Sustainable livestock farming systems - methodologies for trade-offs and synergies

Alberto Bernués Daniel Villalba Roberto Ruiz
Outline

1. Sustainability: a complex dynamic concept
 - different understandings
 - trade-offs (among sustainability pillars)
 - trade-offs (within sustainability pillars)
3. Tools to explore trade-offs and win-wins under uncertainty
4. Conclusion: responsible & responsive agriculture
1. Sustainability: a complex dynamic concept

Systems theory:
- from parts to the whole
- from objects to relationships
Sustainability and multi-functional agriculture

The inescapable interconnectedness of agriculture’s different roles and functions

- Health
- Social
- Culture
- Gender
- Tradition

Economic
- Income
- Trade
- Marketing

Food production
- Valuation of environmental services
- Recognition and diversified land use
- Cultivation and commercialization of traditional foods

Environmental
- Water
- Climate
- Biodiversity
- Soils

Social
- Cognitive and social capital
- Social structure
- Social interaction

Agriculture's role in:
- Health
- Social
- Culture
- Gender
- Tradition

Sustainability and multi-functional agriculture
Importance of time

Conceptual framework to study sustainability of LFS

- **multi-functionality**
 - landscape, biodiversity, (ecosystem services)

- **other sectors of the economy**
 - tourism, urbanization, infrastructures

- **management**
 - intensification vs. extensification

- **social factors**
 - family and labour

- **economics**
 - profitability

- **environment**
 - land use, natural resources

farm

- **agricultural policies**
 - other sectorial policies
 - trade agreements

- **markets/consumers**
 - consumption trends
 - costs, prices

- **markets/consumers**
 - consumption trends
 - costs, prices

- **global change**
 - population
 - energy

- **climate change**
 - droughts, variability, extreme events

- **environment**
 - (institutional, socio-economics, physical)

Sustainability of pasture-based livestock farming systems in the European Mediterranean context: synergies and trade-offs (Bernués et al., 2011)
2. Sustainability assess.: holistic, bottom-up
Sustainability understandings

Farmers indicators for sustainability:
1. **Labour profitability** (Net Margin per Working Unit)
2. Farm **continuity** (15 years, scale)
3. **Diversification** in sources of income (# products)
4. **Salary level** (labour profitability against average salary)
5. Feed **self-sufficiency** (on-farm feed/ total feed)

Policy makers’ priorities
- Climate change (GHG)
- Pollution
- Water
- Land use change
- Landscape
- Biodiversity

Farmers’ priorities
- Maximize grazing
- Energy efficiency
- Use of communals
- Stocking rate
- Local breeds
- Wildlife conflicts

Importance of indicators
- 46% economics
- 35% social
- 19% environmental
Trade-offs among sustainability pillars

An integrated sustainability assessment of Mediterranean sheep farms with different degrees of intensification (Ripoll-Bosch et al., 2012)
Trade-offs within sustainability pillars:

E.g. carbon footprint of lamb meat

Accounting for multifunctionality in carbon footprint of lamb meat (Ripoll-Bosch et al., 2013)

<table>
<thead>
<tr>
<th></th>
<th>No allocation (kg CO₂-eq / kg LW)</th>
<th>Allocation (%)</th>
<th>Corrected (kg CO₂-eq / kg LW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazing (1L/1Y)</td>
<td>25.9</td>
<td>53.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Mixed (3L/2Y)</td>
<td>24.0</td>
<td>73.9</td>
<td>17.7</td>
</tr>
<tr>
<td>Zero grazing (5L/3Y)</td>
<td>19.5</td>
<td>100</td>
<td>19.5</td>
</tr>
</tbody>
</table>

- **Multifunctional agriculture**
 - Private goods
 - Animal products
 - Public goods and services
 - Conservation of biodiversity
 - Maintenance of cultural landscape
 - Prevention of hazards: forest fires (Med.)
 - Etc.

- **Non-marketable**
- **Inherently linked to extensive livestock farming systems** IEEP (2009)
3. Trade-offs and synergies under uncertainty

Decision Support Systems:
- bio-economical modelling

Stochastic dynamic simulation
+ Multi-objective optimization
Simulation module

ANIMAL
- Voluntary Intake (AFRC)
- Body condition score
- Reproduction (seasonality)

FLOCK
- Herd dynamics
- Management Practices
 - Grazing
 - Supplementation
 - AI, rams, etc.

FARM
- Grazing resources
- Off-farm resources
- Economy
 - Costs
 - Incomes
Optimization module: genetic algorithms

evolutionary optimization
based on mimicking the
natural selection process that
allows species to adapt to
environment
Synergies between functions: Pareto frontier

Fitness (objectives):
• maximize economic margin
• minimize GHG emissions

Fitness (objectives):
• maximize economic margin
• minimize GHG emissions
Synergies between functions: real example

Fitness (objectives):
• minimize N loss
• minimize economic loss

Herd of 50 milking ewes
• diverse lambing date
• diverse milk potential
• 3 rations during lactation
• animals managed in 1 batch

Pareto frontier

Fitness (objectives):
• minimize N loss
• minimize economic loss

Herd of 50 milking ewes
• diverse lambing date
• diverse milk potential
• 3 rations during lactation
• animals managed in 1 batch
4. Responsible/Responsive LFS

- Scenario of stability
 - Efficiency
 - Productivity
 - Specialization

- Scenario of change
 - Adaptation
 - Resilience
 - Diversification

Uncertainty
Control of the environment (physical & socio-economic)

Specialization
Diversification

Efficiency
Productivity

4. Responsible/Responsive LFS
New system design (paradigm)

- Linear
- Non-renewable
- Global
- Specialized
- Input-based

- Circular (blue)
- Renewable
- Local/ regional
- Diversified
- Knowledge-based