Manejo de poblaciones de malezas resistentes a herbicidas
100 preguntas sobre resistencias
Manejo de poblaciones de malezas resistentes a herbicidas
100 preguntas sobre resistencias

Preparado por

Andreu Taberner Palou
Servicio de Sanidad Vegetal. Unidad de Malherbología
DAR Generalitat de Cataluña
Rovira Roure 191. 25198 Lleida
ataberner@gencat.net

Alicia Cirujeda Ranzenberger y Carlos Zaragoza Larios
Centro de Investigación y Tecnología Agroalimentaria
Gobierno de Aragón
Apdo. 727. 50080 Zaragoza
España
carza@aragon.es

ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACIÓN
Roma, 2007
Las denominaciones empleadas en este producto informativo y la forma en que aparecen presentados los datos que contiene no implican, de parte de la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), juicio alguno sobre la condición jurídica o nivel de desarrollo de países, territorios, ciudades o zonas, o de sus autoridades, ni respecto de la delimitación de sus fronteras o límites. La mención de empresas o productos de fabricantes en particular, estén o no patentados, no implica que la FAO los apruebe o recomiende de preferencia a otros de naturaleza similar que no se mencionan.

Todos los derechos reservados. Se autoriza la reproducción y difusión de material contenido en este producto informativo para fines educativos u otros fines no comerciales sin previa autorización escrita de los titulares de los derechos de autor, siempre que se especifique claramente la fuente. Se prohíbe la reproducción del material contenido en este producto informativo para reventa u otros fines comerciales sin previa autorización escrita de los titulares de los derechos de autor. Las peticiones para obtener tal autorización deberán dirigirse al Jefe de la Subdivisión de Políticas y Apoyo en Materia de Publicación Electrónica de la División de Comunicación de la FAO Viale delle Terme di Caracalla, 00153 Roma, Italia o por correo electrónico a: copyright@fao.org

© FAO 2007
ÍNDICE

PREFACIO ... vii

1. Introducción ... 1
1.1 Interés y objetivos de la publicación .. 1
1.2 ¿A quién se dirige esta publicación? ... 3
1.3 Importancia de las resistencias de las malezas a los herbicidas 3
1.4 ¿Qué es una maleza resistente? .. 4
1.5 Principales especies afectadas por problemas de resistencia 5
1.6 Principales herbicidas-mayores causantes de resistencia 6
1.7 Aspectos económicos de la resistencia ... 7

2. Aspectos de la resistencia que se deben conocer ... 9
2.1 ¿Cómo se detecta y confirma la resistencia? .. 9
2.2 Mecanismos de resistencia a los herbicidas y tipos de resistencia 11
2.3 La presión de selección ... 12
2.4 Adaptabilidad (“fitness”) ... 13
2.5 La inversión de flora ... 13

3. Prevención y manejo de la resistencia ... 15
3.1 El control químico de las malezas en el manejo de las resistencias 15
 3.1.1 Herbicidas disponibles y la clasificación HRAC .. 15
 3.1.2 Mezclas, rotaciones y secuencias de herbicidas ... 19
 3.1.3 La resistencia de las malezas a glifosato ... 20
 3.1.4 El uso de cultivos modificados genéticamente resistentes a glifosato y el control de malezas ... 21
 Referencias sobre control químico de malezas y resistencias 22
3.2 Sistemas no químicos en la lucha contra la resistencia de las malezas 25
 3.2.1 Introducción .. 25
 3.2.2 Métodos preventivos .. 25
 3.2.3 Métodos agronómicos .. 26
 3.2.4 Métodos físicos .. 29
 3.2.4.1 El laboreo convencional .. 30
 3.2.4.2 La escarda de precisión .. 32
 3.2.4.3 Laboreo nocturno ... 32
 3.2.4.4 La escarda térmica .. 34
 3.2.4.5 El acolchado plástico ... 36
 3.2.4.6 El uso de plásticos biodegradables ... 37
 3.2.4.7 El uso del papel ... 37
 3.2.4.8 El uso de restos vegetales como cubiertas de suelo para el control de malezas ... 38
 3.2.4.9 Efectos directos de restos vegetales utilizados como cubiertas sobre las malezas: ... 38
 3.2.4.10 Efectos indirectos de los residuos vegetales utilizados como cubiertas sobre las malezas .. 39
 3.2.4.11 Conclusión .. 40
 Referencias sobre integración de métodos no químicos en la lucha contra resistencia de malezas ... 41
3.3 El manejo integrado de las malezas ... 44
4. La transferencia de la información a los agricultores en materia de resistencia de las malezas a los herbicidas ... 47
 4.1 Recopilación de información .. 47
 4.1.1 Encuesta para estimar la distribución de malezas resistentes a herbicidas en cereal de invierno en España (2002) .. 48
 4.1.2 Encuesta sobre la resistencia a herbicidas en Aragón (2005) 50
 4.1.3 Prospección para evaluar la extensión de la resistencia de Sorghum halepense a glifosato en Argentina (año 2006) 51
 4.2 Fuentes de información ... 52
 4.3 Canales de distribución de la información .. 52
 4.4 Índice para un encuentro de divulgación .. 53

5. Cien preguntas sobre resistencias y ejercicios para el trabajo de transferencia de tecnología en resistencias de las malezas a los herbicidas 55
 5.1 Preguntas sobre temas generales ... 55
 5.2 Preguntas sobre herbicidas .. 56
 5.3 Preguntas sobre cultivos modificados genéticamente 59
 5.4 Preguntas sobre métodos no químicos ... 60
 5.5 Preguntas sobre control integrado .. 62
 5.6 Preguntas sobre biología de malezas .. 65
 5.7 Preguntas sobre transferencia de tecnología .. 65
Lista de Gráficos

Gráfico 1. Estamentos que participan en el control de malezas y que deben coordinarse a fin de efectuar una buena prevención y manejo de su resistencia a los herbicidas 3

Gráfico 3. Principales grupos de herbicidas con resistencias. (Heap, 2006)................................. 6

Gráfico 4. Triángulo descriptivo de la presión de selección ejercida por diversos grupos de herbicidas clasificados según los criterios HRAC. (Beckie, 2006) ... 13
Manejo de poblaciones de malezas resistentes a herbicidas: 100 preguntas sobre resistencias

Lista de Tablas

Tabla 1. Relación de las 10 principales especies que presentan resistencia a los herbicidas... 6
Tabla 2. Ejemplos de poblaciones resistentes estándar citadas en la bibliografía....... 10 (Powles y Preston, 1995) .. 10
Tabla 3. Número de años necesarios de aplicación de un herbicida antes de que se presenten resistencias de las malezas. ... 12
Tabla 4. Herbicidas disponibles en el mercado español en el año 2006, agrupados según su modo de acción, de acuerdo con la clasificación HRAC...................... 17
(a partir de WRAG, 2003) .. 25
Tabla 5. Principios de estrategia general para prevenir resistencias a herbicidas 25
Tabla 6. Factores de riesgo de aparición de resistencias según prácticas agronómicas 26
Tabla 7. Prevenir la resistencia herbicida con procedimientos no químicos 27
Tabla 8. Métodos de control agronómico recomendables o no según propiedades de las malezas .. 30
Tabla 9. Herramientas recomendables o no según objetivos y características biológicas de las especies a eliminar.. 31
Tabla 10. Acción sobre la flora arvense de diversos aperos para el laboreo según su biología y desarrollo (Ferrero y Casini, 2001) ... 32
Tabla 11. Eficacia aproximada de algunas técnicas culturales en condiciones favorables contra especies que han generado resistencias en los cereales del norte de España 32
Tabla 12. Recomendaciones de las buenas prácticas de la escarda mecánica, haciendo hincapié en las condiciones adecuadas, durante la que se deben llevar a cabo........ 34
Tabla 13. Media de rendimiento de tomate (considerando el obtenido en polietileno como referencia) y control de las malezas (1) (considerando el testigo sin desherbar como referencia), obtenidos en diferentes tratamientos y acolchados orgánicos en un ensayo realizado en tomate en Montañana (España) ... 39
Tabla 14. Tres ejemplos de malezas resistentes y posibles técnicas de cultivo para su manejo integrado .. 45
A pesar de todos estos beneficios, los herbicidas mal utilizados pueden convertirse en un serio problema para el agricultor y la sociedad. Toda sustancia química usada en la agricultura puede provocar un efecto negativo en el ambiente si es mal aplicada o utilizada en altas dosis. El uso prolongado de un mismo herbicida puede causar problemas de resistencia de malezas, fenómeno que consiste en la aparición de biotipos tolerantes de una especie anteriormente controlada por el herbicida.

La resistencia de las malezas a los herbicidas se define como la capacidad hereditaria natural de algunos biotipos de una población para sobrevivir y reproducirse después de la aplicación de un herbicida que, bajo condiciones normales de uso, controla eficazmente a esa población. La presión de selección del herbicida sobre la población resistente crece en la medida que el compuesto es más frecuentemente utilizado, lo que resulta en la selección de biotipos resistentes.

