (1986), ZORRILLA-RIOS et al. (1989) y CHENOST y HASSEN (1990), a una mayor proporción de N microbiano en el NT de las heces. Por otra parte, MICHALET-DOREAU y GUEDES (1989) y CHENOST y HASSEN (1990) concluyen que una elevada proporción del N degradable ofertado por el tratamiento no era utilizado por los microorganismos del rumen.

Los resultados inferiores obtenidos en el balance nitrogenado de la dieta constituida por paja tratada con amonio están de acuerdo con SMITH et al. (1983/84) y BENAHEMED y DULPHY (1985). Según DRYDEN y KEMPSON (1983/84) la amonación puede mejorar la retención de N únicamente cuando el balance N es bajo o negativo. Las diferencias de comportamiento de la paja tratada con urea, según la forma de aplicación, pudieron ser consecuencia de diferencias en la cantidad de urea no transforma.

II.1.5 CONCLUSIONES

- El tratamiento con amonio de urea aplicado a una dosis de 35.6 g/Kg MS y a una humedad de 24 p. 100 presentó una ligera superioridad frente a los tratamientos con urea.

- El tratamiento con urea realizado al emparcar mejoró la digestibilidad de la paja pero no su ingestibilidad. En dicho tratamiento es difícil una dosificación precisa de la urea.

- El tratamiento con urea en pila presentó una mejora considerable de la digestibilidad y de la ingesta de paja.
II.2.3 RESULTADOS

Las temperaturas registradas durante el invierno de 1989 fueron anormalmente elevadas, muy similares a las habitadas durante el otoño (Cuadro II.2.1). Por ello, no se pudo estudiar un rango de temperaturas más amplio como se pretendía inicialmente.

La composición química de la paja de trigo tratada y no tratada se expone en el Cuadro II.2.2. El tratamiento provocó una reducción del contenido en NDF de 5.2, 4.8 y 3.0 puntos en los tratamientos de verano, otoño e invierno, respectivamente. El contenido en NT de la paja testigo fue de 0.42 p.100, mientras que en la paja tratada fue de 1.82, 1.68 y 1.16 p.100 en los tres tratamientos respectivos. El grado de ureólisis fue muy similar con valores de 76.6 en el tratamiento de verano, 77.6 en el tratamiento de otoño y de 89.8 en el tratamiento de invierno. Los porcentajes de N retenido en la paja fueron de 29, 24 y 17 p.100 correspondientes a los tratamientos de verano, otoño e invierno respectivamente.

CUADRO II.2.2. Composición química (% MS) del concentrado, de la paja de trigo sin tratar (testigo) y tratada con urea en tres épocas del año (Experiencia II.2).

<table>
<thead>
<tr>
<th>Composición química (%)</th>
<th>Concentrado</th>
<th>Testigo</th>
<th>Tratamiento con urea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verano</td>
<td>Otoño</td>
<td>Invierno</td>
</tr>
<tr>
<td>Cenizas</td>
<td>11.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDF</td>
<td>23.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>-</td>
<td>53.30</td>
<td>50.60</td>
</tr>
<tr>
<td>ADL</td>
<td>-</td>
<td>9.50</td>
<td>8.40</td>
</tr>
<tr>
<td>NT</td>
<td>2.55</td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>N-urea residual</td>
<td>-</td>
<td>0.62</td>
<td>0.63</td>
</tr>
<tr>
<td>% Ureólisis</td>
<td>-</td>
<td></td>
<td>76.80</td>
</tr>
<tr>
<td>% N retenido</td>
<td>-</td>
<td>29</td>
<td>24</td>
</tr>
</tbody>
</table>

Las característicos de la dieta ingerida por los moruaco en la fase de digestibilidad se recogen en el Cuadro II.2.3. El contenido en PB de las dietas constituidas por paja testigo y paja tratada en invierno fue de 8.6 y 8.7, respectivamente, siendo inferiores a los contenidos de las dos dietas restantes con 12.3 en la de verano y 11.5 en la de otoño.

CUADRO II.2.1. Características de los tratamientos con urea realizados sobre paja de trigo en verano, otoño e invierno (Experiencia II.2).

<table>
<thead>
<tr>
<th></th>
<th>Verano</th>
<th>Otoño</th>
<th>Invierno</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MS al cosechar</td>
<td>88.33</td>
<td>89.30</td>
<td>86.53</td>
</tr>
<tr>
<td>% MS tras el tratamiento</td>
<td>65.49</td>
<td>65.80</td>
<td>63.06</td>
</tr>
<tr>
<td>Urea añadida (g/Kg MS)</td>
<td>58.0</td>
<td>57.0</td>
<td>60.0</td>
</tr>
<tr>
<td>N añadido (g/Kg MS)</td>
<td>26.7</td>
<td>28.1</td>
<td>27.6</td>
</tr>
<tr>
<td>Días del tratamiento</td>
<td>263</td>
<td>166</td>
<td>70</td>
</tr>
<tr>
<td>Tº media (max.,min.,°C)</td>
<td>28</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Los resultados obtenidos se sometieron a Análisis de la Varianza a una vía seguido por un "test-Duncan" (STEEL y TORRIE, 1980).
CUADRO II.2.3.

Características de las dietas ingeridas por los moruecos en la fase de digestibilidad (Experiencia II.2).

<table>
<thead>
<tr>
<th>Nº de animales</th>
<th>Testigo</th>
<th>Verano</th>
<th>Otoño</th>
<th>Invierno</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV (X ± ES)</td>
<td>43.9 ± 2.66</td>
<td>43.4 ± 1.02</td>
<td>43.4 ± 1.02</td>
<td>46.2 ± 1.17</td>
</tr>
<tr>
<td>% concentrado ingerido</td>
<td>24.2</td>
<td>20.3</td>
<td>22.1</td>
<td>18.4</td>
</tr>
<tr>
<td>% PB de la dieta</td>
<td>8.6</td>
<td>12.3</td>
<td>11.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Nivel de alimentación</td>
<td>1.11</td>
<td>1.22</td>
<td>1.13</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Los resultados obtenidos en la prueba de digestibilidad se expresan en el Cuadro II.2.4. El tratamiento presentó un efecto significativo (P < 0.001) sobre los coeficientes DMO y DNDF de la dieta y DMO de la paja. La estación del año no manifestó ningún efecto sobre la DMO ni de la dieta ni de la paja y, por tanto, no se apreciaron diferencias significativas (P > 0.05) entre los tres tratamientos. Por el contrario, afectó a la DNDF de la dieta, observándose un mayor coeficiente en la dieta constituida por paja tratada en verano, el cual fue significativamente superior (P < 0.05) al resto de las dietas.

CUADRO II.2.4.

Coeficientes de digestibilidad e ingestión voluntaria de paja de trigo sin tratar (Testigo) y tratada con urea en tres épocas del año (Experiencia II.2).

<table>
<thead>
<tr>
<th>Coeficientes de digestibilidad (%)</th>
<th>Testigo</th>
<th>Tratamiento con urea</th>
<th>Efecto Tto.</th>
<th>CME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO dieta</td>
<td>50.5*</td>
<td>58.2*</td>
<td>57.2*</td>
<td>56.6*</td>
</tr>
<tr>
<td>N dieta</td>
<td>57.7*</td>
<td>55.3*</td>
<td>60.5*</td>
<td>51.9*</td>
</tr>
<tr>
<td>NDF dieta</td>
<td>48.0*</td>
<td>63.1*</td>
<td>58.2*</td>
<td>59.0*</td>
</tr>
<tr>
<td>MO paja</td>
<td>50.4%</td>
<td>51.1*</td>
<td>48.7*</td>
<td>49.7*</td>
</tr>
<tr>
<td>Ingestión voluntaria (g/Kg PV*77')</td>
<td>NS</td>
<td>53.9</td>
<td>56.9</td>
<td>58.0</td>
</tr>
<tr>
<td>MSI dieta</td>
<td>-</td>
<td>42.2</td>
<td>46.1</td>
<td>46.6</td>
</tr>
<tr>
<td>MSI paja</td>
<td>-</td>
<td>27.1</td>
<td>29.4</td>
<td>29.5</td>
</tr>
<tr>
<td>MODI dieta</td>
<td>-</td>
<td>18.7</td>
<td>20.1</td>
<td>21.2</td>
</tr>
</tbody>
</table>

NS = P > 0.05; * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 1, 2, 3, e = P < 0.05. CME = Rendimiento del cuadriculado más del error

El efecto del tratamiento sobre la digestibilidad aparente del N de la dieta fue significativo (P < 0.01), aunque las respuestas no fueron homogéneas. Los coeficientes más elevados correspondieron a las dietas de paja tratada en otoño y de paja testigo con 60.5 y 57.7 p.100, respectivamente, no siendo estos valores significativamente diferentes (P > 0.05) entre sí. La dieta con paja tratada en verano registró una digestibilidad aparente del N de 55.3 p.100, la cual no difería (P > 0.05) de la dieta testigo ni de la dieta constituida por paja tratada en invierno, con un coeficiente de 51.9 p.100.

La ingestión voluntaria se determinó en las tres pilas tratadas y sobre cuatro animales. Los resultados observados en ingestión de MS y MOD de paja no evidenciaron diferencias significativas (P > 0.05) entre tratamientos.

II.2.4 DISCUSSION

Las condiciones de realización de los tres tratamientos fueron muy similares entre sí en lo referente a dosis y humedad aplicadas. Sin embargo, debido a que los tres tratamientos fueron evaluados simultáneamente, el tiempo de reacción fue muy diferente, siendo superior en el tratamiento de verano, seguido del tratamiento de otoño y, por último, del tratamiento de invierno, en el cual se aseguró que el periodo de tratamiento no limitara la reacción, siendo el tiempo mínimo utilizado de dos meses.

La ligera disminución observada en los contenidos en ADF y ADL (Cuadro II.2.2) como consecuencia del tratamiento con urea se contradice con los resultados obtenidos en el ensayo I.1. Sin embargo, la bibliografía también refleja una gran variabilidad de la respuesta de dichos contenidos al tratamiento. La especie, así como el cultivar utilizado puede explicar parte de la variación de dicha respuesta (REID et al., 1988).

La estación del año a la cual se llevó a cabo el tratamiento tampoco afectó significativamente (P > 0.05) a la DMO de la dieta ni de la paja (Cuadro II.2.4), aunque se registró una ligera superioridad de la paja tratada en verano. ALIBES ET AL. (1983/84), en una experiencia similar pero que se trataba paja de cebeda en verano (38°C) y en otoño (17°C) con amoniaco anhidro, observaron un efecto positivo claro de la temperatura. Los resultados aquí obtenidos ponen de manifiesto que el intervalo de temperaturas obtenido no era suficientemente amplio para provocar diferencias notables.

La dieta constituida por paja tratada en verano presentó una DNDF significativamente superior (P < 0.05) a la de las restantes dietas de paja (Cuadro II.2.4). Dicho resultado, junto a la mayor reducción del contenido en NDF registrada en el mismo tratamiento (Cuadro II.2.2), induce a pensar que la temperatura más elevada favoreció de alguna manera el tratamiento (WILLIAMS ET AL., 1984b; COTTYN Y DE BOEVER, 1988; ZAMAN Y OWEN, 1990).
El tratamiento con urea provocó en general una reducción de la digestibilidad aparente de NT de la dieta, excepto en la constituida por paja tratada en otoño. Diversos autores (O.Ji et al., 1977; HORTON y STEACY, 1979; HORTON et al., 1982; DULPHY et al., 1984; BIRKELD et al., 1986; DIAS DA SILVA y SUNDSTÖL, 1986; ZORRILLA-RÍOS et al., 1989) también observaron que el tratamiento con amoniacal o con urea provoca una disminución de la digestibilidad aparente del N en la dieta. Las diferencias registradas de la dieta que por el propio tratamiento.

Los resultados obtenidos en las pruebas de ingestión voluntaria mostraron que la estación del año no tenía influencia sobre la MSI y MODI de la paja, estando ello en desacuerdo con los resultados obtenidos por ALIBES et al. (1983/84), lo que podría justificarse por el mayor rango de temperaturas estudiadas por los citados autores.

