Estudio de expresión diferencial de genes y distribución de la vinculina en ovario de cerdas


* Genética i Millora Animal. IRTA. Lleida. Spain
** Departament de Ciència Animal i dels Aliments. Facultat de Veterinària. UAB. Bellaterra. Spain
*** Departamento de Mejora Genética Animal. SGIT-NIA. Madrid. Spain
E-mail: maria.martinez@irta.cat

Resumen
El objetivo de este estudio es analizar las diferencias en la expresión de genes y proteínas en tres estados reproductivos en ovarios. Con el fin de caracterizar los cambios en los perfiles de expresión, se hibridó RNA de ovario de cerdas en celo, 15 y 45 días de gestación en microchips porcinos. Se detectaron diferencias de expresión en 281 genes (probabilidad posterior <10^-11) entre los tres momentos reproductivos analizados en ovario. Uno de estos genes, la vinculina, mostró una expresión 100 veces mayor en celo comparado con 45 días de gestación. Por ello, fue escogido para realizar un análisis de expresión proteica mediante inmunohistoquímica y análisis western blot. Los resultados obtenidos mediante inmunohistoquímica muestran mayor cantidad de vinculina en celo que a 30 días de gestación. Para esta misma proteína, los resultados sugieren la existencia de diferencias significativas entre ovarios de cerdas en celo y a 45 días de gestación mediante la técnica western blot.

Palabras clave: Vinculina, Inmunohistoquímica, Western blot, Microarrays

Summary
Study on the differential gene expression and distribution of the vinculin in the ovary of sows

The objective of this experiment is to study genes and proteins differing across reproductive stages in swine. RNA from ovary, from sows on heat, 15 and 45 days of pregnancy have been hybridised in porcine oligonucleotide microchips to characterize changes in gene expression profile between different reproductive stages. Expression differences in 281 genes (posterior probability <10^-11) have been found between expression at different stages in ovary. One of these genes, vinculin, showed 100 times more expression on heat than at 45 days of pregnancy, so we chose that gene for immunohistochemistry and western blot analysis. On immunohistochemistry we found that ovaries of sows on heat showed stronger vinculin staining than ovaries stroma of sows at 30 days of pregnancy. On western blot, significant differences appeared only between heat and 45 days of pregnancy.

Key words: Vinculin, Immunohistochemistry, Western blot, Microarrays
Introducción

El tamaño de camada es un carácter de gran importancia económica en porcino. Por ello, conocer la arquitectura genética del tamaño de camada, así como de sus componentes principales, como la tasa de ovuación, puede resultar de gran ayuda en la selección de la prolificidad. Además, el análisis proteómico de aquellos genes diferencialmente expresados permite comprobar si la expresión diferencial de los genes se corresponde con una expresión diferencial a nivel proteínico. Con el objetivo de caracterizar dichas diferencias, se realizaron experimentos de microarrays, inmunohistoquímica y western blot con tejido ovárico de cerdas.

Material y métodos

Microarrays

Se recogieron muestras de ovario de un total de 22 hembras F2 provenientes de un cruce de una población de raza Iberica con una de raza china Meishan. Las hembras se encontraban en distintos momentos del ciclo reproductivo (celo, 15 y 45 días de gestación, tabla 1). Se extrajeron muestras de ARN que fueron hibridadas en microchips de porcino (GeneChip® Porcine Genome Array, Affymetrix). El control de calidad fue realizado con los paquetes Affy y SimplAffy del programa Bioconductor (R, www.bioconductor.org). Todos los arrays pasaron con éxito el control de calidad y fueron utilizados en los análisis posteriores, que consistieron en un procesamiento previo de los datos con el algoritmo RMA (Bolstad et al., 2003) y un análisis estadístico utilizando estadística Bayesiana (GEAMM; Casellas et al., 2008). Las diferencias se testaron mediante el modelo mixto siguiente, y = XA + ZG + ZTE + e, donde X = el vector de regresores de expresión genética, Z = Z G y Z TE = e, y e es el vector de residuos.

Inmunohistoquímica

Utilizamos muestras de ovario de 4 cerdas comerciales, dos en celo y dos a los 30 días de gestación (tabla 1). El anticuerpo primario utilizado fue anti-vinculina monoclonal de ratón (clon 7F9, Chemicon) en una dilución 1:1000 y como control utilizamos anti-β-actina monoclonal de ratón (ab28226, abcam) en una dilución 1:2000. El anticuerpo secundario fue anti-igG de ratón conjugado con peroxidasa (A2534, Sigma) en una dilución 1:400. El análisis de los datos se realizó mediante el modelo siguiente, y = XG + ZE + e donde X = el vector de regresores de expresión genética, Z = Z G y Z E = e, y e es el vector de residuos. El estudio fue realizado en el Servicio de Anatomía Patológica de la Universidad de La Laguna.