El número de casos de especies de malezas resistentes a herbicidas ha aumentado considerablemente en las últimas tres décadas a nivel mundial. Sin embargo, aun siendo un problema ya conocido, se observa que los agricultores en muchos países detectan el problema de ineficacia del herbicida sobre la maleza cuando ya la resistencia es un hecho real; peor aún, a veces terminan utilizando otras sustancias herbicidas que tienen el mismo modo de acción que la anteriormente usada, lo que provoca que el problema se agrave. Los biotipos de malezas resistentes se convierten en un problema más grave que la propia maleza, ya que se está en presencia de una plaga con una peligrosidad aumentada debido a la dificultad de su eliminación.

Para tener una idea de este fenómeno a nivel global, basta indicar que según la base de datos internacional sobre resistencia a los herbicidas (http://www.weedscience.org/in.asp), hay ya más de 310 biotipos resistentes de 183 especies de malezas. El área total afectada, aunque no estimada, puede ser de varios miles de hectáreas en aquellos cultivos regularmente tratados con herbicidas en países como Estados Unidos de América, Canadá, de la Unión Europea, Australia y de la América del Sur.

Como existe una experiencia acumulada sobre distintos casos de resistencia de muchas especies ante los más variados compuestos herbicidas, es muy importante recopilar la información necesaria que sirva de base para un trabajo de prevención de este problema en otros sitios, países y regiones.

El mejor manejo de la resistencia es a través de la prevención, cuyas estrategias deben ser reales y eficaces, tanto técnica como económicamente. Una prevención efectiva es aquella capaz de reducir los problemas de presión de selección.

A su vez, en el orden práctico es importante detectar la posible resistencia mediante la evaluación regular en los campos tratados con herbicidas para lo que es necesario conocer el fenómeno y como evitarlo.

El presente material ha sido preparado por Andreu Tabernet Palou (Servicio de Sanidad Vegetal, Unidad de Malerherbología, Generalitat de Cataluña, Lleida, España),
Alicia Cirujeda Ranzenberger y Carlos Zaragoza Larios (Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España) quienes están involucrados en estudios y acciones de prevención y manejo de resistencia. El material constituye un importante aporte y guía para los extensionistas agrícolas en materia de prevención de resistencia de malezas a herbicidas. El material describe cuidadosamente las actividades que debe desarrollar el personal que trabaja con los agricultores y las estrategias a seguir en la prevención y manejo de la resistencia. La aplicación de la experiencia de estos especialistas en esta área puede ayudar a un mejor uso de los herbicidas en general y a su vez evitar la propia resistencia.

La FAO, consciente de la problemática existente con el uso de los herbicidas y la resistencia, ofrece el presente material con el deseo que el mismo resulte útil a todos los interesados, particularmente a técnicos y especialistas en países en desarrollo y que facilite el establecimiento de estrategias mejoradas para el control de estas plantas indeseables.
1. INTRODUCCIÓN

1.1 INTERÉS Y OBJETIVOS DE LA PUBLICACIÓN

La resistencia de las malezas a los herbicidas es un efecto secundario no deseado que se produce después de un uso reiterado de un determinado herbicida, por el cual una población de una maleza deja de ser controlada con la misma eficacia por un herbicida que, en condiciones normales, en un cultivo en concreto y a una determinada dosis de empleo, ejercería un control adecuado de la misma.

Su aparición implica la disminución del uso de un determinado herbicida, que debe ser sustituido por otro herbicida o, incluso, por otros métodos de control que no impliquen el uso de herbicidas, si se quiere mantener un nivel adecuado de la población de la maleza en el campo de cultivo.

Dado que el agricultor utiliza el herbicida más efectivo y más barato posible, la aparición de las resistencias le implica un incremento de costes (Orson, 1999; Preston et al. 2006). Por ello, la prevención se ve como obligatoria si se desea disponer de la mejor herramienta de control durante el máximo periodo de tiempo posible.

La prevención de la aparición de resistencia implica la adopción de un manejo integrado de las malezas, dado que ningún método de control por sí solo es capaz de controlarlas adecuadamente y de forma sostenible, (Storrie 2006)

La resistencia, sin embargo, también ha generado aspectos positivos (Owen, 1997). Así, han obligado a un mejor conocimiento de la biología de las distintas especies de malezas (Sans y Fernández-Quintanilla, 1997), a un mejor conocimiento de los herbicidas (Mallory-Smith y Retzingher, 2003) y, en definitiva, a una adopción de métodos de control integrado de malezas (Catizone y Satín, 2001).

El objetivo de esta publicación es hacer un repaso a los principales conceptos y cuestiones relacionadas con la resistencia de las malezas a los herbicidas, a fin de poder establecer las mejores estrategias de control de las mismas.

Con este propósito existen diversas iniciativas en las que se puede obtener valiosa información sobre esta temática. Además de libros que tratan de forma completa el problema de las resistencias, entre los que cabe citar, por ser muy reciente, Powles et al (2006), se pueden destacar, sin querer hacer una relación exhaustiva:

- Heap (2006) que mantiene la base de datos weedscience.com en la que se recoge de forma exhaustiva y siempre actualizada el estado de las resistencias a nivel mundial. Incluye además la bibliografía actual sobre cada una de las especies consideradas.
• WAHRI (2006) institución australiana dedicada exclusivamente a la prevención y manejo de poblaciones resistentes de malezas, que mantiene una excelente página Web.
• Beckie (2006) en Canadá, en el que se hace una excelente revisión de las estrategias y prácticas de manejo de *Lolium rigidum* y *Avena* sp.
• En Estados Unidos de América, existen diversos trabajos de transferencia de tecnología, como por ejemplo los numerosos boletines de información de los servicios de extensión que también aportan una excelente información.
• National Glyphosate Sustainability Working Group (2006): Trata de forma completa la problemática generada con las resistencias a glifosato y propone las acciones a tomar para prevenir y manejar esta resistencia.

Todos ellos son ejemplos de trabajos que deben ser consultados, ya que describen bien cómo actuar en el caso de que se presenten los problemas de resistencia.

Aun existiendo una gran cantidad de trabajos, se observa una gran dificultad para hacer llegar al agricultor y al proveedor de herbicidas la necesidad de prever la aparición de resistencias y adoptar para ello programas de control integrado de malezas.

Por esto, la presente publicación pretende aportar material de trabajo y dar información que ayude a gestionar las resistencias de las malezas a los herbicidas, dirigiéndose principalmente a los consultores y agricultores en general.

Así, a modo de compendio, los aspectos que se desarrollan en la presente publicación son:

• Una descripción de los distintos métodos para su detección, tanto en campo como en laboratorio.
• Los métodos de manejo de las poblaciones resistentes, bien sea usando herbicidas o con métodos de control no químicos, tanto mecánicos como de cultivo.
• Se hace hincapié en los aspectos económicos de la prevención de las resistencias.
• Métodos de transferencia de los conocimientos necesarios para la prevención y el manejo de las resistencias.

En definitiva, se trata de proporcionar una ayuda para que el agricultor adopte una actitud positiva y activa frente a las resistencias a los herbicidas, en lugar de esperar a resolver el problema una vez ya se haya presentado. Para ello, básicamente, se cuestionan, mediante preguntas, los principales aspectos que merecen ser destacados.
1.2 ¿A QUIÉN SE DIRIGE ESTA PUBLICACIÓN?

Esta publicación va dirigida a todos los actores que intervienen en el proceso del manejo de las resistencias, especialmente de países en desarrollo, en un intento de llamar la atención en la necesidad de controlar bien las malezas si se desea continuar disponiendo de una herramienta muy útil en el control de malezas como son los herbicidas.

Los protagonistas en este tema son diversos y con intereses a veces distintos, si bien todos tienen como objetivo común el conseguir un control adecuado de las malezas. En el gráfico siguiente se resume quien participa:

Gráfico 1. Estamentos que participan en el control de malezas y que deben coordinarse a fin de efectuar una buena prevención y manejo de su resistencia a los herbicidas

Este trabajo se dirige a todos estos estamentos que participan en la prevención y manejo de las resistencias, con el ánimo de dar pautas que contribuyen a la consecución de esta meta y a la coordinación de todos ellos.

1.3 IMPORTANCIA DE LAS RESISTENCIAS DE LAS MALEZAS A LOS HERBICIDAS

Las implicaciones prácticas de la resistencia de las malezas a los herbicidas afecta al agricultor porque le complican la forma en que debe actuar en su programa de control, al dejar de disponer de sustancias activas útiles. Estas herramientas de control suelen ser precisamente las óptimas en la relación coste eficacia. También le afecta debido a que no puede implantar el cultivo deseado, pues puede verse obligado incluso a cambiarlo con el fin de evitar en la medida de lo posible la presencia de la maleza en cuestión.

La resistencia también tiene interés para las empresas productoras de los fitosanitarios así como para el distribuidor de herbicidas.

En ambos casos, no se puede alargar la vida comercial de un producto ni se puede garantizar su eficacia. El herbicida deja de tener eficacia en el control de la maleza pero
no en todas las poblaciones, pues pueden quedar poblaciones de la maleza con la suficiente sensibilidad al herbicida para que todavía pueda ser utilizado, con ello la previsión de la eficacia queda enmascarada. Para resolver el problema deberá acudirse a otros productos o métodos de control, no siempre objetivo de su negocio.

La resistencia también influye en el registro de herbicidas, pues se genera la necesidad de justificar como se van a prevenir las resistencias (EPPO, 2002) con la consecuente complicación técnica y económica que ello supone.