La retención o fijación de N se incrementó conforme aumentaba la temperatura; estos resultados están de acuerdo con los obtenidos por HORTON (1978), CLOETE et al., CAMPBELL, 1986; ALBERTI y MUNOZ, 1988; MACDEARDI et al., 1988; MASON et al., 1988; CHERMIE et al., 1988; MICHALETTOREAU y GUEDES, 1989) han señalado unos porcentajes de retención similares a los obtenidos en este trabajo.

En síntesis, se puede concluir que el rango de temperaturas ambientales registradas no fue suficiente para limitar la ureólisis y/o la retención de N en la paja. Por tanto, no se apreciaron diferencias notables entre las tres épocas del año estudiadas.

II.2.5 CONCLUSIONES

- La temperatura de 9°C no limita el efecto del tratamiento con urea cuando se realiza a dosis de 60 g de urea/Kg MS y a 35 p. 100 de humedad.
- Las temperaturas de verano (28°C) sólo incidieron sobre una mejor fijación de nitrógeno y mejor digestibilidad de la fracción NDF.
- Los rangos de temperatura estudiados no fueron limitantes.

II.3 INFLUENCIA DE LA DOSIS DE UREA SOBRE LA EFICACIA DEL TRATAMIENTO

II.3.1 OBJETIVO

Estudiar la influencia de la dosis de urea sobre la eficacia del tratamiento y determinar la dosis de urea mínima necesaria para un tratamiento eficaz.

II.3.2 MATERIAL Y METODOS

Se utilizaron 5 t de paja de trigo (cv Anza) procedente de un cultivo de regadío de origen similar al de las anteriores experiencias.

Se realizaron cinco pilas de 1 t; cuatro de ellas fueron tratadas con urea en solución a dosis crecientes de 30, 40, 50 y 60 g/Kg MS y la quinta pila se utilizó como testigo. Los tratamientos se llevaron a cabo en verano según el proceso descrito en el Apartado 1.2.1 del Metodología General.

Las cuatro pilas tratadas, junto con la paja testigo, fueron evaluadas mediante pruebas de digestibilidad sobre cinco lotes de tres o cuatro moruecos castrados, durante dos periodos. Los resultados obtenidos fueron analizados mediante un Análisis de la Varianza a una vía seguido por un "test-Duncan" (STEEL y TÖRRIE, 1980).

II.3.3 RESULTADOS

Durante el desarrollo de la experiencia se observaron algunas pecas con cierto contenido en otras gramíneas, principalmente en la paja testigo.

En el Cuadro II.3.1 se presenta la composición química de la paja testigo y tratada. El contenido en NDF de los cuatro tratamientos y de la paja testigo fue muy similar, mientras que el contenido en NT fue creciente de acuerdo con la dosis de urea aplicada, con valores de 0.73 p.100 en la paja testigo y de 1.08, 1.37, 1.32 y 2.23 p.100 en los tratamientos a 30, 40, 50 y 60 g de urea/Kg MS, respectivamente. El grado de ureólisis fue elevado en los tres primeros tratamientos con valores de 80.4, 83.6 y 87.0 p.100 respectivamente, mientras que en la dosis más elevada, fue del orden de 63.9 p.100. El N retenido o fijado fue de 6, 18, 13, y 18 p.100, respectivamente para los tratamientos realizados a 30, 40, 50 y 60 g de urea/Kg MS.

Las características de las dietas ingeridas en la fase de digestibilidad se expresan en el Cuadro II.3.2. La proporción de concentrado ingerido fue muy similar en las cinco dietas. El contenido en PB de la dieta también fue similar para todas las dietas, excepto la constituida por paja tratada a 60 g de urea/Kg MS que presentó un contenido en PB más elevado.
CUADRO II.3.1. Composición química (% MS) del concentrado y de la paja de trigo sin tratar (testigo) y tratada con urea a dosis crecientes (Experiencia II.3).

<table>
<thead>
<tr>
<th>Composición química (%)</th>
<th>Concentrado</th>
<th>Testigo</th>
<th>Tratamientos con urea (g/Kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Cenizas</td>
<td>13.8</td>
<td>8.9</td>
<td>7.2</td>
</tr>
<tr>
<td>NDF</td>
<td>21.1</td>
<td>78.7</td>
<td>79.3</td>
</tr>
<tr>
<td>NT</td>
<td>3.19</td>
<td>0.73</td>
<td>1.08</td>
</tr>
<tr>
<td>N-urea residual</td>
<td>-</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>% Ureólisis</td>
<td>-</td>
<td>-</td>
<td>80.4</td>
</tr>
<tr>
<td>% N retenido</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

CUADRO II.3.2. Características de las dietas ingeridas en la fase de digestibilidad (Experiencia II.3).

CUADRO II.3.3. Coeficientes de digestibilidad e ingestión voluntaria de paja de trigo sin tratar (testigo) o tratada con urea, determinados en ensayos "in vivo" (Experiencia II.3).

<table>
<thead>
<tr>
<th>Coeficiente de digestibilidad (%)</th>
<th>Testigo</th>
<th>Tratamiento con urea (g/Kg MS)</th>
<th>Efecto Tto.</th>
<th>∆ CME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO diata</td>
<td>52.8*</td>
<td>57.9*</td>
<td>56.7*</td>
<td>58.2*</td>
</tr>
<tr>
<td>N diata</td>
<td>53.5**</td>
<td>50.1*</td>
<td>54.9*</td>
<td>51.3*</td>
</tr>
<tr>
<td>NDF diata</td>
<td>50.3*</td>
<td>58.9*</td>
<td>57.3*</td>
<td>61.9*</td>
</tr>
<tr>
<td>MO paja</td>
<td>44.1*</td>
<td>51.4*</td>
<td>49.4*</td>
<td>51.5*</td>
</tr>
</tbody>
</table>

Ingestión voluntaria (g/Kg PV**.75)

| N.A. | 1.05 | 1.25 | 1.26 | 1.30 | 1.40 | - |

En las condiciones descritas, el tratamiento con urea mejoró significativamente (P<0.001) los coeficientes de DMO y NDNF de la dieta, así como la DMO de la paja (Cuadro II.3.3). La dosis de urea aplicada también afectó a los coeficientes de digestibilidad. El tratamiento con urea a dosis de 60 g/Kg MS presentó el coeficiente más elevado de DMO de la paja con un valor de 53.1 p.100, el cual fue significativamente superior (P<0.05) al presentado en el tratamiento con 40 g de urea/Kg MS cuyo coeficiente fue de 49.4 p.100. Los dos tratamientos restantes presentaron unos valores intermedios, con 51.5 y 51.4 p.100 para los tratamientos realizados a 50 y 30 g de urea/Kg MS. En cuanto a la digestibilidad del NDF de la dieta, la dosis de urea aplicada influyó de forma similar a la DMO de la paja.

El tratamiento también tuvo un efecto significativo (P<0.001) sobre el coeficiente de digestibilidad aparente del N de la dieta. La dieta constituida por la paja tratada con urea a la dosis de 60 g/Kg MS presentó un coeficiente de 66.0 p.100 que era significativamente superior (P<0.05) a los coeficientes de las restantes dietas, con valores de 53.5, 50.1, 54.9 y 51.3 p.100 para las dietas constituidas por paja testigo y tratada con 30, 40 y 50 g de urea/Kg MS, respectivamente.

El tratamiento mejoró la MS ingerida de la paja (P<0.001) entre 9.3 y 15.5 g/Kg PV**.75 con respecto a la paja testigo. A este respecto, no se observaron diferencias entre las dosis de urea aplicadas, excepto en la dosis de 40 g de urea/Kg MS donde se registró una ingestión inferior (P<0.05) a los restantes tratamientos. La mayor ingestión de MOD de paja correspondió a los tratamientos con 50 y 60 g de urea/Kg MS con valores de 22.5 y 21.8 g MOD/Kg PV**.75, respectivamente. La paja sin tratar presentó una ingestión de 13.6 g MOD/Kg PV**.75 la cual fue significativamente inferior (P<0.05) a las restantes.

En el Cuadro II.3.4 se expresa el balance nitrogenado de las dietas evaluadas. El tratamiento no tuvo efecto (P>0.05) sobre el nitrógeno excretado en heces, mientras que el N excretado en orina fue significativamente superior (P<0.05) en la dieta constituida por paja tratada a 40 g urea/Kg MS con respecto a las restantes dietas. El mayor porcentaje de N retenido correspondió a la dieta de paja testigo, presentando las restantes dietas una retención negativa (en los tratamientos a 30, 40 y 50 g de urea/Kg MS) o nula (en el tratamiento a 60 g urea/Kg MS).
CUADRO II.3.4. Tratamientos de paja de trigo con urea en solución acuosa a cuatro dosis crecientes. Balance de nitrógeno en corderos adultos a mantenimiento.

<table>
<thead>
<tr>
<th>(g/Kg PVc 77)</th>
<th>Testigo</th>
<th>Tratamiento con urea</th>
<th>Efecto Tto.</th>
<th>↓ CME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>g/Kg MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N ingerido</td>
<td>n=8</td>
<td>n=6</td>
<td>n=6</td>
<td>n=5</td>
</tr>
<tr>
<td></td>
<td>0.89*</td>
<td>0.75*</td>
<td>0.89*</td>
<td>0.81*</td>
</tr>
<tr>
<td>N en heces</td>
<td>0.39</td>
<td>0.38</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>N en orina</td>
<td>0.49*</td>
<td>0.45*</td>
<td>0.50*</td>
<td>0.54*</td>
</tr>
<tr>
<td>N total</td>
<td>0.88</td>
<td>0.83</td>
<td>0.91</td>
<td>0.95</td>
</tr>
<tr>
<td>N retenido</td>
<td>0.005</td>
<td>-0.08</td>
<td>-0.02</td>
<td>-0.12</td>
</tr>
<tr>
<td>% N retenido</td>
<td>0.70</td>
<td>-0.11</td>
<td>-0.2</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

n: número de animales
*P<0.05
**P<0.01
***P<0.001
↓ CME = raíz cuadrada del cuadrado medio del error.

II.3.4 DISCUSION

La paja de trigo no tratada tuvo una procedencia distinta a la de la paja utilizada para los tratamientos y, además, contenía grano y otras gramíneas diferentes al trigo. Estos hechos pueden justificar que el efecto del tratamiento fuera irregular a inferior al esperado.

La ligera disminución registrada en el contenido en NDF (Cuadro II.3.1) como consecuencia del tratamiento sería debido a que la calidad inicial de la paja sin tratar y tratada era diferente y, por tanto, no se refleja el efecto del tratamiento sobre dicho contenido observado en los anteriores ensayos y anotados por numerosos autores (SOLOMAN et al., 1979; WANAPAT et al., 1985; SUNDSTØL, 1988b; CHERMITI et al., 1989; LLAMAS LAMAS y COMBS, 1990). Por otra parte, la elevada ureolisis registrada en los tratamientos con 30, 40 y 50 g de urea/Kg MS, puso de manifiesto que el contenido en humedad de dichos tratamientos era el adecuado. El escaso grado de ureolisis (64 p. 100) obtenido con la dosis de 60 g de urea/Kg MS pudo estar provocado por una humedad insuficiente para dicha dosis. Diversos estudios (SUNDSTØL et al., 1978; XIANGI et al., 1987; BORHANI y SUNDSTØL, 1982; DRYDEN y LENG, 1986; ABDOLI y KORCHANI, 1987) demostraron la dependencia entre el contenido en humedad y la dosis aplicada.

La le ifstream (Cuadro II.3.1) obtenida fue inferior a la registrada en la mayoría de la bibliografía consultada, aunque fue similar a la señalada por GIVENS et al. (1988) y MASON et al. (1988). El efecto positivo del incremento de la dosis anotado por diversos autores (SAENGER et al., 1982; WANAPAT et al., 1985; MACDEARMID et al., 1988) sólo se observó en las dosis inferiores debido posiblemente, como señalaron DRYDEN y LENG (1986), a que la cantidad de N retenido en la paja tras el crecimiento depende del número de uniones entre el N y la paja y del contenido en humedad más que de la dosis de amonio aplicada.

Las dietas ingeridas por los animales (Cuadro II.3.2) presentaron unas características similares, excepto en el contenido en NT el cual fue superior en la dieta correspondiente a la paja tratada a la dosis más alta. Este hecho sería el resultado de una ureolisis inferior a la esperada, traduciéndose en un contenido en NT de la paja más elevado.

