## Methylation of the S<sub>f</sub> locus in almond is associated with S-RNase loss of function

## Fernández i Martí A.<sup>1,2</sup>, Gradziel T.<sup>3</sup> and Socias i Company R.<sup>1</sup>

<sup>1</sup> Fruit Tree Department, CITA de Aragón, Av. Montañana 930, 50059 Zaragoza, Spain

- <sup>2</sup> Genome Center-UCDavis, Davis, CA 95616, USA
- <sup>3</sup> Dept. Plant Sciences UCDavis, Davis, CA 95616, USA
- (⊠) AFM: afernandezmarti@ucdavis.edu

Self-compatibility (SC) in almond (*Prunus amygdalus* Batsch) is attributed to the presence of the  $S_f$  haplotype. Some forms of the  $S_f$  haplotype, however, are phenotypically self-incompatible (SI) even though their nucleotide sequences are identical. DNA from leaves and styles from genetically diverse almond samples was cloned and sequenced and then analyzed for changes affecting  $S_f$  variants. The cultivars used were Blanquerna (SC), Vivot (SI), Ponç (SI), Soleta (SC), M-2-16 (SC) and A-2-199 (SC). Once DNA was extracted, it was submitted to the DNA bisulphite modification treatment 'MethylEasy'. Epigenetic changes in several cytosine residues were detected in a fragment of 4700 bp of the 5' upstream region of all SC samples of the  $S_f$  allele, differentiating them from all SI samples of  $S_f$  analyzed. When the  $S_f$ RNase sequence is methylated, its expression is inhibited resulting in an SC phenotype, as occurs in 'Blanquerna', 'Soleta' and the two homozygous SC selections (M-2-16 & A-2-199). However, when  $S_f$ RNase sequences do not show methylated cytosines, the RNase remains active, resulting in a SI genotype and phenotype, as in 'Vivot' and 'Ponç'.

This is the first report of DNA methylation in a Rosaceae species and appears to be strongly associated with inactivation of the  $S_f$  allele (Fernandez i Marti et al., 2014). Results facilitate an understanding of the evolution of SC/SI in almond and other *Prunus* species, and suggest novel approaches for future crop improvement.



Fig. 1: Diagram showing the detection of methylated sites in the 5' untranslational region of Sf-RNase. Primer positions overlapping the cytosine residues are indicated by *black arrows*. Methylated cytosines, either detected in the CG or the CNG forms, are indicated in *red* 

| Α                                        | Blanquerna (SC) M1                                                                   | Soleta (SC) M1                                                                       | A2-199 (SC) M1                                                                       | M2-16 (SC) M1                                                                        | Vivot (SI) M1                                                                                                                  | Ponç (SI) M1                                                                                                             |
|------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Clone 1<br>Clone 2<br>Clone 3<br>Clone 4 | TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG | TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTATGAAATTGGGG<br>TGGTTTACGAAATTGGGG | TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG | TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTACGAAATTGGGG<br>TGGTTTATGAAATTGGGG | TGGTTTA <mark>TG</mark> AAATTGGGG<br>TGGTTTA <u>TG</u> AAATTGGGG<br>TGGTTTA <u>TG</u> AAATTGGGG<br>TGGTTTA <u>TG</u> AAATTGGGG | TGGTTTA <u>TG</u> AAATTGGGG<br>TGGTTTA <u>TG</u> AAATTGGGG<br>TGGTTTA <u>TG</u> AAATTGGGG<br>TGGTTTA <u>TG</u> AAATTGGGG |
| Clone 5                                  | TGGTTTA <u>CG</u> AAATTGGGG                                                          | TGGTTTA <u>TG</u> AAATTGGGG                                                          | TGGTTTA <u>CG</u> AAATTGGGG                                                          | TGGTTTACGAAATTGGGG                                                                   | TGGTTTA <u>TG</u> AAATTGGGG                                                                                                    | TGGTTTA <u>TG</u> AAATTGGGG                                                                                              |