Las reacciones del agricultor frente al problema de la resistencia son variadas (Monsanto, 2006; Farmassist, 2006; Preston et al. 2006):

- Una primera reacción es la de no preocuparse por este problema: “cuando llegue ya se resolverá”, es su respuesta. Entre tanto, se continúa usando el mismo producto debido a su bajo coste, aumentando la dosis de utilización.
- Una segunda reacción es recurrir a mezclas o cambiar a otros herbicidas con mayor eficacia.

También, a veces, el agricultor espera disponer de una solución “talismán” (Storrie, 2006), esperando especialmente que con la aparición de un nuevo herbicida se podrá resolver el problema.

De hecho esta última concepción es errónea. Como se insiste a lo largo de este trabajo, la solución vendrá de un manejo integrado de la maleza, en el que se incluyan tanto aspectos de tratamiento con herbicidas como de manejo del cultivo.

Se dispone de información excelente, que proporciona las pautas a seguir:

- Libros y Artículos científicos
- Revisiones bibliográficas
- Trípticos en español del CPRH
- Boletines informativos

1.4 ¿QUÉ ES UNA MALEZA RESISTENTE?

En la resistencia de las malezas a los herbicidas conviene tener presente diversas definiciones que se han de saber, pues de ello se deriva que se puedan diferenciar casos de resistencia de casos en que se obtienen bajas eficacias con el uso de un herbicida. Para ello hemos tenido en cuenta las definiciones que se recogen en el folleto del Comité para Prevención de las Resistencias a Herbicidas (Chueca et al. 2005)

En primer lugar ¿Qué es la resistencia de una maleza? Es la capacidad heredable de un biotipo de una planta para sobrevivir a la aplicación de un herbicida, al cual la población original era sensible.
Por otra parte, debemos distinguir también las malezas sensibles y las insensibles o tolerantes. Maleza **sensible** es un determinado biotipo de maleza que no sobrevive con la cantidad recomendada de uso de un herbicida. Maleza **tolerante o insensible** es un determinado biotipo de maleza que nunca se ha podido controlar con un determinado herbicida.

- La resistencia de las malezas a los herbicidas ha de verse desde un punto de vista agronómico.
- Una maleza controlada inicialmente con facilidad en un cultivo a una determinada dosis de herbicida, deja de ser controlada con este herbicida y se requiere un esfuerzo muy superior o no se puede controlar solo con herbicidas.

En estas definiciones se tiene en cuenta el concepto de **biotipo**, que es aquel grupo de plantas de una especie que presentan identidad para un determinado carácter, en este caso, sensibilidad o resistencia para un determinado herbicida, que las distingue del resto de individuos de la misma especie, con los que comparten los mismos caracteres restantes.

Se denomina **población** al conjunto de individuos de una especie de maleza que invaden un campo determinado.

1.5 PRINCIPALES ESPECIES AFECTADAS POR PROBLEMAS DE RESISTENCIA

Actualmente, el número de malezas resistentes es cada vez más numeroso. Mediante la bases de datos weedscience.com (Heap 2006), puede hacerse un seguimiento exhaustivo del estado de la situación.

Respecto a la magnitud de este fenómeno y su distribución a nivel mundial cabe decir que en el año 2006 se han reconocido oficialmente 311 biotipos resistentes, correspondientes a 183 especies, de ellas, 110 dicotiledóneas y 73 monocotiledóneas, afectando aproximadamente a 270 000 campos.

En el mapa anterior se puede observar la amplia distribución a nivel mundial de los biotipos resistentes. América del Norte, Australia y Europa son las regiones geográficas más afectadas, si bien América del Sur, China y amplias zonas de África también presentan problemas. Por ello se justifican todos los esfuerzos para transmitir los conocimientos necesarios para eludir los efectos de las resistencias.

Las diez especies de malezas que muestran más problemas de resistencias (Heap 2006) son las que se recogen en la Tabla 1.

<table>
<thead>
<tr>
<th>N.º</th>
<th>Especie</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lolium rigidum</td>
<td>Vallico</td>
</tr>
<tr>
<td>2.</td>
<td>Avena fatua</td>
<td>Avena loca</td>
</tr>
<tr>
<td>3.</td>
<td>Amaranthus retroflexus</td>
<td>Bledo blanco</td>
</tr>
<tr>
<td>4.</td>
<td>Chenopodium album</td>
<td>Bledo</td>
</tr>
<tr>
<td>5.</td>
<td>Setaria viridis</td>
<td>cola de rata</td>
</tr>
<tr>
<td>6.</td>
<td>Echinochloa crus-galli</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Eleusine indica</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Kochia scoparia</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Conyza canadensis</td>
<td>Coniza</td>
</tr>
<tr>
<td>10.</td>
<td>Amaranthus hibridus</td>
<td>Bledo</td>
</tr>
</tbody>
</table>

1.6 **PRINCIPALES HERBICIDAS-MAYORES CAUSANTES DE RESISTENCIA**

Teniendo en cuenta los herbicidas más afectados, también en la misma fuente citada anteriormente (Heap 2006), se puede observar que, actualmente, los grupos de herbicidas en los que se han reconocido más situaciones de resistencia son los inhibidores de la ACCasa, las triacinas y los inhibidores de la ALS. Destaca también el reciente pero incesante incremento de las resistencias a los herbicidas del grupo de las glicinas, glifosato en concreto (Powles y Preston, 2006).

Este último caso reviste una especial importancia, por su buena eficacia en general, por su elevado uso a nivel mundial y por la problemática que se genera en el manejo de los cultivos modificados genéticamente.
Las resistencias están extendidas por todas las zonas agrícolas del mundo.

Casi todos los herbicidas tienen poblaciones de malezas resistentes, sobre todo las triacinas, los inhibidores de la ACCasa (sulfonilureas) y los de la ALS (fops, dims). También glifosato, el herbicida de mayor consumo, las sufre.

En el Gráfico 3 puede observarse como desde pocos años después de iniciarse el uso de herbicidas empiezan a documentarse casos de resistencia, principalmente a auxinas sintéticas.

1.7 ASPECTOS ECONÓMICOS DE LA RESISTENCIA

La resistencia de las malezas a los herbicidas ¿Afecta económicamente al agricultor? ¿Qué es más barato, prevenir la aparición de las resistencias o manejarlas una vez han aparecido?

Este aspecto económico de las resistencias es, de siempre, motivo de preocupación (Orson, 1999; Mueller et al., 2005; Boerbrom, 2006).

Deben tenerse en cuenta dos aspectos:

- Si la aparición de la resistencia tarda muchos años en producirse, el coste de la prevención es superior a no realizarla. Con todo siempre es mejor prevenir.
- Si el herbicida que se deberá sustituir es de un coste inferior al que lo sustituirá o al método de control que se deberá adoptar, es más económico prevenir la resistencia.

Como el herbicida que se tiende a utilizar es el que resuelve el control de una maleza al menor coste, en general, la prevención será más económica que el adoptar una postura pasiva y no planificar ningún programa de prevención.

Es previsible que la prevención sea más económica si se realiza una aplicación abusiva y continuada del herbicida o se utilizan herbicidas con riesgo elevado de generar resistencias. En estos casos, la situación se agrava porque se provoca la aparición de resistencias en un plazo breve de tiempo y se maximiza si, además, el herbicida aplicado es barato.

En todo caso, este aspecto económico de las resistencias, debe analizarse a medio plazo, en un periodo de tiempo de al menos 8 años, a partir de los cuales es posible realizar el balance de una manera de proceder o de otra.

Este aspecto no inmediato del coste de las resistencias así como el hecho de que las resistencias se dan en campos puntuales, hace difícil que el agricultor valore en su verdadero interés el aplicar medidas de prevención.
2. ASPECTOS DE LA RESISTENCIA QUE SE DEBEN CONOCER

2.1 ¿CÓMO SE DETECTA Y CONFIRMA LA RESISTENCIA?

La resistencia de las malezas de los cultivos agrícolas a los herbicidas debe verse desde un punto de vista agronómico. Se trata de un concepto que en ocasiones puede presentar, al menos aparentemente, ciertas ambigüedades.

Se puede hablar de resistencia a un herbicida en una población de una determinada especie, siempre que, en condiciones normales, los individuos de esta especie se puedan controlar con dicho herbicida a una dosis que es selectiva del cultivo afectado.

Por tanto, en plantas insensibles a un determinado herbicida, se podrán encontrar poblaciones con distinto nivel de insensibilidad, pero no se justifica el considerar en ellas poblaciones resistentes.

La importancia y el interés que tiene la correcta determinación de los casos de resistencia, evitando falsos positivos, queda demostrada en la guía para determinación de las resistencias (HRAC, 1999; Heap, 2005).

Se debe ser especialmente riguroso en el caso de las poblaciones que tienen una resistencia incipiente o intermedia. En estos casos, a veces no resulta fácil confirmar la presencia de dicha resistencia.

Las condiciones que deben tenerse en cuenta para una correcta determinación de la resistencia son (Heap 2005):

- Se debe cumplir con la definición de resistencia aceptada por el HRAC: es un carácter heredable (Chueca, 2005).
- Se deben confirmar los datos usando protocolos científicos aceptables.
- La resistencia debe ser hereditaria.
- Se debe demostrar la importancia práctica en el campo.