El efecto del tratamiento sobre la digestibilidad y la ingestión de la paja (Cuadro II.3.3) fue siempre significativo (P<0.05). Sin embargo, las diferencias entre dosis no fueron tan evidentes. Los tratamientos realizados a las dosis más elevadas (50 y 60 g de urea/Kg MS) presentaron unos coeficientes de DMO de la dieta y de la paja y de DNDF de la dieta ligeramente superiores, aunque no siempre fueron significativamente superiores. ABDOLI Y KORCHANI (1987), CHERMITI et al. (1989) y MACDEARMID et al. (1988) obtuvieron una respuesta positiva cuando incrementaron, respectivamente, la dosis de urea hasta 40, 60 y 50 g/Kg MS. La ingestión de la paja, tanto de MS como de COD, también fue ligeramente mayor en los tratamientos a dosis elevadas, estando de acuerdo con los resultados obtenidos por PATTERSON et al. (1981) y STEPHENSON et al. (1982).

Los incrementos de la ingestión pueden ser debidos a un contenido superior en NT de la paja (HORTON, 1978; MANDELL et al., 1988) o a un mayor ritmo de paso de la paja tratada (SAENGER et al., 1982; DIAS DA SILVA y SUNDSTØL, 1986; ABDOLI et al., 1988).

El aumento obtenido en la digestibilidad aparente del N de la dieta correspondiente a la paja tratada a 60 g de urea/Kg MS con respecto a la paja testigo, estaría relacionado con un mayor contenido en NT de la dieta (HORTON, 1979). En relación a ello, DIAS DA SILVA y SUNDSTØL (1986) observaron que la paja amoniacal presentaba una DP6 aparente inferior a la paja no tratada suplementada con urea. En este trabajo, dicho tratamiento fue el que presentó mayor cantidad de urea residual.

El N excretado en heces correspondiente a la dieta de paja testigo fue anormalmente elevado, lo que pudo enmascarar el aumento del N fecal provocado por el tratamiento. El N en orina fue similar entre dietas, excepto en el correspondiente a la paja tratada con 60 g de urea/Kg MS, el cual casi duplicó la excreción registrada en la dieta de paja testigo. Ello también estaría relacionado con un exceso de urea, la cual sería eliminada en la orina.

El balance nitrogenado fue negativo en todas las dietas constituidas por paja tratada, mientras que la dieta testigo presentó un balance nulo. SMITH et al. (1983/84) y BENAHMAD y DULPHY (1985) también observaron un efecto negativo del tratamiento sobre el balance nitrogenado del animal, lo que podría ser debido a la falta de adición de energía provocando un efecto negativo sobre la economía global del nitrógeno de los animales (ZORRILLA-RIOS et al., 1988).
II.3.5 CONCLUSIONES

- El grado de ureólisis registrado disminuye conforme aumenta la dosis de urea aplicada. No obstante, en todos los casos se estimó un grado de ureólisis suficiente.

- El incremento de la dosis de urea aplicada proporcionó una mejora adicional poco notable. Por ello, en términos económicos, las dosis inferiores (30 y 40 g/Kg MS) pueden ser las óptimas.

II.4. INFLUENCIA DE LA HUMEDAD, DE LA ADICION DE UREASAS Y DE LA FORMA DE APLICACION DE LA UREA SOBRE LA EFICACIA DEL TRATAMIENTO

II.4.1 OBJETIVO

Estudiar la influencia de la humedad, de la adición de una fuente de ureasas y de la forma de aplicación de la urea sobre la ingestión voluntaria y los parámetros químicos de paja de trigo y cebeda tratada con urea.

II.4.2 MATERIAL Y METODOS

El estudio se llevó a cabo mediante dos ensayos. En el Cuadro II.4.1 se expresan las características de los ensayos y tratamientos realizados.

ENSAYO A:

Se realizaron 14 pilas de aproximadamente 300 kg de MS de paja de trigo (cv Anza) de igual procedencia que en los ensayos anteriores. Los tratamientos se llevaron a cabo con una dosis de urea de 30 g/Kg MS y a las humedades de 10, 20, 30 y 40 p.100. A cada una de estas humedades la urea se aplicaba en solución o en forma sólida siguiendo los procesos descritos en el Apartado 1.2 de la Metodología General. En el tratamiento realizado a la humedad del 10 p.100 la urea se aplicó únicamente en forma sólida, puesto que no se añadía agua. Finalmente, se añadió o no habia cruda de soja, como fuente de ureasas, a una dosis igual a la de la urea.

Dichos tratamientos fueron sometidos a una prueba de ingestión voluntaria, la cual se realizó sobre 42 ovejas "Rasa Aragonesa" adultas y vacías, alojadas en jaulas individuales y distribuidas al azar formando 6 lotes. Debido al elevado número de tratamientos, la prueba se llevó a cabo en dos períodos y en cada una de ellos se testaban 6 tratamientos elegidos al azar. Los tratamientos realizados a la humedad del 10 p.100 no se ofrecieron a los animales, ya que se observaba parte de la urea y ureasa adicional sin transformar.

Cada oveja recibía diariamente 180 g de concentrado (descrito en el Apartado 2 de la Metodología General) que se distribuía a las 8 h, antes de suministrar la paja. La paja se ofrecía 3 veces al día (9, 13, y 17 h) a voluntad, permitiendo un rehusado del orden del 15 p.100. La ingestión voluntaria correspondió al consumo medio diario de los 6 últimos días, tras un periodo de adaptación de 21 días. Las ovejas eran pesadas antes y después de cada período.

Antes de iniciar la prueba de ingestión, las pilas que iban a ser evaluadas eran trituradas en trozos de 5-12 cm de longitud y seguidamente almacenadas en el henil. En dichas condiciones de almacenamiento, los tratamientos a 40 p.100 de humedad manifestaron indicios de celamentamiento, mientras que el resto de los tratamientos tuvieron un buen nivel de conservación y homogeneidad.

Las muestras destinadas a laboratorio se obtenían a partir del muestreo diario que se realizaba en el momento de preparación de las dietas y se acumulaban por lotes. Posteriormente, se sometían a los procesos de desecación, molienda y almacenado habituales, hasta su procesado en laboratorio.

<table>
<thead>
<tr>
<th>Ureasas (%)</th>
<th>% Humedad</th>
<th>Forma de aplicación</th>
<th>PAJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>30</td>
<td>SOLIDA</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>30</td>
<td>TRIGO (ensayo A)</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>SOLUCION</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>30</td>
<td>CEBAZA (ensayo B)</td>
</tr>
</tbody>
</table>

ENSAVO B:

Al objeto de profundizar en el empleo de ureasas (haya cruda de soja) a humedades débiles, se diseñó el Ensayo B (Cuadro II.4.1). Se utilizó paja de cebada (cv KYM) procedente de una parcela de regadío. Se realizaron cinco pilas de igual tamaño que las anteriores. Cuatro de ellas fueron tratadas con urea en solución a una dosis de 40 g/kg MS, humedades de 15 y 25 p. 100, con y sin adición de 30 g de hba cruda de soja/Kg MS. La quinta pila se utilizó como testigo. La prueba de ingestión se efectuó en dos periodos sobre 20 moruecos castrados, que recibían 200 g de concentrado, por animal y día y paja a voluntad, permitiendo un nivel de rehusado del orden del 15 p.100. Los animales que consumían paja sin tratar recibían 9 g de urea por animal y día, que se mezclaban en el concentrado. Los demás procedimientos fueron idénticos a los explicados en el Ensayo A.

Los resultados de ingestión obtenidos en el Ensayo A fueron sometidos a Análisis Factorial de la Varianza (3x2x2) y los del Ensayo B a un Análisis de la Varianza a una vía seguido por un test-Duncan. En dicho ensayo también se realizó un Análisis de la Varianza a dos vías (2x2) para poder determinar el efecto de la humedad y de la adición de hba cruda de soja, siguiendo las recomendaciones de STEEL y TORRIE, (1980).

II.4.3 RESULTADOS

En el Cuadro II.4.2 se expresa la composición química de la paja de trigo y de cebada tratadas con urea, utilizadas en los ensayos A y B.

ENSAVO A:

El efecto de la humedad sobre los contenidos en NDF, NT y N-urea residual se representa en la Figura II.4.1. El aumento del contenido en humedad no provocó modificaciones notables a nivel del contenido en NDF. Por otro lado, el contenido en NT disminuyó a medida que aumentaba el contenido en humedad del tratamiento, correspondiendo los valores más elevados a la humedad del 10 p.100, con 1.44 y 1.78 p.100 en los tratamientos con y sin adición de hba cruda de soja. En los tratamientos a 40 p.100 de humedad, el contenido en NT registrado fue inferior a los restantes tratamientos, con valores de 1.20 y 1.05 en la aplicación de la urea sólida y de 1.02 y 0.97 en la aplicación de la urea en solución, con y sin adición de hba cruda de soja respectivamente. El N-urea residual se comportó paralelamente al contenido en NT: los tratamientos a 10 p.100 de humedad presentaron los valores más elevados, con 0.30 y 0.10 p.100 respectivamente para la adición y no adición de hba cruda de soja. Sin embargo, a partir de la aplicación del 30 p.100 de humedad dicho contenido fue casi despreciable.

La influencia de la forma de aplicación de la urea sobre los contenidos en NDF, NT y N-urea residual se muestra en la Figura II.4.2. Si el contenido en NDF ni el contenido en NT presentaron modificaciones notables como consecuencia de la forma de aplicación de la urea, aunque se observaron algunas excepciones. Por el contrario, el contenido en N-urea residual fue siempre más elevado en los tratamientos con urea en forma sólida, excepto en la humedad del 20 p.100 con adición de hba cruda de soja.
<table>
<thead>
<tr>
<th>% Humedad</th>
<th>Urea Solution (A%)</th>
<th>Urea Solution (B%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro II.4.2

Composición química y dispersidad de la M'S de 12 pains de Vigo. Ensayo A) y de la gel de Cebada.

FIGURA II.4.1: Contenido en ADF (%), NT (%), y Nuxia acetilida (% de azúcares de trigo tratados con área adicional (SII) o adición de Cebada en función de la humedad.
La adición de haba cruda de soja provocó una reducción del contenido en NDF en todos los tratamientos, excepto en el tratamiento realizado a 10 p.100 de humedad. Las mayores reducciones se observaron a la humedad del 20 p.100 con 75.0 y 77.6 p.100 en la forma sólida y 72.2 y 78.6 p.100 en solución, para adición y no adición de haba cruda de soja. En cuanto al contenido en NT, la adición de haba cruda de soja provocó un incremento del mismo en la mayoría de los casos, con alguna excepción en la aplicación en forma sólida. También tuvo un efecto importante sobre el contenido en N-urea residual en los tratamientos realizados a humedades bajas, principalmente en los realizados a 10 y 20 p.100 de humedad y aplicando la urea en forma sólida. En la Figura II.4.3 se representan los contenidos en NDF, NT y N-urea residual de la paja de trigo tratada con urea en forma sólida y en solución a cuatro humedades, en función de la adición o no de haba cruda de soja.

El grado de ureólisis (Figura II.4.4), al igual que el N-urea residual, respondió positivamente al incremento del contenido en humedad, hasta la humedad del 30 p.100, a partir de la cual no se observaron modificaciones apreciables. La forma de aplicación de la urea también influyó sobre el grado de ureólisis, principalmente en el tratamiento realizado a 20 p.100 de humedad y sin adición de haba cruda de soja en el cual se registraron valores de 80 p.100 y 63 p.100, en las aplicaciones en solución y en forma sólida respectivamente. En los restantes tratamientos se observó un ligero efecto de la forma de aplicación, siendo en general más apreciable en la aplicación en solución. Finalmente, la adición de haba cruda de soja provocó un aumento notable del grado de ureólisis en los tratamientos realizados a humedades bajas de 10 y 20 p.100 en forma sólida, con 78 y 88 y 49 y 63 p.100 en los tratamientos con adición y sin adición de haba cruda de soja, mientras que en los restantes tratamientos no se observó ninguna influencia.

Los resultados obtenidos de la DMS determinada por los métodos "in vitro", "celulasas" e "in sacco" mostraron, en general, una respuesta positiva al incremento del contenido en humedad hasta 20. 30 p.100, según la determinación de que se tratase. Incrementos superiores de la humedad no provocaron modificaciones notables, excepto en algunos tratamientos (Figura II.4.5).