| В       | Blanquerna (SC) M2 | Soleta (SC) M2             | A2-199 (SC) M2             | M2-16 (SC) M2              | Vivot (SI) M2              | Ponç (SI) M2               |
|---------|--------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Clone 1 | GATAAGACGTTTAAATT  | GATAAGA <u>CG</u> TTTAAATT | GATAAGA <u>CG</u> TTTAAATT | GATAAGA <u>CG</u> TTTAAATT | GATAAGA <u>TG</u> TTTAAATT | GATAAGATGTTTAAATT          |
| Clone 2 | GATAAGACGTTTAAATT  | GATAAGA <u>TG</u> TTTAAATT | GATAAGACGTTTAAATT          | GATAAGA <u>TG</u> TTTAAATT | GATAAGA <u>TG</u> TTTAAATT | GATAAGATGTTTAAATT          |
| Clone 3 | GATAAGACGTTTAAATT  | GATAAGACGTTTAAATT          | GATAAGACGTTTAAATT          | GATAAGA <u>CG</u> TTTAAATT | GATAAGA <u>TG</u> TTTAAATT | GATAAGA <u>TG</u> TTTAAATT |
| Clone 4 | GATAAGACGTTTAAATT  | GATAAGA <u>CG</u> TTTAAATT | GATAAGACGTTTAAATT          | GATAAGA <u>CG</u> TTTAAATT | GATAAGA <u>TG</u> TTTAAATT | GATAAGATGTTTAAATT          |
| Clone 5 | GATAAGACGTTTAAATT  | GATAAGACGTTTAAATT          | GATAAGACGTTTAAATT          | GATAAGACGTTTAAATT          | GATAAGA <u>TG</u> TTTAAATT | GATAAGA <u>TG</u> TTTAAATT |

| с                  | Blanquerna (SC) M3                     | Soleta (SC) M3                         | A2-199 (SC) M3                         | M2-16 (SC) M3                          | Vivot (SI) M3                                            | Ponç (SI) M3                                    |
|--------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------|
| Clone 1            | TTGATAGAGATTGTTGT                      | TTGACAGAGATTGTTGT                      | TTGACAGAGATTGTTGT                      | TTGACAGAGATTGTTGT                      | TTGATAGAGATTGTTGT                                        | TTGATAGAGATTGTTGT                               |
| Clone 2<br>Clone 3 | TTGACAGAGAGATTGTTGT                    | TTGACAGAGATTGTTGT                      | TTGACAGAGATTGTTGT                      | TTGACAGAGAGATTGTTGT                    | TTGATAGAGATTGTTGT                                        | TTGATAGAGATTGTTGT                               |
| Clone 4<br>Clone 5 | TTGACAGAGATTGTTGT<br>TTGACAGAGATTGTTGT | TTGACAGAGATTGTTGT<br>TTGATAGAGATTGTTGT | TTGACAGAGATTGTTGT<br>TTGACAGAGATTGTTGT | TTGATAGAGATTGTTGT<br>TTGATAGAGATTGTTGT | TTGA <u>TAG</u> AGATTGTTGT<br>TTGA <u>TAG</u> AGATTGTTGT | TTGA <u>TAG</u> AGATTGTTGT<br>TTGATAGAGATTGTTGT |

| D       | Blanquerna (SC) M4          | Soleta (SC) M4              | A2-199 (SC) M4              | M2-16 (SC) M4               | Vivot (SI) M4               | Ponç (SI) M4                  |
|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|
| Clone 1 | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGAGTATA |
| Clone 2 | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGAGTATA |
| Clone 3 | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA   |
| Clone 4 | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA   |
| Clone 5 | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>CAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA | ATTAAAG <u>TAG</u> AGAGTATA   |

Fig. 2: Sequences surrounding the four (**a**–**d**) methylated points in the six genotypes studied. For each genotype and region five clones were sequenced. All samples were from leaves collected in Saragossa in the spring

A Fernández i Martí, T Gradziel and R Socias i Company (2014). Methylation of the Srlocus in almond is associated with S-RNase loss of function. Plant Molecular Biology 86 (6): 681-689

GOBIERNO DE ARAGON

UCDAVIS

UNIVERSITY OF CALIFOR