Para que una maleza sea considerada resistente debe ser, en primer lugar, una planta que, por presentarse en suficiente número, afecte a un determinado cultivo y, en segundo lugar, ha de ser una planta que en condiciones normales es controlada por el herbicida en cuestión.

Cuando, con la utilización reiterada del herbicida, se pueden encontrar poblaciones que no son controladas por este herbicida, se puede hablar de poblaciones resistentes.

Los métodos para detectar resistencia son numerosos (Moss, 1995; Beckie, 2000). Si bien pueden detectarse en campo, mediante ensayos con el herbicida del que se sospecha la resistencia, también pueden hacerse ensayos en invernadero y en laboratorio.

En invernadero se tratan plantas de la población sospechosa en condiciones controladas. Esto permite asegurar con mayor rigor la presencia de la resistencia. Son los llamados ensayos con la planta entera que, en general, son los de mayor fiabilidad, especialmente para herbicidas como sulfonilureas, ureas, carbamatos, etc.
Los ensayos de laboratorio que frecuentemente consisten en la siembra de semillas en placa Petri, para posteriormente efectuar una evaluación del porcentaje de supervivencia, de la actividad fotosintética o de otros parámetros como medición de la inhibición de enzimas, etc. Estos métodos, si bien presentan limitaciones como en el caso de los grupos de herbicidas citados anteriormente, son muy rápidos y poco costosos económicamente, de modo que en muchas ocasiones dan una información interesante.

Se ha adoptado como criterio, que calculando la DE50, o dosis de herbicida que causa el 50 por ciento de eficacia, una población es resistente si su DE50 es 10 veces superior a la DE50 de la población utilizada como estándar sensible (Heap, 2005).

En todos y cada uno de las pruebas se deben incluir una población estándar de la misma especie sensible y otra resistente al herbicida estudiado. Estas poblaciones estándar pueden ser de la misma zona que las poblaciones a estudiar o de otras zonas, pero es necesario que cumplan con los requisitos de sensible y resistente, respectivamente.

En las poblaciones estándar sensibles normalmente se puede garantizar que no han recibido nunca tratamiento con dicho herbicida.

- **Es muy importante la detección precoz de las resistencias.**
- **El primer síntoma es que la maleza no se muere como se moría anteriormente.**
- **Existen numerosas pruebas para la detección de resistencias, tanto en campo, como en invernadero o laboratorio.**

Una vez que se dispone de poblaciones estándar sensibles que han permitido detectar poblaciones claramente resistentes, se facilita mucho la detección de poblaciones con resistencia intermedia o incipiente, cuya sensibilidad se encuentra entre la de ambas poblaciones estándar. (Véase Tabla 2)

Tabla 2. Ejemplos de poblaciones resistentes estándar citadas en la bibliografía
(Powles y Preston, 1995)

<table>
<thead>
<tr>
<th>Biotipo</th>
<th>Resistente a</th>
<th>Mecanismo de resistencia</th>
<th>Referencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR3</td>
<td>Ariloxifenoxypropionatos</td>
<td>Resistente ACCasa</td>
<td>Tardif et al., 1993</td>
</tr>
<tr>
<td></td>
<td>Ciclohexanodionas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLR31</td>
<td>Ariloxyfenoxipropionatos</td>
<td>Resistente ACCasa</td>
<td>Holtum et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Ciclohexanodionas</td>
<td>Resistente ALS</td>
<td>Häusler et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Sulfonilureas</td>
<td>Metabolismo</td>
<td>Tardif & Powles, 1994</td>
</tr>
<tr>
<td></td>
<td>Imidazolinonas</td>
<td>Repolarización de la</td>
<td>Christopher et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Dinitroanilinas</td>
<td>membrana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloracetamidas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoxazolidinonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbamatos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLR69</td>
<td>Ariloxifenoxypropionatos</td>
<td>Resistente ACCasa</td>
<td>Burnet et al., 1993a</td>
</tr>
<tr>
<td></td>
<td>Ciclohexanodionas</td>
<td>Resistente ALS</td>
<td>Burnet et al., 1993b</td>
</tr>
<tr>
<td></td>
<td>Sulfonilureas</td>
<td>Metabolismo</td>
<td>Burnet et al., 1994a</td>
</tr>
<tr>
<td></td>
<td>Imidazolinonas</td>
<td>Repolarización de la</td>
<td>Häusler et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Triazinas</td>
<td>membrana</td>
<td>Preston, Tardif, Christopher y</td>
</tr>
<tr>
<td></td>
<td>Ureas substituidas</td>
<td></td>
<td>Powles, sin publicar</td>
</tr>
</tbody>
</table>
2.2 **MECANISMOS DE RESISTENCIA A LOS HERBICIDAS Y TIPOS DE RESISTENCIA**

Un herbicida causa fitotoxicidad sobre la maleza siguiendo un proceso de cuatro etapas, (Catizone y Satin, 2001). En primer lugar, el herbicida es interceptado por la maleza, quedando retenido durante un cierto tiempo en el exterior de la planta, para después ser absorbido al interior de la misma. Después de un transporte hasta el lugar de acción, periodo durante el cual puede ser metabolizado por la planta a un estado de la molécula más activo, ejerce su actividad fitotóxica inhibiendo la actividad de un proceso metabólico vital para la maleza.

Se distinguen dos tipos de mecanismos por los cuales una maleza llega a ser resistente. Uno es la alteración del lugar de acción, (“target site”), otro es debido a un cambio en cualquiera de los procesos que intervienen en la acción del herbicida y que se conoce como resistencia de tipo metabólico, (“non target site”).

Son, por tanto, múltiples las maneras con que una maleza puede ser resistente. El más claro, porque la maleza es o no resistente, es cuando se altera el lugar de acción del herbicida. Es el que frecuentemente se describe como efecto llave – cerradura.

Sin embargo, cualquier cambio que impida la retención, absorción o transporte o metabolización del herbicida, también generará individuos resistentes. A veces, por ejemplo, un aumento en el grosor de la cutícula, impide la absorción de forma completa del herbicida en la planta, como se ha podido observar en una población de *Lolium rigidum*, resistente a diclofop, (De Prado *et al.*, 2001).

También se ha citado algún caso en el que la planta confina el herbicida en una vacuola y no le permite llegar a su lugar de acción.

Hay dos grandes grupos de mecanismos de resistencia:

- **Por cambio en el lugar de acción.**
- **Por cambios en alguna de las fases de actuación del herbicida (intercepción, retención, absorción, transporte o metabolización): resistencia por metabolismo.**

Se describe como mecanismo de resistencia al proceso mediante el que una planta consigue anular la actividad fitotóxica del herbicida. (Chueca *et al.*, 2005).
En un individuo resistente a un herbicida se pueden encontrar diversas situaciones en función de los mecanismos de resistencia que posea. Así, se entiende por resistencia cruzada cuando el biotipo de planta que ha desarrollado un solo mecanismo de resistencia a un herbicida éste también le permite ser resistente a otros herbicidas con el mismo modo de acción Chueca et al. (2005).

Se dice que un biotipo resistente posee resistencia múltiple cuando ha desarrollado uno o varios mecanismos de resistencia a varios herbicidas con distintos modos de acción.

2.3 LA PRESIÓN DE SELECCIÓN

La presencia de individuos resistentes en una población es un hecho, en sí mismo, ajeno al propio herbicida; éste lo que hace es seleccionar a los biotipos de la población con el carácter que les confiere insensibilidad al efecto herbicida. Por ello, surge el concepto de presión de selección de un herbicida, que es el efecto del tratamiento herbicida sobre el conjunto de malezas infestantes de un campo, por el que es capaz de seleccionar biotipos resistentes.

Es muy importante tener en cuenta que la intensidad de la presión de selección depende del tipo de tratamiento y/o de herbicida, de la forma y frecuencia de aplicación, de las características biológicas de la maleza y del cultivo.

La presión de selección de un herbicida debe contemplarse en el conjunto de todas las acciones realizadas en el campo de cultivo: laboreo, rotaciones, uso de otros métodos de control y de la forma de cultivar en general. Así, un herbicida con baja presión de selección y que es usado de forma esporádica alternando con métodos no químicos de control, presentará un riesgo bajo de provocar resistencias.

Entre los distintos grupos de herbicidas, unos poseen una selección de presión superior a otros. Así una estimación de Storrie (2005) de la presión de selección ejercida es la que se recoge en la siguiente Tabla 3.

Tabla 3. Número de años necesarios de aplicación de un herbicida antes de que se presenten resistencias de las malezas. (Preston et al. 1999 en Storrie 2006)

<table>
<thead>
<tr>
<th>Grupo de Herbicidas (HRAC)</th>
<th>Años de aplicación</th>
<th>Riesgo de que se presente resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6-8</td>
<td>Alto</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>Alto</td>
</tr>
<tr>
<td>C</td>
<td>10-15</td>
<td>Medio</td>
</tr>
<tr>
<td>D</td>
<td>10-15</td>
<td>Medio</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>Medio</td>
</tr>
<tr>
<td>I</td>
<td>No conocido</td>
<td>Bajo</td>
</tr>
<tr>
<td>L</td>
<td>>15</td>
<td>Bajo</td>
</tr>
<tr>
<td>M</td>
<td>15</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

Ver cuadro completo de clasificación de los herbicidas en el apartado 3.1.