La forma de aplicación (Figura II.4.6) tuvo poca influencia, aunque en las determinaciones "in vitro" y "celulasas" se observó una ligera tendencia a presentar valores mayores en la aplicación en solución.

La respuesta de la DMS-in sacco dependió de la adición o no de haba cruda de soja, registrándose en los primeros una ligera superioridad de la aplicación en solución, mientras que cuando no se añadió haba cruda de soja se registró un efecto inverso. La adición de haba cruda de soja (Figura II.4.7) provocó, en general, un aumento de la DMS, siendo más notable dicho incremento en el tratamiento realizado a bajo contenido en humedad.
FIGURA II.4.3. Contenidos en NDF (a), NT (b) y N-urea residual (c) de paja de trigo tratada con urea, a cuatro humedades y dos formas de aplicación, sólida (Sd.) o solución (Sl.), en función de la adición de haba cruda de soja (ureasa).

FIGURA II.4.4. Grado de ureólisis (%) registrado en la paja de trigo tratada con urea, en función de la humedad (a), de la forma de aplicación (b), sólida (Sd.) o solución (Sl.), y de la adición de haba cruda de soja (ureasa) (c).
FIGURA II.4.5. Efecto de la humedad sobre la DMSIV (a), DMS-celulasas (b) y DMS-in sacco (c) de paja de trigo tratada con urea, con dos formas de aplicación, sólida (Sd) o solución (Sl), con o sin haba cruda de soja (usra.).

FIGURA II.4.6. Efecto de la forma de aplicación sobre la DMSIV (a), DMS-celulasas (b) y DMS-in sacco (c) de paja de trigo tratada con urea, a cuatro humedades, con o sin haba cruda de soja (usra.).
Los resultados del test de ingestión realizado sobre ovejas adultas, vacías y secas se expresan en el Cuadro II.4.3. La forma de aplicación de la urea influyó significativamente (P<0.01), presentando los tratamientos con urea en solución y en forma sólida una ingestión media de 50 y 48 g MS/Kg PV, respectivamente. El contenido en humedad y la adición de haba cruda de soja no tuvieron un efecto y presentaron una interacción altamente significativa (P<0.001) entre sí. En los tratamientos realizados a 20 p. 100 de humedad, la adición de haba cruda de soja provocó un aumento notable de la ingestión, presentando 50.7 y 58.6 g MS/Kg PV en la aplicación en sólida y líquida respectivamente, mientras que sin adición de haba cruda de soja presentó unos valores de 36.9 y 44.8 g MS/Kg PV. Por el contrario, en los tratamientos realizados a 30 p. 100 de humedad la adición de una fuente de ureasas reprimió la ingestión, registrándose en la aplicación de la urea en forma sólida unos valores de 40.1 y 45.5 g MS/Kg PV y en la aplicación en solución de 44.4 y 52.4 g MS/Kg PV, correspondientes a adición y no adición de haba cruda de soja. Finalmente en los tratamientos realizados a 40 p. 100 de humedad el efecto de la adición de la fuente de ureasas dependió de la forma de aplicación de la urea. Mientras que en la aplicación en solución se observó un efecto positivo con 50.4 y 46.6 g MS/Kg PV, respectivamente para la adición y no adición de haba cruda de soja, en la aplicación en forma sólida se observó un efecto inverso, registrándose unos valores de 45.7 y 49.7 g MS/Kg PV para la adición y no adición de haba cruda de soja, respectivamente.

CUADRO II.4.3. Ingestión (g MS/Kg PV) de paja de trigo tratada con urea en ovejas adultas, vacías y secas raza "Rasa Aragonesa" (Experiencia II.4).

<table>
<thead>
<tr>
<th>% HUMEDAD</th>
<th>UREA SOLIDA</th>
<th>UREA SOLUCION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CON</td>
<td>SIN</td>
</tr>
<tr>
<td>haba cruda de soja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>50.7 ± 2.94 (n = 7)</td>
<td>36.9 ± 2.34 (n = 7)</td>
</tr>
<tr>
<td>30</td>
<td>40.1 ± 2.10 (n = 7)</td>
<td>45.5 ± 1.04 (n = 6)</td>
</tr>
<tr>
<td>40</td>
<td>45.7 ± 1.54 (n = 7)</td>
<td>49.7 ± 3.01 (n = 7)</td>
</tr>
</tbody>
</table>

n = número de ovejas utilizadas. NS = P>0.05; * = P<0.05; ** = P<0.01; *** = P<0.001.
Resultados estadísticos del ANOVA realizado (3x2x2):
EFECTOS PRINCIPALES: 1) Humedad: NS,
2) Forma de aplicación: **
3) Adición haba cruda de soja: NS
DOBLES INTERACCIONES: 1) Humedad x Adición: NS
2) Humedad x Adición: ***
3) Adición x Adición: NS

TRIPLE INTERACCION: 1) Humedad x Adición x Adición: NS

FIGURA II.4.7. Efecto de la adición de haba cruda de soja sobre la DMSIV (a), DMS-cellulases (b) y DMS-in sacco (c) de paja de trigo tratada con urea, a cuatro humedades y dos formas de aplicación, sólida (Sd.) o solución (Sl.).
ENSAYO B:

En la Figura II.4.8 se representan los contenidos en NDF, ADF Y ADL de la paja de cebada sin tratar y tratable con urea. El tratamiento provocó una reducción del contenido en NDF de 0.8 a 2,3 puntos con respecto al testigo. El aumento del contenido en humedad y la adición de haba cruda de soja, a su vez, también provocaron una reducción del NDF, presentando el tratamiento a 15 p. 100 de humedades valores de 75,5 y 73,9 p. 100 y el tratamiento a 25 p. 100 de humedades valores de 74,0 y 75,2 p. 100 respectivamente para la adición y no adición de haba cruda de soja. En cuanto al contenido en ADF, en general el tratamiento provocó un aumento, presentando unos valores medios de 45,6 y 46,3 p.100 en la paja sin tratar y tratable, respectivamente. Por otra parte, el contenido en humedad del tratamiento ni la adición de haba cruda de soja provocaron modificaciones notables sobre dicho contenido. Finalmente, el efecto del tratamiento sobre la fracción ADL no fue claro. Mientras que en los tratamientos realizados a 15 p. 100 de humedad se registraba un aumento de 0,49 y 0,31 puntos con respecto al testigo (6,86 p.100), en los tratamientos realizados a 25 p.100 de humedad se observó una reducción de 1,09 y 0,6 puntos, siempre para los tratamientos con y sin adición de haba cruda de soja, respectivamente.

El contenido en NT y el grado de ureólisis de la paja de cebada tratada con urea se representan en la Figura II.4.9. El tratamiento con urea provocó un aumento notable del contenido en NT, con valores de 0,75 p. 100 en la paja sin tratar y entre 1,80 y 2,42 p. 100 en la paja tratada. Tanto el incremento de la humedad como la adición de haba cruda de soja provocaron una reducción del NT, el cual presentó valores de 1,98 y 2,42 p. 100 en el tratamiento a 15 p. 100 de humedad y de 1,89 y 2,10 p. 100 en el tratamiento a 25 p. 100 de humedad, correspondientes en ambos casos a la adición y no adición de haba cruda de soja, respectivamente.

El grado de ureólisis más elevado correspondió a los tratamientos realizados a mayor humedad con 76 y 48 p.100, respectivamente en la adición y no adición de haba cruda de soja. Los tratamientos realizados a 15 p.100 de humedad presentaron una ureólisis del 41 y 13 p.100, con adición y sin adición de haba cruda de soja, respectivamente.

Las estimaciones de la DMSIV y DMS-celulazas se representan en la Figura II.4.10. Ambas determinaciones mostraron que todos los tratamientos con urea mejoraron la digestibilidad aparente de la MS, presentando la paja testigo valores de 48,3 y 28,7 p.100 y la paja tratada valores medios de 57,5 y 33,6 p.100, correspondientes a las determinaciones DMSIV y DMS-celulazas, respectivamente.

El aumento del contenido en humedad provocó, a su vez, un incremento de entre 4 y 13,5 puntos en DMSIV y de 2,7 y 3,9 puntos en DMS-celulazas. Por otra parte, la adición de haba cruda de soja únicamente tuvo un efecto positivo en el tratamiento realizado a 15 p.100 de humedad, provocando un incremento de 4,6 puntos en DMSIV y de 0,2 puntos en DMS-celulazas. En el tratamiento realizado a 25 p.100 de humedad, la adición de haba cruda de soja provocó una ligera disminución de 3,6 y 1,0 puntos en las determinaciones DMSIV y DMS-celulazas, respectivamente, con respecto a la no adición de haba cruda de soja.

FIGURA II.4.8. Contenidos en NDF (a), ADF (b) y ADL (c) de paja de cebada tratada con urea, a dos humedades, con o sin haba cruda de soja (ureasa).
FIGURA II.4.9. Contenidos en NT (a), N-urea residual (b) y grado de ureólisis (c) de paja de cebada sin tratar (testigo) o tratada con urea, a dos humedades, con o sin haba crude de soja.

FIGURA II.4.10. Valores de DMSIV (a) y DMS-celulases (b) de paja de cebada sin tratar (testigo) o tratada con urea, a dos humedades, con o sin haba crude de soja.
Las cantidades ingeridas registradas en la prueba de ingestión realizada sobre corderos adultos, se representan en la Figura II. 4.11. La paja testigo, junto a la paja tratada a 15 p.100 de humedad sin adición de haba cruda de soja fueron los tratamientos que presentaron las ingestiones más bajas, con 51.1 y 45.0 g MS/Kg PV⁷⁶, respectivamente, las cuales fueron significativamente inferiores (P<0.05) a las ingestiones registradas en los tres tratamientos restantes. El incremento de la humedad únicamente provocó un incremento de la ingestión en los tratamientos realizados sin adición de haba cruda de soja con 45.0 y 59.5 g MS/Kg PV⁷⁷ a las humedades de 15 y 25 p.100 respectivamente, mientras que en los tratamientos con adición de haba cruda de soja no se registró ninguna modificación. Finalmente, la adición de haba cruda de soja únicamente tuvo efecto en el tratamiento a 15 p.100 de humedad con 58.4 y 45.0 g MS/Kg PV⁷⁸, correspondientes a los tratamientos con y sin adición, respectivamente.

![Gráfico de ingestión de paja (g MS/Kg PV⁷⁶) sin tratar (testigo) o tratada con urea, a dos humedades, con o sin haba cruda de soja (ureasa).](image)

FIGURA II.4.11. Ingestión de paja (g MS/Kg PV⁷⁶) sin tratar (testigo) o tratada con urea, a dos humedades, con o sin haba cruda de soja (ureasa).

II.4.4 DISCUSION

ENSAYO A:

La reducción del contenido en NT y el aumento del grado de ureólisis, como consecuencia del incremento de la humedad del tratamiento, está de acuerdo con los resultados obtenidos en los ensayos realizados en laboratorio, y con los observados por CLOETE y KRITZINGER (1984), ABDOLI y KORCHANI (1987) y CHERMITI et al. (1989).

Sin embargo la ausencia de respuesta del contenido en NDF al incremento de la humedad es difícil de explicar, ya que en el rango de humedades utilizadas cabría esperar una reducción de dicho contenido conforme incrementaba la humedad hasta 30 p. 100. Algunos autores tampoco observaron ningún efecto de la humedad sobre dicha fracción aunque, a diferencia de nuestro ensayo, utilizaron humedades más elevadas, con incrementos de 40 a 75 p. 100 (ABDOLI y KORCHANI, 1987), de 40 a 60 p. 100 (DIAS DA Silva et al., 1986) y de 25 a 40 p. 100 (CHERMITI et al., 1989).

La forma de aplicación únicamente tuvo efecto sobre el grado de ureólisis, destacando la aplicación en solución. Una posible explicación sería que la urea aplicada en forma sólida sobre la paja humidificada posteriormente presenta una hidrolisis incompleta debida a que parte del urea no se disuelve y, por tanto, no sufre ureólisis.