Tabla 1 Número y tipo de cerdas usadas en cada experimento

<table>
<thead>
<tr>
<th>Tipo de cerdas</th>
<th>Microarray</th>
<th>Western blot</th>
<th>Inmunohistoquímica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadio reproductivo</td>
<td>Crucé F2</td>
<td>Crucé F2</td>
<td>Comercial</td>
</tr>
<tr>
<td>Celo</td>
<td>8</td>
<td>8*</td>
<td>2</td>
</tr>
<tr>
<td>15 días de gestación</td>
<td>8</td>
<td>8*</td>
<td>2</td>
</tr>
<tr>
<td>30 días de gestación</td>
<td>6</td>
<td>6*</td>
<td>2</td>
</tr>
<tr>
<td>45 días de gestación</td>
<td>6</td>
<td>6*</td>
<td>2</td>
</tr>
<tr>
<td>60 días de gestación</td>
<td>6</td>
<td>6*</td>
<td>2</td>
</tr>
</tbody>
</table>

* Las muestras para el análisis western blot no están totalmente analizadas.

Western blot

Utilizamos muestras de ovario proveniente de los animales F2 utilizados en el experimento de microarrays (celo, 15 y 45 días de gestación), además de otras hembras F2 a 30 y 60 días de gestación (tabla 1). La extracción de proteína se realizó según el protocolo descrito en Lonergan et al. (2001). El anticuerpo primario utilizado fue anti-vinculina monoclonal de ratón (clon 7F9, Chemicon) en una dilución 1:1000 y como control utilizamos anti-β-actina monoclonal de ratón (ab28226, abcam) en una dilución 1:2000. El anticuerpo secundario fue anti-igG de ratón conjugado con peroxidasa (A2534, Sigma) en una dilución 1:400. El análisis de los datos se realizó mediante el modelo siguiente, y = XG + ZE + e donde X = el vector de regresores de intensidad de banda, Z = Z G y Z E = e, y e es el vector de residuos. El estudio fue realizado en el Servicio de Anatomía Patológica de la Universidad de La Laguna.

Resultados y discusión

Microarrays

Los resultados de microarrays mostraron una gran cantidad de genes diferencialmente expresados en ovario a lo largo del ciclo reproductivo de la cerda (figura 1). Se observaron 2.829 genes con una probabilidad posterior de semejanza menor a 0.01 y 1.5 veces mayor/menor expresión. Siendo más restrictivos y tomando una probabilidad posterior menor a 10^-4 y un ratio de 10 veces mayor o menor expresión, aún observamos 281 genes diferencialmente expresados. Uno de estos genes fue el de la vinculina, que mostró una expresión más de 100 veces mayor en celo comparado con 45 días de gestación. Por esta razón fue escogida para realizar un análisis de expresión proteica mediante inmunohistoquímica y western blot. La vinculina es una proteína importante en la unión entre células y está presente sobre todo en los tejidos epiteliales.

Figura 1. Número de genes diferencialmente expresados al comparar distintos estadios reproductivos con una probabilidad posterior >0.01 y un ratio >1.5 o <0.66.

Figura 1. Number of genes differentially expressed by comparison between reproductive stages with posterior probability p<0.01 and ratio >1.5 or <0.66.
Immunohistoquímica

Observamos una mayor cantidad de vinculina en las células de la teca y la granulosa en todos los estudios de desarrollo folicular y en epitelio, comparado con el estroma ovárico. Al ser la vinculina una proteína importante en la formación de las uniones entre células, resulta esperable encontrar niveles más altos en células con mayor adhesión, como es el epitelio. También observamos una mayor cantidad de vinculina en ovarios de hembras en celo (figura 2) comparado con los ovarios de hembras a 30 días de gestación, lo que corrobora los resultados obtenidos en el experimento de microarrays, relacionándose así el nivel de expresión génica con la expresión de proteínas.

Western blot

Los resultados preliminares obtenidos con la técnica del western blot sugieren la existencia de diferencias entre el ovario de animales en celo y a 45 días de gestación (P < 0,05), mientras que no aparecen diferencias entre hembras gestantes a 15, 30 y 45 días de gestación (figura 3). Sin embargo, el número de muestras es por ahora insuficiente, y los errores estándar son elevados. Actualmente, estamos realizando el análisis de más muestras del experimento.

Figura 2. Immunohistochemistry of the granulosa (1) and theca cells (2) of ovary using anti-vinculin antibody. A and B at 30 days of pregnancy (A: 10x; B: 40x). C and D at celo (C: 10x; D: 20x).

Figura 3. Representative graphic of intensity of bands by reproductive stages. N.S.: non-significant.

Agradecimientos

Este trabajo se enmarca en el proyecto AGL2004-08368-C03, financiado con fondos del Ministerio de Educación y Ciencia. María Martínez Giner disfruta de una beca FPI del MEC. Así mismo, agradecemos la colaboración de Luis Varona, Ángela Cánovas y de todo el personal del Laboratorio de Medicina de la Reproducción y el Desarrollo de la Universidad de Sheffield.

Bibliografía


(Aceptado para publicación el 28 de abril de 2008)