Los herbicidas que consiguen que tras pocos años aparezca la resistencia es que ejercen una elevada presión de selección.

Otra apreciación es la de Beckie (2006), que resume de forma ilustrativa en un triángulo, la presión de selección que poseen los distintos grupos de herbicidas, clasificados por sus mecanismos de acción (Gráfico 4).
Dado que la presión de selección ejercida es propia de cada herbicida, actualmente se plantea la necesidad de utilizar los herbicidas en una secuencia determinada. Así, en Moss (2006) se describe y justifica una secuencia determinada de herbicidas para el control de Alopecurus myosuroides.

2.4 Adaptabilidad (“fitness”)

Cualquier aspecto de la biología de la especie contribuye a la “fitness”: capacidad y velocidad de germinación o rebrote, vigor en el desarrollo, fecundidad, etc. En cada uno de ellos un biotipo puede adquirir, o perder, ventaja para la supervivencia frente a otros biotipos de la misma especie.

La expresión del carácter resistencia a los herbicidas puede suponer una “fitness” superior, inferior o igual a 1. Cuando es superior a 1 los individuos resistentes poseen una ventaja superior para la supervivencia que los sensibles, por el contrario, cuando es inferior a 1 los individuos resistentes están en desventaja, también se dice que están penalizados o que la resistencia les supone un coste, respecto a los individuos sensibles.

Con un valor de “fitness” inferior a 1, una vez se detecta la resistencia, si se deja de aplicar el herbicida que la causa, la población vuelve de nuevo, con el tiempo, a estar formada por individuos sensibles.

2.5 La inversión de flora

Finalmente, otro concepto que se debe tener en cuenta es el de la inversión de flora. Este fenómeno consiste en el cambio de la composición de la flora de un campo sometido a un control de las malezas presentes en el mismo (Chueca et al., 2005).

Un ejemplo es el incremento de malezas gramíneas que se produce en cultivos de cereal de invierno si se abusa del empleo de herbicidas hormonales que controlan únicamente especies dicotiledóneas. Otro ejemplo es el aumento de Sorghum halepense en campos de maíz en los que sólo se emplean herbicidas que controlan malezas anuales y no ejercen ningún control sobre esta gramínea perenne.

Es importante conocer este concepto, primero para no confundir resistencia con inversión de flora. Por otra parte, como se verá en el apartado de control integrado, cabe saber que un caso especial de inversión de flora es cuando permitimos que individuos resistentes ajenos a la finca, invadan la misma, lo que se convierte en fuente posible de aparición de resistencia.
3. PREVENCIÓN Y MANEJO DE LA RESISTENCIA

3.1 EL CONTROL QUÍMICO DE LAS MALEZAS EN EL MANEJO DE LAS RESISTENCIAS

Dado que la resistencia de las malezas a los herbicidas surge como consecuencia de un uso inadecuado de los herbicidas, es imprescindible un mayor conocimiento de los mismos, con lo cual se pueda razonar una mejor utilización de los mismos y adoptar una actitud positiva y activa frente a las resistencias.

De hecho, hay muchas decisiones a tomar en la prevención y manejo de las resistencias que han de basarse en un correcto conocimiento de la forma de actuación y mecanismos de resistencia de cada sustancia activa.

Por ello, en este apartado repasaremos qué herbicidas están disponibles, qué mecanismo de acción principal poseen y cuáles están causando el mayor número de problemas en cuanto a la resistencia de las malezas.

Haremos también una especial mención al herbicida glifosato, dada la relevancia que en este producto están adquiriendo las resistencias, pues siendo el de mayor utilización a nivel mundial, con la siembra de cultivos modificados genéticamente todavía se ha extensificado más su uso.

3.1.1 Herbicidas disponibles y la clasificación HRAC

Los herbicidas disponibles en el mercado son numerosos. Se clasifican por su mecanismo de acción en 24 grupos (Mallory-Smith, 2003) lo que se conoce como clasificación del Grupo de Trabajo HRAC (ver Tabla 4).

Así, en el mercado español se dispone, tal como se describe en la siguiente Tabla 4, de más de 100 sustancias activas que forman parte de más de 600 formulados comerciales.

La actividad de los herbicidas para conseguir la eliminación de la maleza se basa en actuar sobre procesos metabólicos esenciales.

A pesar de que se dispone de un elevado número de sustancias activas herbicidas y que el número de mecanismos de acción es relativamente elevado, se da la circunstancia de que para el control de una determinada especie en un cultivo en concreto se dispone de pocas opciones distintas.

<table>
<thead>
<tr>
<th>Se dispone de un elevado número de sustancias activas para el control de malezas, pero:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Para cada maleza en un cultivo determinado las opciones suelen ser escasas.</td>
</tr>
<tr>
<td>• Los herbicidas nuevos se generan con gran dificultad y no siempre poseen nuevos mecanismos de acción sobre las malezas.</td>
</tr>
</tbody>
</table>

A cada grupo se le asigna una letra distinta (HRAC) o un número (WSSA).
Así, para el control de *Lolium rigidum* o de *Alopecurus myosuroides* en cereales de invierno en España (2006) solo se dispone de 8 sustancias activas pertenecientes a 4 grupos distintos. Para el control de *Sorghum halepense* en maíz se dispone de 3 herbicidas que pertenecen a un mismo grupo. Para el control de *Phalaris* se dispone de 8 sustancias activas pertenecientes a 4 Grupos HRAC distintos.

Este aspecto es de vital importancia en el manejo de resistencias. En realidad, la capacidad de cambio o alternancia de sustancias activas es más limitada de lo que cabría pensar en principio. Por ello, cualquier cambio en el manejo del cultivo es útil para retrasar la aparición de resistencias. Por ejemplo, alternar de sustancia activa aunque pertenezca al mismo grupo, aún no siendo lo mejor, ya supone un pequeño cambio. Cambiar de momento de aplicación, en preemergencia en lugar de postemergencia, tampoco es lo ideal pero ya es aprovecharse de una variación útil en nuestro modo de actuar.

Dada esta escasez de alternativas en el conjunto de herbicidas y dado que el hallazgo de una sustancia activa que pertenezca a un grupo distinto es muy difícil, se hace imprescindible la combinación del uso de herbicidas con otros métodos de control.

En un apartado anterior ya se ha indicado cuáles son los grupos de herbicidas que, por tener una presión de selección mayor, presentan un mayor riesgo de generar resistencias a una determinada maleza en un cultivo determinado.

Los factores propios de un herbicida que hacen que aumente su riesgo de generar resistencias son:

- Actuar sobre un único punto de acción.
- Tener una eficacia elevada y muy regular.
- Poseer persistencia en el control de malezas.
- Ser fácilmente metabolizado por las malezas.
- Ser aplicado en grandes extensiones y de forma repetida en un ciclo de cultivo o de forma continuada a lo largo de los años.
- Ser utilizado fuera de las condiciones de uso de la etiqueta, bien sea a una dosis excesivamente superior o inferior o en momentos demasiado precoces o tardíos.

Los herbicidas se deben usar de acuerdo con las instrucciones de la etiqueta:
- Estado de desarrollo de la maleza adecuado.
- Estado del cultivo adecuado.
- Dosis correcta
- Condiciones de clima y suelo apropiados