El efecto positivo de la adición de haba cruda de soja, observado principalmente en los tratamientos realizados a humedades bajas, está de acuerdo con los resultados obtenidos en el ensayo B de la Experiencia I.2. WILLIAMS et al. (1984b) y CHERMITI et al. (1989) no observaron ninguna mejora adicional cuando añadían haba cruda de soja en tratamientos realizados a 30 y 25-50 p. 100 de humedad, respectivamente. Es probable que exista una interacción entre humedad y adición de una fuente externa de ureasas lo que, en parte, explicaría que el efecto de la adición de haba cruda de soja varía en función de la humedad. DIAS DA Silva et al. (1988) observaron una interacción significativa humedad x ureasas en la mayoría de las determinaciones químicas. Por otra parte, el efecto de la adición de ureasas depende también de la actividad ureásica del subproducto a tratar, la cual en muchas ocasiones es relativamente alta, en cuyo caso no sería necesario la adición de una fuente externa de ureasas (DIAS DA Silva et al., 1988).

En las estimaciones de la DMS realizadas, en general hubo un efecto positivo del aumento de la humedad hasta 20-30 p. 100. Dichos resultados están de acuerdo con la mayoría de los obtenidos anteriormente y ponen de manifiesto que una vez alcanzado el nivel óptimo de humedad la adición posterior de agua no supone un incremento sustancial de la digestibilidad (SUNDSTUB y COXWORTH, 1984; IBRAHIM et al., 1986).

La ligera tendencia a presentar valores más altos de DMS cuando se aplicaba la urea en solución es debido, probablemente a que la completa disolución de urea en agua favorece la ureólisis (como ya se ha indicado anteriormente), así como la penetración y distribución del ion amonio (WAISS et al., 1972), lo que se traduce en un mayor efecto del ácide.

En general, el efecto de la adición de haba cruda de soja sobre la digestibilidad fue positivo, variando la magnitud del efecto en función de la humedad y de la forma de aplicación. La adición de una fuente externa de ureasas tuvo un efecto más importante sobre la digestibilidad que sobre los parámetros químicos determinados, pudiendo ser debido a que la soja aporta aminoácidos al medio (CHERMITI et al., 1989), lo que puede favorecer una mayor acción de los microorganismos del medio biológico utilizado.

El hecho de que la ingestión de paja fuese superior en los tratamientos con urea en solución respecto a los tratamientos con urea en forma sólida fue un reflejo de la mayor eficacia del primer tipo de tratamiento junto con un menor contenido en urea residual. Por otra parte, se registró una interacción significativa (P<0.001) entre humedad x ureasas, lo que puede explicar la variación de los resultados observados a nivel de los componentes químicos.
ENSAYO B:

Los cuatro tratamientos fueron efectivos ya que provocaron una reducción del contenido en NDF y un aumento de los contenidos en ADL y en NT, estando ello de acuerdo con SOLAIMAN et al. (1979), BIRKELO et al. (1986) y MANDELL et al. (1988).

El incremento del nivel de humedad provocó un efecto positivo tanto sobre la pared celular como sobre la digestibilidad, lo cual está en concordancia con los resultados obtenidos por KIANGI et al. (1981), DRYDEN y LENG (1986) y MANDELL et al. (1988) en tratamientos de paja con amoníaco. En cambio, otros autores (ABDOLI y KORCHANI, 1987; DIAS DA SILVA et al., 1988; CHERMITI et al., 1989) no obtuvieron ningún efecto a diferencia del presente ensayo, los citados autores utilizaban unos niveles de humedad observadas (BIRKELO et al., 1986).

En los tratamientos con urea realizados con un nivel de humedad bajo, el efecto del tratamiento puede ser escaso como consecuencia del bajo grado de ureólisis. Por ello, cabe esperar un efecto positivo de la adición de haba cruda de soja ya que favorece la ureólisis (WILLIAMS et al., 1984b; CHERMITI et al., 1989) y, por tanto, el efecto del tratamiento.

El hecho de que la ingestión fuese menor en el tratamiento realizado a 15 p. 100 de humedad sin adición de haba cruda de soja con respecto a la ingestión obtenida con la paja testigo pudo ser debido, en parte, al escaso efecto que presentó dicho tratamiento sobre la digestibilidad. En relación a ello, DRYDEN y KEMPTON (1983/84) concluyen que el efecto de la ingestión era principalmente debido al incremento de la digestibilidad. Otro factor que también pudo influir fue el escaso grado de ureólisis que se registró, lo que se tradujo en una presencia elevada de urea en la paja y, según BENAHIYED y DULPHY (1985), pudo provocar un rechazo de la paja por el animal.

El efecto positivo de la adición de haba cruda de soja únicamente se observó en el tratamiento realizado a menor contenido en humedad, poniendo de manifiesto, una vez más, la relación existente entre la humedad y la adición de una fuente de ureasas. El incremento del contenido en humedad provocó en los tratamientos sin adición de haba cruda de soja un incremento notable de la ingestión, lo cual confirma los resultados obtenidos por ABDOLI et al. (1988).

II.4.5. CONCLUSIONES

- Los resultados obtenidos en los dos ensayos ponen de manifiesto que los efectos de la humedad y la adición de ureasa sobre la eficacia del tratamiento están interrelacionados. La adición de haba cruda de soja tiene un efecto positivo sólo cuando el tratamiento se realiza a un contenido de humedad bajo (15 y 20 p. 100).

- En el ensayo A, las mejoras más notables en cuanto a digestibilidad se observaron cuando el tratamiento se realizaba a 20-30 p. 100 de humedad, según la determinación de que se tratase.

- La aplicación de la urea en forma sólida proporcionó unos resultados ligeramente inferiores a los obtenidos en la aplicación en solución.

III: MODIFICACIONES DE LA TECNICA DE APLICACION DEL TRATAMIENTO CON UREA
III.1.1 OBJETIVO

Evaluar la viabilidad y el efecto del tratamiento con urea aplicado en superficie, sobre la calidad nutritiva de rotopacas de paja de cebada.

III.1.2 MATERIAL Y MÉTODOS

Se tomaron cuatro rotopacas de paja de cebada cultivada en condiciones de secano, en una zona con 300 mm de pluviometría anual. Tres de ellas fueron tratadas individualmente con solución de urea a dosis de 30, 50 y 70 g MS y a humedad final teórica del 25 p.100, y la cuarta se utilizó como testigo. El tratamiento se realizó distribuyendo uniformemente la solución acuosa de urea sobre la base superior de la rotopaca, manteniéndola en posición vertical y cubierta por una lámina de polietileno transparente de 0.7 mm de espesor durante un período mínimo de dos meses.

Transcurrido dicho periodo, se desenvolvieron las rotopacas y se diferenciaron tres partes o capas: la capa exterior que correspondía a la porción externa de la rotopaca, la capa interior que correspondía al eje central, y la capa intermedia que correspondía a la parte situada entre las dos capas anteriores. Seguidamente, se procedió a separar una muestra representativa de cada capa, que se troceaba a 5 cm de longitud y se dividía en dos submuestras. Dichas submuestras se sometían a desecación a 60°C en estufa de ventilación forzada y posteriormente se llevaron a cabo los análisis químicos (MS, MO, NT, NDF, N-urea residual) y biológicos (in vitro, celularas e in sacco) según el Apartado 3 de la Metodología General.

III.1.3 RESULTADOS

Los resultados obtenidos en los análisis químicos realizados mostraron una distribución poco homogénea de la solución de urea dentro de la rotopaca. En todos los tratamientos se observó una variación de los contenidos en MS y NT entre las tres capas de la rotopaca muestreadas, presentando un contenido medio en MS de 59.8, 72.6 y 50.5 p.100 en las capas exterior, intermedia e interior, respectivamente. En la Figura III.1.1 se representa el contenido en MS de las rotopacas de cebada tratadas a tres dosis de urea en las tres capas estudiadas.

El tratamiento con urea provocó en todos los casos un aumento del contenido en NT. Sin embargo, se registraron diferencias entre los contenidos de las tres capas (Figura III.1.2a). Se observó que la capa exterior siempre presentaba un contenido en NT menor, con 1.37, 1.16 y 1.87 p.100 en los tratamientos a 30, 50 y 70 g de urea/Kg de MS, respectivamente. Dichos contenidos fueron significativamente inferiores (P<0.05) a los registrados en la capa intermedia con 1.83, 2.83 y 3.53 p.100 para el mismo orden de dosis de urea aplicada. La capa interior presentó unos valores similares a los observados en la capa intermedia, excepto a la dosis de 70 g/Kg de MS en la cual el valor obtenido fue significativamente superior (P<0.05) a su homólogo obtenido en el tratamiento a 50 g de urea/Kg MS.

Figura III.1.1. Contenido en MS de las rotopacas de cebada sin tratar (testigo) y tratadas a tres dosis de urea y a 25% de humedad, en función de la localización de la muestra.

El aumento del contenido en NT provocado por el tratamiento estuvo acompañado por un bajo grado de ureólisis (Figura III.1.2b). La capa exterior registró siempre una ureólisis superior con valores de 100, 100, y 82 p.100 para las dosis de 30, 50 y 70 g de urea/Kg MS, respectivamente. Por otra parte, la capa intermedia presentó una ureólisis inferior, con valores de 54.3, 24.3 y 11.8 p.100 en las dosis crecientes de urea aplicadas. La capa interior presentó un grado de ureólisis de 82.0, 11.8 y 0 p. 100, respectivamente para las dosis anteriormente indicadas.
En la Figura III.1.3 se representan los resultados obtenidos en cuanto a los contenidos en NDF. El efecto del tratamiento y de la dosis de urea, así como el efecto de la capa, fueron enmascarados por la interacción significativa (P < 0.01) tratamiento x capa. El contenido en NDF menor correspondió a la capa interior de los tratamientos a 60 y 70 g de urea/Kg MS, mientras que en el tratamiento a 30 g/Kg MS dicha capa mostró el contenido en NDF más elevado. Los valores observados, correspondientes siempre a las tres dosis crecientes de urea aplicada, fueron de 76.3, 72.6 y 68.6 p.100 en la capa interior, de 75.9, 73.8 y 74.4 p. 100 en la capa intermedia y de 72.7, 76.4 y 74.0 p.100 en la capa exterior.

![Figura III.1.3](image_url)

FIGURA III.1.3. Contenido en NDF de las rotopacas de cebada sin tratar (testigo) y tratadas a tres dosis de urea y 25% de humedad, en función de la localización de la muestra.

Los valores de la DMS estimados mediante los tres métodos biológicos, "in vitro", "celulasas" e "in sacco", se representan en la Figura III.1.4. La capa exterior presentó una respuesta al tratamiento débil no observándose ninguna mejora notable en la determinación "in vitro"; en las determinaciones "celulasas" e "in sacco" se observaron unos incrementos de 1 a 2.2 puntos y de 2.8 a 7 puntos, respectivamente. El mayor efecto se registró en la capa interior donde los incrementos oscilaron entre 6 y 17 puntos en DMSIV, y entre 16 y 21 puntos en DMS-ns sacco. El incremento de la dosis provocó un incremento de la DMS, siendo más notable cuando se aumentó la dosis de 30 a 50 g de urea/Kg MS.
III.1.4 DISCUSION

La desigual distribución de la solución de urea registrada en las rotopacas, puesta de manifiesto en los resultados de los análisis químicos, se justificaría por el hecho de que únicamente se regó la parte superior de la rotopaca. STEPHENSON et al. (1984) propusieron una técnica para tratar rotopacas con solución de urea, que consistía en introducir en distintos puntos de la rotopaca una sonda metálica perforada por la que salía la solución. Aplicando dicha técnica, ORTIGUES et al. (1989) también encontraron una distribución no homogénea de la solución. Por ello, aparentemente, se puede deducir que en el presente ensayo la forma de aplicación no influyó. Una posible explicación, según AITCHISON et al. (1986), es la alta densidad de la rotopaca la cual puede impedir la distribución homogénea y el movimiento de la solución.

Los efectos más importantes del tratamiento se registraron en la capa interior seguido por la capa intermedia, lo que sería el resultado de una mayor concentración de la solución de urea en dichas capas. Este comportamiento probablemente obedece a la forma concéntrica de empacado.

La mejora provocada por el incremento de la dosis de urea fue más notable cuando se incrementaba hasta 50 g de urea/Kg MS, registrándose una escasa mejora adicional cuando se aumentó hasta 70 g de urea/Kg MS. En relación a ello, ABDOLUI y KORCHANI (1987) observaron una respuesta positiva cuando se incrementaba la dosis hasta 40 g de urea/Kg MS mientras que cuando se incrementaba hasta 60 g/Kg MS no había una mejora adicional notable. Los resultados obtenidos están relacionados con las observaciones realizadas por SUNDESTOL et al. (1978) y KUANG et al. (1981) quienes concluyeron que el efecto del incremento de la dosis de aminoácido anhidro era mayor cuando de realizaba a niveles bajos. Finalmente, CHERMITI et al. (1989) concluyen que la respuesta al incremento de la dosis era no lineal, atendiendo a una respuesta máxima a 60 g de urea/Kg MS.

