P0917

Methylation of the S_f Locus in Almond Is Associated with S-RNase Loss of Function

Date: Monday, January 12, 2015

Room:

Angel Fernandez i Marti, Genome Center, University of California, Davis, CA Thomas M. Gradziel, University of California, Davis, CA Rafael Socias i Company, CITA Aragon, Zaragoza, Spain

Self-compatibility in almond ($Prunus\ dulcis$) is attributed to the presence of the S_f haplotype, allelic to and dominant over the series of S-alleles controlling self-incompatibility. Some forms of the S_f haplotype, however, are phenotypically self-incompatible even though their nucleotide sequences are identical. DNA from leaves and styles from genetically diverse almond samples was cloned and sequenced and then analyzed for changes affecting S_f -RNase variants. Epigenetic changes in several cytosine residues were detected in a fragment of 4700 bp of the S_f upstream region of all self-compatible samples of the S_f -RNases, differentiating them from all self-incompatible samples of S_f -RNases analyzed. This is the first report of DNA methylation in a Rosaceae species and appears to be strongly associated with inactivation of the S_f allele. Results facilitate an understanding of the evolution of self-compatibility/self-incompatibility in almond and other Prunus species, and suggest novel approaches for future crop improvement.

Back to: Genome Mapping, Tagging & Characterization: Fruit Species - Odd

<< Previous Poster | Next Poster >>

Home/Search

Browse by Type

Author Index

Poster Categories

Meeting Information

When:

January 10 - 14, 2015

Where:

San Diego, CA