Recuerde:
- Utilice la dosis mínima que consiga la máxima eficacia.
<table>
<thead>
<tr>
<th>GRUPO HRAC</th>
<th>MODO DE ACCIÓN</th>
<th>FAMILIA QUÍMICA</th>
<th>SUSTANCIA ACTIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inhibidores de acetil CoA carboxil-lasa (ACCasa)</td>
<td>Ariloxifenoxipropionatos (FOP’s)</td>
<td>clodinafop, diclofop-metil fenoxaprop-p-ethyl, fluzazifop-p-butil haloxifop-r-metil, propaquizafop quizalofop-p-ethyl cletodim, cicloxidim, tralkoxidim, profoxidim, tepraloxidim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ciclohexanodionas (DIM’s)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Inhibidores de la acetolactato sintetasa ALS</td>
<td>Sulfonilureas</td>
<td>amidosulfuron, azimsulfuron bensulfuron-metil, cinosulfuron clorsulfuron, flazasulfuron, flupirsulfuron imazosulfuron, iodosulfuron mesosulfuron, met sulfuron, nicosulfuron, prosulfuron rimsulfuron, sulfosulfuron, tifensulfuron, triasulfuron, tribenzuron-metil imazametabenz, imazamox blispiramet-bn florasulam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imidazolinonas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pirimidiniltiobenzoatos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triazolpirimidinas</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>Inhibidores de la fotosíntesis en el fotosistema II</td>
<td>Triazinas</td>
<td>atrazina, simazina, terbutilazina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triazinonas</td>
<td>metribuzina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uracilos</td>
<td>lenacilo, terbaco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piridazinonas</td>
<td>cloridazona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fenil-carbamatos</td>
<td>desmediflam, fenmediflam</td>
</tr>
<tr>
<td>C2</td>
<td>Inhibición de la fotosíntesis en el fotosistema II</td>
<td>Ureas</td>
<td>clortoluuron, diuron, fluometurón, isoproturón, linuron, metobromuron, propanil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amidas</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Inhibición de la fotosíntesis en el fotosistema II</td>
<td>Nitrilos</td>
<td>bromoxinil, ioxinil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzoiladiazinona</td>
<td>bentazona</td>
</tr>
<tr>
<td>D</td>
<td>Aceptor de electrones en el fotosistema I</td>
<td>Bipiridilinas</td>
<td>diquat, paraquat</td>
</tr>
<tr>
<td>E</td>
<td>Inhibición de la protoporfirina oxidasa (PPO)</td>
<td>Difeniletieres</td>
<td>bifenox, oxifluorfen pirafufen-etil oxadiazón</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fenilpirazoles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxadiazoles</td>
<td></td>
</tr>
</tbody>
</table>
| F1 | Blanqueadores: inhibición de la biosíntesis de carotenos (PDS) | Piridazinonas | -----
<p>| | | Piridincarboxamidas | diflufenican |
| | | Otros | benflubutamida, fluocloridona |
| F2 | Blanqueadores: inhibición de la 4-HPPD | Triquetonas | sulcotriona, mesotriona |
| | | Isoxazoles | isoxaflutol |</p>
<table>
<thead>
<tr>
<th>GRUPO HRAC</th>
<th>MODO DE ACCIÓN</th>
<th>FAMILIA QUÍMICA</th>
<th>SUSTANCIA ACTIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>Blanqueadores: inhibición de la biosíntesis de los carotenos</td>
<td>Difeniletetraclonas, Isoxazolidinonas, Triazoles</td>
<td>aclonifen, clomazón, amitrol (=aminotriazol)</td>
</tr>
<tr>
<td>G</td>
<td>Inhibición de la EPSP asa</td>
<td>Glicinas</td>
<td>glifosato</td>
</tr>
<tr>
<td>H</td>
<td>Inhibición de la glutamina sintetasa</td>
<td>Ácidos fosfínicos</td>
<td>glufosinato</td>
</tr>
<tr>
<td>I</td>
<td>Inhibición de la DHP sintetasa</td>
<td>Carbamatosis</td>
<td>asulam</td>
</tr>
<tr>
<td>K1</td>
<td>Inhibición del acoplamiento de los microtúbulos</td>
<td>Ácido benzoico, Benzamidas, Dinitroanilinas</td>
<td>clortal, propizamida, benfluralina, etalfluralina, orizalina, pendiometalina, trifluralina</td>
</tr>
<tr>
<td>K2</td>
<td>Inhibición de la mitosis</td>
<td>Carbamatosis</td>
<td>clorprofam</td>
</tr>
<tr>
<td>K3</td>
<td>Inhibición de la división celular</td>
<td>Acetamidas, Benzamidas, Cloroacetamidas</td>
<td>napropamida, propizamida, acetocloro, alacloro, dimetanamida, s-metolacloro, propacloro</td>
</tr>
<tr>
<td>L</td>
<td>Inhibición de la síntesis de la pared celular</td>
<td>Benzamidas, Nitrilos</td>
<td>isoxabен, diclofenil</td>
</tr>
<tr>
<td>M</td>
<td>Disfunción de la membrana</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>N</td>
<td>Inhibición de la síntesis de lípidos. No inhiben la ACC asa</td>
<td>Tiocarbamatosis, Benzoïnofuranos</td>
<td>molinato, prosulfocarb, tiobencarb, tiocarbazoilo, trialato, benfuresato, etofumesato</td>
</tr>
<tr>
<td>O</td>
<td>Acción similar a la Del ácido indolacético (síntesis de auxinas)</td>
<td>Ácidos fenoxi-carboxílicos, Ácidos benzoicos</td>
<td>2,4-D, 2,4 DP, MCPA, MCPP</td>
</tr>
<tr>
<td>P</td>
<td>Inhibición del transporte de auxinas</td>
<td>Fitalamatos</td>
<td>naptalam</td>
</tr>
<tr>
<td>R</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>S</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Z</td>
<td>Desconocido</td>
<td>Pirazolín, Organosorcineales</td>
<td>difenzoquat, ----</td>
</tr>
</tbody>
</table>
3.1.2 **Mezclas, rotaciones y secuencias de herbicidas**

Un aspecto que merece atención son las mezclas que se puedan realizar con herbicidas (Arvalis, 2006; Beckie, 2006; Moss, 2005). Así mismo, debemos diferenciar las secuencias de tratamiento y las rotaciones de las mezclas.

Entendemos por **secuencia de tratamiento** con herbicidas a la aplicación de dos o más herbicidas o de un mismo herbicida aplicado a dosis fraccionada, en el mismo cultivo pero separadas en el tiempo, considerando normalmente de 1 a 2 semanas. En este caso, cuando el tiempo de separación es demasiado breve, por ejemplo unas horas, la secuencia puede equivaler a una mezcla.

Por **rotación**, sin embargo, se entiende a la aplicación de distintos herbicidas pero en ciclos de cultivo distintos.

Al **mezclar** dos o más sustancias activas el primer criterio que se sigue es el de aumentar su eficacia. Este aumento se refiere a un control de un mayor número de malezas o a la eficacia conseguida sobre una determinada maleza que ya pueda presentar más dificultad en ser controlada empleando una sola sustancia activa.

Sin embargo, las mezclas tienen otras consecuencias, a veces no bien conocidas todavía, que están relacionadas con su mecanismo de acción, del mecanismo por el que son metabolizadas por la planta y de las interacciones que pueda haber entre ellas mismas. Por supuesto, los herbicidas mezclados han de ser físicamente y químicamente compatibles (no debe flocular, dar reacciones extrañas, etc.).

Al mezclar herbicidas con distinto mecanismo de acción puede suceder que se seleccionen biotipos con resistencias a ambas sustancias activas en los individuos supervivientes.

El mecanismo de metabolización de los herbicidas también tiene su influencia cuando se realizan mezclas. Si los herbicidas son metabolizados de la misma manera, la presión de selección de la mezcla continúa siendo elevada.

Finalmente, se debe considerar la posible interacción entre las sustancias activas. Así, se puede producir una simple adición de las eficacias o bien se puede producir una sinergia, lo que significa que la eficacia obtenida es superior a la simple adición de ambas eficacias. Cabe también una tercera posibilidad, y es que ocurra un antagonismo entre ellas. En este último caso, la eficacia obtenida será inferior a la esperada.

Por todo ello, la dosificación en las mezclas de herbicidas es variable. En algunos casos, deben ser utilizadas las mismas dosis que se utilizarían por separado, en el caso de ocurrir sinergia, las dosis pueden ser inferiores y en el caso de ocurrir antagonismo deberán aumentarse las dosis para obtener los mismos efectos o usar estos productos de forma secuenciada para evitar tener que usar dosis más elevadas.

Los criterios a tener en cuenta para realizar una mezcla, según Beckie (2006) son:

- Los herbicidas mezclados han de tener una eficacia similar sobre las malezas objetivo.
• Su persistencia también ha de ser de la misma magnitud.
• Los mecanismos de degradación por parte de las malezas han de ser distintos.
• Las dosis deben ajustarse a las interacciones existentes entre los herbicidas mezclados.

Empleando la rotación y la mezcla de herbicidas de forma adecuada, se puede conseguir un retraso notable en la aparición de resistencias (Powles et al. 1997). En todo caso, debe conseguirse la suficiente eficacia para que el banco de semillas no se enriquezca con nuevos individuos que posean resistencia a los herbicidas.

Un aspecto controvertido es si se debe continuar o no el uso de un herbicida con problemas de resistencia como componente de una mezcla. Un posible criterio es considerar que este producto sea inútil, “muerto”, y que deba abandonarse su uso. Otra opinión, opuesta, es que no haga falta abandonar el uso de este herbicida, ya que sigue controlando otras especies y puede resolverse la situación mezclándolo con otro que sea eficaz sobre la maleza resistente.

No obstante, debe tenerse en cuenta que si se adopta esta segunda postura, se puede facilitar que se genere resistencia sobre otras especies de maleza frente a este mismo herbicida.

3.1.3 La resistencia de las malezas a glifosato

Como ya se ha indicado, un herbicida que merece una especial atención es el glifosato.

En una reciente revisión, Powles y Preston (2006) describen la situación actual de las resistencias que afectan a esta sustancia activa.

El consumo a nivel mundial de este herbicida es muy elevado, pues se aplica en numerosos cultivos tanto en presiembra o pretrasplante como más tarde en aplicaciones dirigidas.

Su utilización en sistemas de conservación del suelo y, más recientemente, en cultivos modificados genéticamente que soportan su aplicación, también ha hecho incrementar su utilización. Los tratamientos en zonas no agrícolas y forestales son también importantes.

Dada su gran utilización, la aparición de biotipos resistentes también ha sido remarcable. Así, Heap (2006) reconoce ya 12 especies de malezas que presentan resistencia a glifosato. Esto ha resultado ser sorprendente por el hecho de que las resistencias han aparecido después de un largo tiempo de uso, superior a 20 años, y de la utilización de grandes cantidades de producto. Así, se preveía como muy improbable que esta resistencia pudiera aparecer (Bradshaw et al. 1997).

Actualmente no sólo hay resistencias a glifosato sino que éstas aumentan tanto en el número de especies como en el número de localidades a nivel mundial. La más reciente es la de Sorghum halepense en Argentina, que reviste una especial importancia por tratarse de una planta perenne de gran importancia en los cultivos de verano, como maíz y soja, (Leguizamon 2006).