III.1.5 CONCLUSIONES

- Los resultados obtenidos muestran que el tratamiento de rotopacas con urea es viable, siendo recomendable la aplicación de dosis moderadas de urea (30 y 50 g de urea/Kg MS). Sin embargo, sería necesario el estudio del efecto de la densidad de la rotopaca sobre la distribución de la solución de urea.
III.2 ESTUDIO DEL TRATAMIENTO DE PAJA CON UREA SIN RECUBRIMIENTO PLÁSTICO

III.2.1 OBJETIVO

Estudiar la viabilidad de la eliminación del recubrimiento plástico en el tratamiento con urea con la finalidad de disminuir los costes.

III.2.2 MATERIAL Y MÉTODOS

Se llevó a cabo de forma paralela a la Experiencia II.3. Se trataron 4 t de paja de trigo (cv. Anza) con urea en solución acuosa a dosis de 30, 40, 50 y 60 g de urea/Kg MS y a una humedad final teórica del 30 p. 100, siguiendo la técnica descrita en el Apartado 1.2 de la Metodología General, eliminando la fase de recubrimiento de las pilas después del tratamiento, quedando únicamente protegidas en la parte superior para evitar la penetración del agua de la lluvia.

Transcurridos dos meses se procedió a muestrear las pilas. Para ello, cada una de ellas se dividió en tres partes: la parte exterior que correspondía a las pacas que tenían alguna cara expuesta al aire; la parte interior que correspondía a las pacas sin ninguna cara externa; y la parte suelo que correspondía a las pacas que estaban en contacto con el suelo. De cada una de estas partes se recogieron dos muestras representativas que eran desecadas a 60°C en horno de ventilación forzada, molidas y almacenadas para la realización de los análisis químicos y biológicos, descritos en la Metodología General. Los resultados obtenidos fueron estudiados mediante un Análisis de la Varianza a dos vías (4x3).

Paralelamente, los datos fueron comparados a los obtenidos de sus pilas homólogas recubiertas con lámina de polietileno (Experiencia II.3.). Sin embargo, la metodología de muestreo aplicada en la serie de pilas sin recubrimiento plástico fue diferente a la seguida en las pilas con recubrimiento. En los primeros se muestreó la pila según la localización de la paca, exterior, interior y suelo, mientras que en los tratamientos tapados se muestreó continuamente, a medida que se ofrecía la paja a los animales. Por ello, para comparar los resultados se ha optado por considerar como muestra representativa de los tratamientos sin recubrimiento plástico la parte interior.

III.2.3 RESULTADOS

En el Cuadro III.2.1 se expresan los resultados obtenidos en cuanto a la composición química de la paja de trigo tratada con urea sin recubrimiento plástico.

En todas las dosis estudiadas, las muestras procedentes de la parte del suelo presentaron un contenido medio en NDF significativamente inferior (P<0.05) al observado en las restantes partes, con un valor medio de 76.9 p. 100 y 79.3 y 78.3 p. 100, respectivamente para la parte externa e interna, las cuales no diferían significativamente entre sí (P>0.05). Por otra parte, el efecto global de la dosis sobre el NDF fue significativo (P<0.001). El tratamiento realizado a la dosis de 40 g de urea/Kg MS fue el que tuvo el contenido en NDF más elevado, con un valor medio de 80.2 p. 100; dicho valor fue significativamente superior (P<0.05) a los contenidos medios observados en los restantes tratamientos, con 77.7, 77.9 y 77.2 p. 100 correspondientes a las dosis de 30, 50 y 60 g de urea/Kg MS, respectivamente.

CUADRO III.2.1. Composición química de la paja de trigo tratada a cuatro dosis de urea y 30 p. 100 de humedad sin recubrimiento plástico (Experiencia III.2).

<table>
<thead>
<tr>
<th>DOSIS (g/Kg MS)</th>
<th>MUESTRA</th>
<th>MO</th>
<th>NDF</th>
<th>NT</th>
<th>N-urea residual</th>
<th>N retenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Exterior</td>
<td>94.2</td>
<td>78.4</td>
<td>1.25</td>
<td>0.38</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Interior</td>
<td>93.5</td>
<td>78.9</td>
<td>1.28</td>
<td>0.35</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Suelo</td>
<td>92.3</td>
<td>75.8</td>
<td>1.34</td>
<td>0.25</td>
<td>26</td>
</tr>
<tr>
<td>40</td>
<td>Exterior</td>
<td>94.8</td>
<td>81.0</td>
<td>1.19</td>
<td>0.51</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Interior</td>
<td>95.2</td>
<td>80.6</td>
<td>1.31</td>
<td>0.46</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Suelo</td>
<td>95.0</td>
<td>79.1</td>
<td>1.41</td>
<td>0.27</td>
<td>22</td>
</tr>
<tr>
<td>50</td>
<td>Exterior</td>
<td>94.9</td>
<td>78.7</td>
<td>1.43</td>
<td>0.47</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Interior</td>
<td>94.8</td>
<td>78.2</td>
<td>1.54</td>
<td>0.41</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Suelo</td>
<td>93.7</td>
<td>76.2</td>
<td>1.68</td>
<td>0.26</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>Exterior</td>
<td>94.5</td>
<td>78.2</td>
<td>1.72</td>
<td>0.68</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Interior</td>
<td>94.8</td>
<td>77.2</td>
<td>1.93</td>
<td>0.80</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Suelo</td>
<td>94.4</td>
<td>76.2</td>
<td>1.93</td>
<td>0.67</td>
<td>19</td>
</tr>
</tbody>
</table>

La respuesta del contenido en NT fue significativa (P<0.05) tanto a la dosis de urea aplicada como a la localización dentro de la pila. Dicho contenido se incrementó con el aumento de la dosis de urea aplicada. Los valores inferiores correspondieron a las dosis de 30 y 40 g de urea/Kg MS, con un valor medio de 1.30 y 1.29 p.100 respectivamente; dichos valores fueron significativamente inferiores (P<0.05) al obtenido en el tratamiento a la dosis de 50 g de urea/Kg de MS, con 1.55 p.100. Finalmente, el tratamiento realizado a 60 g de urea/Kg MS, destacó por su superioridad con un contenido medio en NT de 1.86 p.100, significativamente (P<0.05) superior a los restantes tratamientos. Por otra parte, los contenidos medios de las tres partes de la pilas fueron también significativamente (P<0.05) diferentes entre sí, presentando unos valores medios de 1.40, 1.51 y 1.59 p. 100 para las partes exterior, interior y suelo, respectivamente.

En el tratamiento realizado a la dosis de urea más elevada el contenido en N-urea residual observado fue superior de forma significativa (P<0.05) a los observados en los restantes tratamientos, con valores medios de 0.72 p. 100 y 0.32, 0.41 y 0.32 p. 100, correspondientes a los tratamientos realizados a 30, 40 y 50 g de urea/Kg MS, respectivamente. La localización de la muestra dentro de la pila no afectó (P>0.05) a dicho contenido.
El grado de ureolisis registrado (Figura III.2.1) fue elevado en todas las dosis de urea aplicadas, presentando unos valores comprendidos entre 70 y 90 p. 100. Por otra parte, en todos los tratamientos se observó un ligero aumento del grado de ureolisis en las muestras procedentes de la parte suelo de la pila.

FIGURA III.2.1. Grado de ureolisis registrado en la paja de trigo tratada con cuatro dosis de urea, sin recubrimiento plástico.

El porcentaje de N retenido únicamente estuvo influido por la localización de la muestra. Los valores medios obtenidos fueron 7.5, 12.8 y 24.3 p.100 correspondientes a la parte exterior, interior y suelo, respectivamente.

Los resultados obtenidos de las estimaciones de la digestibilidad mediante los métodos "in vitro" y "celulasas" se representan en la Figura III.2.2. Las distintas partes de la pila evaluadas no respondieron de forma homogénea a las dosis de urea. Sin embargo, aunque se registraron algunas excepciones en la estimación con celulasas, se observó una tendencia a incrementar la DMS conforme aumentaba la dosis de urea.

En la Figura III.2.3 se representa el contenido en NDF de la paja de trigo tratada a cuatro dosis de urea con o sin recubrimiento de plástico. En ella se observa que los valores de los tratamientos realizados a la dosis de 60 g de urea/Kg MS fueron inferiores a los obtenidos en los restantes tratamientos con 74.2 y 77.2 p. 100 para la pila tapada y destapada respectivamente. Además, se observó siempre un menor contenido en NDF en las muestras procedentes de los tratamientos con recubrimiento, con valores medios de 77.9, 77.6, 77.4 y 74.2 p.100 vs 78.9, 80.6, 78.2 y 77.2 p.100 correspondientes a las dosis de 30, 40, 50 y 60 g de urea/Kg MS.

El contenido en NT se representa en la Figura III.2.4. Dicho parámetro se incrementó (P<0.001) con el aumento de la dosis de urea aplicada tanto en el tratamiento con recubrimiento plástico como en el tratamiento sin recubrimiento. La técnica empleada del tratamiento no tuvo un efecto claro sobre dicho contenido, aunque se registró una interacción significativa (P<0.05) dosis x técnica de tratamiento.

FIGURA III.2.2. Coeficientes de digestibilidad de la MS estimados mediante los métodos "in vitro" (a) y "celulasas" (b) de la paja de trigo tratada con cuatro dosis de urea, sin recubrimiento plástico.
FIGURA III.2.3. Contenido en NDF de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico.

FIGURA III.2.4. Contenido en NT de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico.

El grado de ureólisis registrado se representa en la Figura III.2.5. Los tratamientos realizados con recubrimiento plástico presentaron un grado de ureólisis ligeramente superior al registrado en los tratamientos realizados sin recubrimiento, excepto en la aplicación de 60 g de urea/Kg MS en el cual se observó una ureólisis de 63 p. 100 en el tratamiento recubierto y de 71 p. 100 en el tratamiento sin recubrimiento. Los restantes tratamientos presentaron unos valores de 81, 83 y 87 p. 100 en los tratamientos recubiertos, y de 75, 75 y 82 p.100 en los tratamientos sin recubrimiento plástico, correspondientes siempre a las dosis de 30, 40 y 50 g de urea/Kg MS. Los porcentajes de N retenido o fijado fueron similares, en las dos técnicas de tratamiento (Figura III.2.6) con valores medios de 14, 7, 15 y 15 p.100 en los tratamientos sin recubrimiento y de 6, 18, 13, y 18 p.100 en los tratamientos convencionales para las dosis crecientes de urea.

FIGURA III.2.5. Grado de ureólisis de la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico.

FIGURA III.2.6. Porcentaje de retención de N en la paja de trigo tratada con cuatro dosis de urea, con o sin recubrimiento plástico.
III.2.4 DISCUSION

El menor contenido en NDF y el mayor contenido en NT observado en la parte suelo podría ser consecuencia de una mayor acción del tratamiento debido al acúmulo de la solución de urea en la parte inferior de la pila.

El grado de ureldias fue relativamente elevado en todas las dosis y en todas las partes analizadas, lo que demuestra que no hubo efecto limitante de la humedad (CLOETE et al., 1983; WILLIAMS et al., 1984a; DIAS DA SILVA et al., 1988) y además, que la actividad ureasica de la propia paja era aceptable (WILLIAMS et al., 1984b; CHERMITI et al., 1989).

La DMS de las distintas partes evaluadas no se comportó de forma uniforme y varió en función de la determinación aplicada. Ello pone de manifiesto que las determinaciones biológicas no son métodos óptimos para la estimación de la DMS de los forrajes bastos (UDEN, 1984).

La comparación de los resultados de las dos técnicas de tratamiento realizadas muestra que el tratamiento sin recubrimiento plástico puede ser viable. AITCHISON et al. (1986) trataron rotopacas con una solución mixta, que contenía urea, con o sin recubrimiento de plástico y observaron que aunque las rotopacas desaparecían un menor contenido en NT y una menor ingestión no había diferencias entre las dos técnicas en términos de peso vivo del animal.