Los mecanismos por los que las malezas consiguen evitar la acción de glifosato son tanto la mutación del gen que expresa el aminoácido 106 de la enzima 5-enolpyruvylshikimate-3-fosfato sintetasa (EPSPS) como una resistencia metabólica en la que se reduce el transporte del herbicida hasta los meristemos de la planta. En Heap (2006) se cita una población de *Lolium rigidum* que posee una resistencia múltiple a glifosato con hasta 3 mecanismos de acción distintos.

3.1.4 El uso de cultivos modificados genéticamente resistentes a glifosato y el control de malezas

El uso de cultivos modificados genéticamente resistentes a herbicidas tiene una doble vertiente desde el punto de vista del control de malezas.

Usados de forma esporádica y justificada, no de forma continua y por sistema, aportan una posibilidad más de rotación de herbicidas y, en ocasiones, son una buena herramienta para el control de malezas. Esta posibilidad ayuda a prevenir la aparición de resistencia a los herbicidas.

Sin embargo, usados de forma continua, aumentan los riesgos inherentes al uso de herbicidas: inversiones de flora, residuos en las aguas y resistencias.

Todo esto es especialmente relevante en el caso del herbicida glifosato. Por su amplio espectro de acción y su elevada eficacia puede promover las inversiones de flora, sobre todo cuando se usa de forma reiterada a lo largo de los años en amplias extensiones. Además, es un herbicida de bajo coste y puede fácilmente ocurrir que su uso sea masivo.

Es particularmente peligroso si existen malezas de la misma especie que el cultivo, de manera que se puedan cruzar, heredando las malezas la resistencia del cultivo. Son ejemplos el arroz salvaje en el cultivo del arroz, las crucíferas y la colza. En el caso de que no se dé esta situación, el peligro proviene de un uso repetitivo del herbicida.

Un aspecto positivo del uso de glifosato en cultivos modificados genéticamente es que permite resolver con relativa facilidad algunos casos de infestación de malezas, como son las infestaciones tardías de gramíneas anuales en el cultivo del maíz o soja, en que ya no se puede intervenir con otros herbicidas, que tienen menor eficacia y un coste superior.

Las recomendaciones de la Cámara Argentina de Sanidad Agraria y Fertilizantes (CASAFE, 2006) para la prevención y manejo de la resistencia de *Sorghum halepense*, en el cultivo de soja modificada genéticamente para resistencia a glifosato en Argentina, son:

- Sembrar la soja RR en un lote libre de malezas emergidas, mediante la aplicación previa de un herbicida recomendado y, si se observaran plantas del biotipo
resistente, proceder a su corte mecánico para evitar la producción de semillas y su consiguiente diseminación.

- Sembrar semilla certificada, libre de cualquier otra semilla de maleza. Utilizar semillas de lotes infestados podría dispersar la maleza hacia otros lotes.
- Durante la cosecha del cultivo, comenzar por los lotes que no están infestados de malas hierbas y dejar para el final los que sí lo están.
- Finalizada la cosecha, realizar una exhaustiva limpieza de las máquinas cosechadoras dentro del lote, juntar y quemar -con todas las prevenciones de seguridad- todo el material obtenido en esta operación.
- Vigilar constantemente los lotes antes y después de cada aplicación de herbicidas, para detectar cualquier fallo de control lo antes posible.
- Uno de los objetivos principales debe ser evitar que las plantas de *Sorghum halepense* florezcan y produzcan semillas. En caso de que formen semillas, será necesario cortar y destruir, utilizando un método bioseguro, las panículas de esta mala hierba para que las semillas no se diseminen.

Los cultivos modificados genéticamente que son insensibles a un herbicida, son un arma de doble filo para el control de malezas:

- Por un lado permiten una mejor rotación de herbicidas.
- Pero por otro lado permiten el abuso de utilización de un determinado herbicida. Por ello, hay que usarlos con cuidado, siguiendo estrictamente las indicaciones de la etiqueta.

Referencias sobre control químico de malezas y resistencias

Neve P. y Powles S. 2005 High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 95, 485–492.

3.2 SISTEMAS NO QUÍMICOS EN LA LUCHA CONTRA LA RESISTENCIA DE LAS MALEZAS

3.2.1 Introducción
En general, en la información disponible sobre prevención de resistencias para el técnico o el agricultor se suele poner énfasis en la alternancia de los herbicidas con diferente modo de acción, dejándose de lado otros sistemas de escarda que, aunque se reconozca su utilidad para evitar la presión de selección de los herbicidas en la flora, apenas se describen como alternativas, dando por supuesto que se conocen sobradamente sus características. Estos métodos no químicos suelen tener la fama de ser anticuados y difícilmente mecanizables pero actualmente adquieren una gran importancia en la prevención y control de las malezas resistentes a los herbicidas.

En este capítulo se describen brevemente algunos métodos preventivos y agronómicos, como son las rotaciones, los cultivos asociados, el retraso de fecha de siembra, entre otros. Se comparan ventajas e inconvenientes de los métodos físicos, que incluyen escarda manual, siega, laboreo convencional, escarda de precisión, así como la escarda térmica. Se presta especial atención a las cubiertas o acolchados con plásticos biodegradables y el papel, así como al uso de restos vegetales como cubiertas del suelo, sus efectos directos (de barrera y alelopatía) e indirectos sobre el medio.

3.2.2 Métodos preventivos
Son todos aquellos que tratan de evitar la difusión de las semillas y propágulos y, por tanto, el establecimiento de especies problemáticas. Son medidas importantes, muy eficaces a largo plazo pero que, desgraciadamente y por desprecio a su aparentemente baja eficacia, se practican poco. En general, persiguen la reducción del banco de semillas en el suelo, evitando la invasión de nuevas especies autóctonas o exóticas (uso de semilla certificada, sustratos y abono orgánico (compost) limpios, dificultando la propagación de las vivaces (mejorando el drenaje, con escarda en rodales, en poscosecha,...) y, sobre todo, mediante la detección precoz de las infestaciones (Zaragoza, 1999). En la prevención hay que tener en cuenta los principios de estrategia general (Tabla 5) y los factores de riesgo de aparición de resistencias (Tabla 6).

Tabla 5. Principios de estrategia general para prevenir resistencias a herbicidas
(a partir de WRAG, 2003)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Valorar los factores de riesgo de resistencia en cada campo, parcela o propiedad (cuadro 5.2). La identificación precisa de las malezas es imprescindible.</td>
</tr>
<tr>
<td>2.</td>
<td>Vigilar regularmente los campos e intervenir precozmente para prevenir la diseminación de los rodales o manchas (“scouting”, registros escritos, escarda manual).</td>
</tr>
<tr>
<td>3.</td>
<td>Minimizar la diseminación de semillas dentro de los campos y entre ellos (limpieza de máquinas, equipos, agua de riego, estiércol, pastoreo,...).</td>
</tr>
<tr>
<td>4.</td>
<td>Integrar métodos químicos y no químicos en una estrategia a largo plazo (laboreo, rotación, fecha de siembra, selección varietal, manejo del riego).</td>
</tr>
</tbody>
</table>
Tabla 6. Factores de riesgo de aparición de resistencias según prácticas agronómicas (CPRH, 2000 y WRAG, 2003)

<table>
<thead>
<tr>
<th>Factores</th>
<th>Riesgo bajo</th>
<th>Riesgo alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternativa de cultivos</td>
<td>Rotación completa</td>
<td>Monocultivo</td>
</tr>
<tr>
<td>Densidad de infestación de malezas</td>
<td>Baja</td>
<td>Alta</td>
</tr>
<tr>
<td>Sistema de laboreo</td>
<td>Laboreo anual</td>
<td>No laboreo continuo</td>
</tr>
<tr>
<td>Tipo de escarda</td>
<td>Sólo mecánica</td>
<td>Sólo con herbicidas</td>
</tr>
<tr>
<td>Tipos de herbicidas aplicados en la rotación</td>
<td>Con distintos modos de acción</td>
<td>Con un solo modo de acción</td>
</tr>
<tr>
<td>Eficacia obtenida con los herbicidas en los últimos 3 años</td>
<td>Buena</td>
<td>Ha ido disminuyendo paulatinamente en los últimos años</td>
</tr>
<tr>
<td>Presencia de resistencias en la zona</td>
<td>No</td>
<td>Sí</td>
</tr>
</tbody>
</table>

3.2.3 Métodos agronómicos

Los métodos agronómicos o culturales incluyen, principalmente, las rotaciones y los cultivos asociados. Las rotaciones de cultivos son tan valiosas para luchar contra las malezas como para defenderse de las plagas y enfermedades. Éstas necesitan las plantas cultivadas para proliferar, pero las malezas, aunque aparentemente no son tan específicas, suelen estar estrechamente relacionadas con los cultivos (p. ej.: *Lolium* y *Avena* en cereales de invierno, *Solanum nigrum* en tomate, *Abutilon* en maíz y algodón, *Echinochloa, Heteranthera, Scirpus* en arroz), pero cuando se consigue reducir una especie bien adaptada a un monocultivo, cambiando éste, aparecerán otras que ocuparán su espacio, pero que no serán resistentes.