Los porcentajes de fijación del N fueron inferiores a la mayoría de los resultados revisados en la bibliografía, tanto en los tratamientos con recubrimiento (HADJIPANAYIOTOU, 1982; ABDOUH et al., 1988; CHERMITI et al., 1989) como en los tratamientos sin recubrimiento (AITCHISON et al., 1986), aunque algunos autores observaron retenciones bajas del orden de 20-25 p.100 (JEWELL y CAMPBELL, 1986; GIVENS et al., 1988; MASON et al., 1988; MICHALET-DORÉAU y GUEDES, 1989).

Los resultados obtenidos muestran que el recubrimiento plástico no influyó en el porcentaje de N retenido en la paja cuando se estima en muestras desecadas a 60ºC. GORDON y CHESSON (1983) y MASON et al. (1988) concluyen que después de la desecación de la paja no había influencia de las condiciones de tratamiento ni del almacenado sobre la retención de N. Paralelamente tampoco se observó la influencia de la dosis sobre dicho parámetro, aspecto anotado por SAENGER et al. (1982) WANAPAT et al. (1985) y MACDEARMID et al. (1988).

III.2.5 CONCLUSIONES

- El tratamiento con urea sin recubrimiento plástico es viable en las cuatro dosis estudiadas, dando unos resultados similares a los obtenidos en los tratamientos homólogos con recubrimiento plástico. Ello pone de manifiesto que la paja se comporta como un material aislanete.
III.3.1 OBJETIVO

Comprobar "in vivo" la viabilidad de los tratamientos realizados con modificaciones de la técnica de aplicación: urea sólida vs solución acuosa y pila cubierta vs descubierta.

III.3.2 MATERIAL Y METODOS

Se recogieron 4 t de paja de cebada (cv KYM) procedentes de la finca experimental del S.I.A. y se realizaron 4 pilas de 1 t. Tres de ellas se trataron con urea a dosis de 40 g/Kg de MS y una humedad final teórica de 25 p. 100, mientras que la restante quedaba como testigo. Dos de los tratamientos se realizaron con urea en solución acuosa, siguiendo la técnica descrita en el Apartado 1.2.1 de la Metodología General; una de las pilas fue recubierta por una lámina de plástico (Tratamiento 1) y la otra permaneció descubierta (Tratamiento 2). El tercer tratamiento se realizó con urea en forma sólida y posterior adición de agua hasta alcanzar la humedad del 25 p.100, de acuerdo con la técnica descrita en el Apartado 1.2.3 de la Metodología General, quedando la pila cubierta por una lámina de polietileno transparente (Tratamiento 3) (Cuadro III.3.1).

CUADRO III.3.1. Condiciones en que se llevaron a cabo los tratamientos realizados en la Experiencia III.3.

<table>
<thead>
<tr>
<th>TRATAMIENTOS CON UREA</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MS inicial</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>% MS final teórica</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Dosis urea aplicada (g/Kg MS)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>N aplicado (g/Kg MS)</td>
<td>18.4</td>
<td>18.4</td>
<td>18.4</td>
</tr>
<tr>
<td>Forma de aplicación de la urea</td>
<td>solución</td>
<td>solución</td>
<td>sólida</td>
</tr>
<tr>
<td>Recubrimiento</td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
</tr>
<tr>
<td>Días de tratamiento</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

1 = Tratamiento con urea en solución y recubrimiento plástico.
2 = Tratamiento con urea en solución, sin recubrimiento plástico.
3 = Tratamiento con urea en forma sólida y recubrimiento plástico.

Transcurrido un periodo mínimo de dos meses, las pilas fueron troceadas a 5-10 cm de longitud y se procedió a su evaluación "in vivo". Esta se realizó en dos periodos sobre tres lotes de cuatro corderos, siguiendo la metodología descrita en el Apartado 2 de la Metodología General.

Los resultados obtenidos fueron sometidos a Análisis de la Varianza a una vía seguido por un test-Duncan (STEEL y TORRIE, 1980).

III.3.3 RESULTADOS

En el Cuadro III.3.2 se expresa la composición química de la paja de cebada tratada o no con urea. El efecto del tratamiento fue significativo sobre los contenidos en MS (P<0.01) y NT (P<0.001). Los contenidos en NDF y ADL presentaron una ligera disminución (P>0.05) de 3.5, 1.4 y 1.6 puntos en NDF y de 0.6, 0.7 y 0.2 puntos en ADL, respectivamente en los Tratamientos 1, 2 y 3. El contenido en ADF aumentó 1.5, 0.2 y 2.2 puntos en los tres tratamientos respectivamente. El NT aumentó notablemente (P<0.001) como consecuencia del tratamiento, presentando unos valores de 0.70, 2.02, 1.64 y 2.00 p. 100 en la paja testigo y en los Tratamientos 1, 2 y 3, respectivamente. El grado de ureólisis registrado fue de 62.0, en el Tratamiento 1, 66.8 en el Tratamiento 2, y 53.3 P.100 en el Tratamiento 3. La fijación de N, fue de 33, 18 y 24 p.100 correspondientes a los Tratamientos 1, 2 y 3 respectivamente.

CUADRO III.3.2. Composición química (% MS) de la paja de cebada sin tratar (testigo) y tratada con urea en tres tipos de tratamientos.

<table>
<thead>
<tr>
<th></th>
<th>Testigo</th>
<th>Tratamiento con urea</th>
<th>Efecto tto.</th>
<th>ŠCMOE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MS</td>
<td>98.5*</td>
<td>85.5**</td>
<td>89.8*</td>
<td>81.5*</td>
</tr>
<tr>
<td>Cenizas</td>
<td>9.5</td>
<td>9.6</td>
<td>9.6</td>
<td>9.5</td>
</tr>
<tr>
<td>NDF</td>
<td>76.9</td>
<td>73.4</td>
<td>75.5</td>
<td>75.3</td>
</tr>
<tr>
<td>ADF</td>
<td>47.6</td>
<td>49.1</td>
<td>47.8</td>
<td>49.3</td>
</tr>
<tr>
<td>ADL</td>
<td>6.3</td>
<td>5.7</td>
<td>5.6</td>
<td>6.1</td>
</tr>
<tr>
<td>NT</td>
<td>0.70*</td>
<td>2.02*</td>
<td>1.64*</td>
<td>2.00*</td>
</tr>
<tr>
<td>N-urea residual</td>
<td>-</td>
<td>0.70</td>
<td>0.61</td>
<td>0.86</td>
</tr>
<tr>
<td>Ureólisis</td>
<td>-</td>
<td>62.0</td>
<td>66.8</td>
<td>53.3</td>
</tr>
<tr>
<td>N retenido</td>
<td>-</td>
<td>33</td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>

1 = Tratamiento con urea en solución, con recubrimiento plástico.
2 = Tratamiento con urea en solución, sin recubrimiento plástico.
3 = Tratamiento con urea en forma sólida, con recubrimiento plástico.
NS =P>0.05; *P<0.05; **P<0.01; ***P<0.001.
ŠCMOE = Raíz cuadrada del cuadrado medio del error.

Las características de las dietas ingeridas en la fase de digestibilidad se expresan en el Cuadro III.3.3. En las cuatro dietas, el nivel de rehusado fue próximo a cero y la proporción de concentrado ingerido fue también muy similar, oscilando entre 16.5 y 18.0 p.100. Por otra parte, el nivel de PB ingerido difirió entre la dieta formada por la paja testigo, con 9.6 p. 100 y las dietas constituidas por paja tratada con 11.71; 12.09 y 11.60 p.100, en los tratamientos 1, 2 y 3, respectivamente.
CUADRO III.3.3. Características de las dietas ingeridas en la fase de digestibilidad (Experimento III.3).

<table>
<thead>
<tr>
<th>N° animales</th>
<th>Testigo</th>
<th>Tratamientos con urea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PV (X±ES)</td>
<td>55.4±1.56</td>
<td>54.8±1.04</td>
</tr>
<tr>
<td>% Rehusado</td>
<td>6.4</td>
<td>0</td>
</tr>
<tr>
<td>% Concentrado</td>
<td>17.9</td>
<td>16.9</td>
</tr>
<tr>
<td>% PB dieta</td>
<td>9.60</td>
<td>11.71</td>
</tr>
<tr>
<td>Nivel de alimentación</td>
<td>0.97</td>
<td>1.19</td>
</tr>
</tbody>
</table>

1 = Tratamiento con urea en solución y recubrimiento plástico.
2 = Tratamiento con urea en solución y sin recubrimiento plástico.
3 = Tratamiento con urea en forma sólida y recubrimiento plástico.

En el Cuadro III.3.4 se expresan los coeficientes de digestibilidad e ingestión voluntaria obtenidos en los ensayos "in vivo".

CUADRO III.3.4. Coeficientes de digestibilidad e ingestión voluntaria de paja de cebada sin tratar (testigo) o tratada con urea (Experimento III.3).

<table>
<thead>
<tr>
<th>Coeficientes de digestibilidad (%)</th>
<th>Tratamientos con urea</th>
<th>Efecto tto.</th>
<th>√CME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testigo</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MO dieta</td>
<td>55.1 a</td>
<td>63.4 b</td>
<td>59.4 c</td>
</tr>
<tr>
<td>N dieta</td>
<td>61.6 a b</td>
<td>59.2 b</td>
<td>64.0 a</td>
</tr>
<tr>
<td>NDF dieta</td>
<td>55.1 a c</td>
<td>68.8 b</td>
<td>61.9 c</td>
</tr>
<tr>
<td>MO paja</td>
<td>48.2 a b c</td>
<td>58.6 b</td>
<td>53.9 c</td>
</tr>
<tr>
<td>Ingestión voluntaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI/Kg(75) dieta</td>
<td>55.8 b c</td>
<td>70.4 b</td>
<td>58.5 a</td>
</tr>
<tr>
<td>MSI/Kg(75) paja</td>
<td>48.8 b</td>
<td>61.5 b</td>
<td>49.6 a</td>
</tr>
<tr>
<td>MODI/Kg(75) dieta</td>
<td>27.6 a b c</td>
<td>40.0 b</td>
<td>31.6 c</td>
</tr>
<tr>
<td>MODI/Kg(75) paja</td>
<td>20.4 a b</td>
<td>32.5 b</td>
<td>25.2 a</td>
</tr>
</tbody>
</table>

1 = Tratamiento con urea solución, con recubrimiento.
2 = Tratamiento con urea en solución, sin recubrimiento.
3 = Tratamiento con urea en forma sólida, con recubrimiento.
N= P<0.05; * = P<0.05; ** = P<0.01; *** = P<0.001.

III.3.4 DISCUSION

Los resultados obtenidos muestran que los tres tratamientos realizados fueron efectivos, destacando por su superioridad el tratamiento con urea en solución y recubrimiento plástico, seguido por el tratamiento en forma sólida y recubrimiento, y por último el tratamiento realizado con urea en solución y sin recubrimiento plástico.

La paja, a pesar de ser un material ailante, proporcionó un menor aislamiento que el obtenido en los tratamientos realizados con recubrimiento de plástico. Por el contrario, en la Experiencia III.2 no se observaron diferencias entre los tratamientos realizados con y sin recubrimiento plástico. Estos distintos comportamientos pueden ser debidos por una parte a diferencias en la calidad inicial de la paja (KERNAN et al., 1979; RAMANZIN et al., 1986; WALLI et al., 1988), y por otra parte a que la humedad aplicada fue diferente, dando más elevada en la Experiencia III.2, pudiendo facilitar la retención del N (HORN et al., 1983) y favorecer la acción del ion amonio (MANDELL et al., 1988).

El tratamiento con urea en forma sólida presentó unos resultados ligeramente inferiores a los obtenidos en el tratamiento con urea en solución con recubrimiento plástico y superiores al tratamiento sin recubrimiento. El menor grado de ureolisis observado en el tratamiento con urea sólida junto con la menor DMO, con respecto a los restantes tratamientos, podría ser una indicación de que este tipo de tratamientos necesita una temperatura ambiente y un contenido en humedad superior, ya que dichos factores determinan la distribución de la urea y, por tanto, el efecto ácido. Cuando se realiza la disolución de la urea en agua se facilita el contacto entre ambos compuestos, y por tanto la ureolisis puede ser rápida, mientras que cuando se aplica la urea en forma sólida y posteriormente se añade agua es necesario un periodo de tiempo superior para que se disuelva la urea.
III.3.5 CONCLUSIONES

- Las dos modificaciones de la técnica del tratamiento con urea estudiadas son eficaces, presentando el tratamiento con urea en forma sólida mejores resultados que el tratamiento con urea en solución sin recubrimiento plástico.

- Sería conveniente llevar a cabo otros estudios sobre dichas modificaciones para poder confirmar su efecto sobre la digestibilidad de la paja, así como sobre la producción animal.

IV: APLICACION ZOOTECNICA. ALIMENTACION DE TERNERAS DE REPOSICION CON PAJA TRATADA CON UREA
CUADRO IV.1. Características de los lotes experimentales y composición de las dietas estudiadas en la Experiencia IV.

<table>
<thead>
<tr>
<th></th>
<th>RAZA PARDA ALPINA</th>
<th>RAZA PIrenaICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOTE 1A</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>LOTE 2A</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>LOTE 1P</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>LOTE 2P</td>
<td>6</td>
<td>227 ± 3.47</td>
</tr>
</tbody>
</table>

Dietas

<table>
<thead>
<tr>
<th></th>
<th>RAZA PARDA ALPINA</th>
<th>RAZA PIrenaICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº animales</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PV ± ES</td>
<td>263.7 ± 7.14</td>
<td>265.0 ± 5.03</td>
</tr>
<tr>
<td>Dieta</td>
<td>ad libitum</td>
<td>ad libitum</td>
</tr>
<tr>
<td>Paja sin tratar</td>
<td>ad libitum</td>
<td>ad libitum</td>
</tr>
<tr>
<td>Paja Tratada</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concentrado</td>
<td>2Kg/anim/d</td>
<td>2Kg/anim/d</td>
</tr>
<tr>
<td>Forraje: Concentrado</td>
<td>70:30</td>
<td>72:28</td>
</tr>
<tr>
<td>% PB dieta</td>
<td>11.0</td>
<td>11.7</td>
</tr>
</tbody>
</table>

IV.3 RESULTADOS

En el Cuadro IV.2 se expresa la composición química y DMSIV de la paja sin tratar (testigo) y tratada.

El efecto del tratamiento a nivel de la composición química fue positivo, provocando una reducción de 3.1 puntos en el contenido en NDF y un aumento de 1.09 puntos en el contenido en NT. También se registró un notable incremento de la DMSIV con unos valores de 39.1 p.100 en la paja testigo y de 51.1 p.100 en la paja tratada.

CUADRO IV.2. Composición química y DMSIV de la paja sin tratar (testigo) y tratada con urea ofrecida a las terneras de reposición (Experiencia IV).

<table>
<thead>
<tr>
<th>Composición química (%)</th>
<th>Paja sin Tratar</th>
<th>Paja Tratada</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>89.6</td>
<td>82.1</td>
</tr>
<tr>
<td>MO</td>
<td>92.2</td>
<td>90.7</td>
</tr>
<tr>
<td>NDF</td>
<td>76.9</td>
<td>73.8</td>
</tr>
<tr>
<td>NT</td>
<td>0.56</td>
<td>1.65</td>
</tr>
<tr>
<td>DMSIV</td>
<td>39.1</td>
<td>51.12</td>
</tr>
</tbody>
</table>

9) Composición del concentrado (% MS): 86.7 cebada; 5.6 harina de soja; 5.6 harina de pescado; 1.25 fosfato bicálcico; 0.25 sulfato sódico; 0.75 corrector mineral - vitamínico.
En la Figura IV.1 se representa la evolución de la ingesta de paja. Al inicio de la experiencia se registró una disminución de la ingesta que duró hasta el día 84 en la paja tratada y hasta los días 105 y 126 en la paja testigo ingerida por las terneras Pirenaica y Parda Alpina, respectivamente. Posteriormente, la ingesta se incrementó hasta alcanzar 91.1 y 85.6 g MS/Kg PV^{0.75} en la paja tratada y 88.3 y 84.4 g MS/Kg PV^{0.75} en la paja testigo, en ambos casos para las razas Parda Alpina y Pirenaica, respectivamente.

![Gráfico de Ingestión de Paja](image)

Figura IV.1. Ingestión de paja (g MS/Kg PV^{0.75}) sin tratar (testigo) y tratada con urea, registrada en terneras de razas Parda Alpina y Pirenaica (Experiencia IV).

A nivel global, tanto el efecto del tratamiento como de la raza no fue significativo (P > 0.05), registrándose unas ingestiones medias en la raza Parda Alpina de 59 y 64 g MS/Kg PV^{0.75} y en la raza Pirenaica de 59 y 61 g MS/Kg PV^{0.75} de paja testigo y tratada, respectivamente.

La evolución de la ganancia media diaria (g/día) durante los 246 días de la experiencia se representan en la Figura IV.2. La ganancia media diaria registrada en los lotes de raza Pirenaica y en el lote de raza Parda Alpina que recibió paja tratar se incrementó conforme se desarrollaba la experiencia. En el lote constituido por terneras Parda Alpina que recibían paja sin tratar se observó una disminución de la ganancia hasta el día 84 de la experiencia y a partir de entonces siguió un comportamiento similar a los restantes lotes.

El efecto raza no afectó significativamente (P > 0.05) a la ganancia media diaria, presentando en los 246 días de la experiencia un crecimiento medio de 584 y 618 g/día en las razas Parda Alpina y Pirenaica, respectivamente. Por el contrario, el tratamiento con urea mejoró dicho parámetro productivo, proporcionando una ganancia de 935 g/día que fue significativamente superior (P < 0.05) a la obtenida con la paja testigo, con un crecimiento de 566 g/día.

Figura IV.1. Ganancia media diaria (g/día) registrada en terneras de raza Parda Alpina y Pirenaica (Experiencia IV).

IV.4 DISCUSIÓN

El efecto del tratamiento con urea sobre los componentes químicos fue eficaz, provocando una reducción del contenido en NDF y un incremento del NT, lo que confirma los resultados de numerosos autores (WANAPAT et al., 1988; ABDOLI et al., 1988; IBRAHIM et al., 1988; MASCHARENHAS-FERREIRA et al., 1989; CHERMITT et al., 1989).

Los resultados de ingestión obtenidos muestran que el período de adaptación en los regímenes alimenticios a base de paja es largo, mayor el necesario para cualquier tipo de forraje de calidad media. CORDESE y TABA TABAI (1981) y CORDESE y GAUBERT (1984) también observaron una adaptación difícil cuando alimentaban corderos con paja sin tratar y tratada con amoníaco. El tratamiento con urea redujo ligeramente el período de adaptación, lo que según ORR et al. (1985) puede ser debido al efecto del tratamiento sobre la palatabilidad de la paja.

La ingesta media global de paja durante la experiencia fue superior en la paja tratada, con valores medios de 11 p.100 y 3 p.100 en las razas Parda Alpina y Pirenaica, respectivamente. Dicho incremento fue inferior a los observados por RAIMOND y CITRON (1985), ANDERSEN et al. (1989), CHENOST (1989) y DIAS DA SILVA et al. (1988) cuando trataban paja con amoníaco. Sin embargo, los resultados están parcialmente de acuerdo con KRISTENSEN (1984) quien señalaba que, cuando la paja constituía más del 40 p.100 de la dieta, el tratamiento alcalino aumenta la ingesta entre 10 y 50 p.100. Las diferencias en los incrementos de ingesta pudieron ser, en parte, debidos a la proporción y naturaleza del concentrado (CHENOST et al., 1987). ANDERSEN et al. (1989) anotaba que la fuente de N en las dietas constituidas por paja puede afectar a la producción animal, observándose un efecto beneficioso de la suplementación con proteína de origen animal o vegetal frente a la suplementación con NNP, tanto en la ingestión como...
en la tasa de crecimiento. El concentrado utilizado en la presente experiencia estaba constituido por cebada, harina de pescado y harina de soja, pudiendo enmascarar el efecto del tratamiento con urea. En relación a ello, SILVA et al. (1989) observaron que el concentrado (pulpa de remolacha y/o harina de pescado) no tenía efecto sobre la ingestión de paja tratada y, por el contrario, provocaba un incremento de la ingestión de paja testigo.

El tratamiento provocó una ligera mejora (69 g/día), aunque significativa (P < 0.05) de la ganancia media diaria. GARRET et al. (1979), WANAPAT et al. (1980), MIRA et al. (1983) y NELSON et al. (1985) también observaron un efecto positivo del tratamiento con amoníaco o urea sobre la velocidad de crecimiento. Sin embargo, dichos autores obtuvieron unos incrementos mayores que los registrados en la presente experiencia, lo que, posiblemente, es consecuencia del escaso efecto del tratamiento sobre la ingestión de paja.

El mayor efecto del tratamiento sobre la ganancia media diaria en relación al efecto sobre la ingestión, puede ser el resultado de la mejora en la eficacia de utilización de la energía (GARRET et al., 1979; NELSON et al., 1985; BIRKELO et al., 1986; GIVENS et al., 1988).

La dieta de la paja testigo, regada con una solución de urea y suplementada con 2 Kg de concentrado, también proporcionó un crecimiento adecuado para este tipo de terneras. Ello puede ser consecuencia del tipo de concentrado utilizado el cual fue rico en N proteico (h. de soja y h. de pescado). En relación a ello, SILVA y ØRSKOV (1988) pusieron de manifiesto el interés de la suplementación de la paja con harina de pescado sobre la nutrición y actividad de los microorganismos del rumen.

IV.1.5 CONCLUSIONES

- En dietas constituidas por paja y concentrado (70:30) para terneras de reposición de raza Parla Alpina y Pirenaica, el tratamiento con urea (40 g. de urea/Kg MS y 25 p.100 de humedad) provoca una mejora en la ganancia media diaria de 69 g/día.

IV- CONCLUSIONES GENERALES
1.- En el tratamiento de paja de cebada con amoniaco anhidro (40 g/Kg MS), el incremento del contenido en humedad hasta un 33 p. 100 no provocó mejoras apreciables en la digestibilidad de la materia seca, determinada por el método "in vitro".

2.- El tratamiento de paja de cebada con amoniaco anhidro (35 g/Kg MS) provocó un incremento del contenido en Nitrógeno Total (227 p. 100), de la digestibilidad de la materia orgánica "in vivo" (35 p. 100) y de la ingestión de materia seca de paja (51 p. 100).

3.- El tratamiento con urea en solución acuosa aplicada en pila (55 g/Kg MS y 35 p. 100 de humedad) incrementó el contenido en Nitrógeno Total (218 p. 100), la digestibilidad de la materia orgánica "in vivo" (29 p. 100) y la ingestión de materia seca de la paja (21 p. 100).

4.- El tratamiento con urea realizado durante el proceso de empacado mejoró la digestibilidad de la materia orgánica de la paja "in vivo", pero no su ingestibilidad. La obtención de una dosificación precisa planteó dificultades.

5.- En el tratamiento con urea en solución acuosa, las temperaturas ambientales, situadas entre 9 y 28°C, no limitaron la eficacia del tratamiento.

6.- El grado de ureólisis observado en los tratamientos con urea en solución acuosa se incrementó a medida que aumentaba la humedad de la paja. Las humedades del 20 y 25 p. 100 fueron suficientes para una correcta ureólisis, aunque las humedades óptimas se situaron entre 25 y 30 p.100.

7.- Las dosis de urea comprendidas entre 3.5 y 4.5 p. 100 fueron eficaces para los tratamientos con urea en solución acuosa.

8.- La adición de una fuente externa de ureasas (huela cruda de soja) incrementó el grado de ureólisis únicamente cuando el tratamiento se realizaba a humedad inferior al 20 p. 100.

9.- En los tratamientos con urea, su utilización en forma sólida puede sustituir a la forma en solución acuosa, permitiendo simplificar la técnica de aplicación del tratamiento. Sin embargo el efecto del tratamiento fue inferior a los obtenidos con urea en solución acuosa.

10.- La aplicación del tratamiento con urea en solución acuosa sobre rotopacas, fue viable.

11.- La supresión del recubrimiento plástico en los tratamientos de paja con urea en solución permitió obtener resultados satisfactorios, aunque inferiores a los obtenidos con el tratamiento con recubrimiento.
V- BIBLIOGRAFÍA