Por otra parte se ha observado que, con frecuencia, se obtienen mejores rendimientos en la rotación leguminosa forrajera-cereal, a pesar de la mayor presencia de malezas en la leguminosa, que en monocultivo cerealista (Craig Stevenson *et al.*, 1998). El interés de las alternativas se basa en la posibilidad de cambiar de táctica de control (fecha de siembra, labores, herbicidas,...) lo que tiene gran valor para la prevención de resistencias (Tabla 7).

Las rotaciones de cultivos se conciben desde diversos puntos de vista. Nos podemos referir a:

- Rotación de fechas: sembrar cultivos en épocas diferentes. De esta forma se pueden romper los ciclos biológicos de algunas malezas. Por ejemplo, se pueden eliminar germinaciones tempranas de alguna especie al sembrar un cultivo más tarde de lo normal. A la inversa, si se siembra un cultivo antes, la especie a controlar nacerá cuando el cultivo ya tenga cierta capacidad de competencia.
- Rotación de ciclos: se trata de alternar cultivos anuales con otros plurianuales (p.ej.: trigo, maíz, algodón vs. alfalfa o pastos).
- Rotación del espacio ocupado: en este caso de propone alternar cultivos sembrados en filas que permiten un control de las malezas en las entrelíneas con cultivos que ocupen todo el espacio.
- Rotación del momento de cosecha: se trata de aprovechar la posibilidad de pastar o segar un cultivo antes de la cosecha de grano, con el objetivo de impedir que las malezas acaben su ciclo y no se puedan diseminar.
Algunos ejemplos:

- Mijo-cacahuete-barbecho
- Maíz-cereal-alfalfa
- Pimiento-cebolla-cereal
- Espinaca-judía-tomate
- Rábano-lechuga-col
- Col-cereal

Tabla 7. Prevenir la resistencia herbicida con procedimientos no químicos (GAP, 2005)

<table>
<thead>
<tr>
<th>Fase pastos</th>
<th>Fase cultivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• usar alta dosis de siembra;</td>
<td>• el cultivo debe ser denso y competitivo;</td>
</tr>
<tr>
<td>• henificar o ensilar para reducir la producción de semilla de malezas;</td>
<td>• laboreo si es posible;</td>
</tr>
<tr>
<td>• asegurar una buena competencia del pasto;</td>
<td>• cultivos para abono verde;</td>
</tr>
<tr>
<td>• pastoreo;</td>
<td>• retraso de siembra;</td>
</tr>
<tr>
<td>• barbecho labrado.</td>
<td>• cultivos forrajeros;</td>
</tr>
<tr>
<td>• el cultivo debe ser denso y competitivo;</td>
<td>• retirar las semillas de malezas en la cosecha;</td>
</tr>
<tr>
<td>• laboreo si es posible;</td>
<td>• quemar rastrojo si es posible.</td>
</tr>
<tr>
<td>• cultivos para abono verde;</td>
<td></td>
</tr>
<tr>
<td>• retraso de siembra;</td>
<td></td>
</tr>
<tr>
<td>• cultivos forrajeros;</td>
<td></td>
</tr>
<tr>
<td>• retirar las semillas de malezas en la cosecha;</td>
<td></td>
</tr>
<tr>
<td>• quemar rastrojo si es posible.</td>
<td></td>
</tr>
</tbody>
</table>

Los inconvenientes de las rotaciones radican en que, generalmente, el agricultor no tiene muchas posibilidades de cambiar de un cultivo a otro que le parezca suficientemente rentable a corto plazo. Recordemos que, por ejemplo, suele haber muy pocas alternativas viables y económicamente interesantes a los cereales, en los secanos áridos. También puede ser difícil encontrar alternativas al cultivo del arroz en suelos salinos o muy compactados por su mala estructura. Por otra parte, los cultivos leñosos no pueden contar con este método a corto y medio plazo, si bien existe la posibilidad de gestionar las cubiertas vegetales en las calles o bien sembrarlas.

Los cultivos asociados pueden ser muy útiles cuando no se desea emplear herbicidas. Algunas asociaciones están muy bien adaptadas para aprovechar todos los recursos. Un ejemplo conocido es la asociación maíz-judas-calabaza, típica en la agricultura indígena americana, y que aún se practica en zonas húmedas europeas. El maíz permite a las judías trepar, buscando la luz aprovecha el nitrógeno que fija la leguminosa; y la calabaza explora la superficie del suelo, beneficiándose de la sombra y su humedad, y sombrea a su vez a las malezas. Algunas asociaciones favorables de hortalizas se conocen desde antiguo: lechuga-zanahoria, pimiento-cebolla, calabacín-judía verde,… Otros ejemplos son asociaciones que aprovechan el espacio vertical, como la asociación cacao- plátano- café. Otra posibilidad en cultivos arbóreos es la de aprovechar las “calles” entre filas con cultivos hortícolas antes de que los árboles alcancen su fase productiva (alcachofa en olivo, tomate en avellano, etc.).

Debido a que se atribuyen productividades bajas a los cultivos asociados tradicionales, actualmente se sugiere el cultivo intercalado entre líneas para mejorar la capacidad competitiva de algunos cultivos hortícolas de débil cobertura. Así, se han obtenido una mayor interceptación de la luz, un período crítico de escarda más corto y mayor rendimiento en el cultivo de puerro y apio intercalado, que en el de puerro solo (Baumann y Kropff, 1999).
Algunos cultivos asociados, actualmente llamados “de cobertura” o cubiertas vegetales son muy empleados en los cultivos leñosos (p.ej.: cebada o crucíferas en olivar, leguminosas en frutales). Un inconveniente de estas cubiertas vegetales en los frutales es que es necesario limitar la competencia, especialmente en secano, para evitar reducir la producción. Se ha observado en un viñedo de secano árido que la reducción del vigor puede ser significativa (Zaragoza y Delgado, 1996). El empleo de cultivos de cobertura sucesivos para dejar un “mulching” seco hasta el siguiente cultivo tiene gran interés, ya que, teóricamente, permite un aprovechamiento integral del suelo, protegiéndolo de la erosión, conservando la humedad, evitando invasiones de adventicias, de plagas de insectos, algunas enfermedades y lavado de nitratos. Combinados con la siega puede servir para disminuir la presión de selección herbicida.

Otros métodos culturales son la selección varietal y el marco de plantación o la densidad de siembra. La velocidad de crecimiento y la expansión foliar son características que nos van a definir la competitividad de una planta. Aquellas variedades mejor adaptadas y que sean más rápidas en crecer en los estados iniciales, serán las mejores competidoras con las malezas. Es bien sabido que la cebada es más competitiva que el trigo frente a las gramíneas anuales. En ensayos realizados en un secano árido de Alcalá de Henares (España) se ha observado que las variedades de trigo y cebada de invierno más altas, de mayor ahijamiento y más tardías, son más competitivas con Lolium rigidum o Avena sterilis (Torner et al., 1999). Igualmente son recomendables aquellas técnicas que favorezcan al máximo el crecimiento inicial del cultivo. El aumento de la densidad de siembra puede utilizarse para reducir la competencia de las malezas o para compensar cierta mortalidad de plantas debida a unas prácticas de escarda poco selectivas. Otro ejemplo es el maíz en regadío. En el valle del Ebro es bien conocida su gran capacidad de competencia. Con el objetivo de aprovecharla, a menudo se deja pasar cierta “sed” al cultivo recién germinado para forzarlo a desarrollar al máximo su sistema radicular y retrasar la germinación de las malezas. Cuando finalmente se riega, germinan las malezas pero el maíz ya es capaz de crecer rápidamente ahogando a las malezas recién germinadas.

Manejar y prevenir las resistencias a base de:
- Vigilar regularmente los campos.
- Integrar métodos químicos y agronómicos.
- La rotación de cultivos con distinto ciclo.
- Seleccionar variedades más competitivas.
- Retrasar la fecha de siembra.
- Pase de ganado.

El retardo de la fecha de siembra de un cultivo puede utilizarse para reducir la infestación de algunas especies anuales preparando el suelo, permitiendo sus primeras germinaciones y eliminando las plántulas con una labor o un herbicida no residual. Es la técnica de la “falsa siembra”, que se utiliza con frecuencia en los semilleros de hortícolas. En general, la estrategia de control ha de ajustarse al tipo de flora, que ha de conocerse bien, especialmente su biología. El retardo de siembra se ha revelado como muy útil para combatir resistencias en cereal de invierno contra las especies Lolium rigidum y en Avena sterilis (Gill y Holmes, 1997; Recasens et al., 2001; Torra et al., 2005). En la dicotiledónea Papaver rhoeas resistente a tribenurón-metil y a 2,4-D, los resultados no fueron tan claros. Se nota una reducción al retrasar la siembra pero cuando el banco de semillas es muy grande, este método puede no ser suficiente, ya que la
El conocimiento de ciertas características biológicas de las especies de malezas dominantes y de difícil control permitirá elegir los métodos de control más eficaces (véase Tabla 8).

3.2.4 Métodos físicos

Entre los métodos físicos se incluyen las escardas mecánicas, la escarda manual, la siega, el laboreo convencional y de precisión, la escarda térmica, así como las cubiertas o acolchados con plásticos, con papel o con restos vegetales.

La escarda manual es el método más antiguo y extendido en el mundo, pero arrancar las malezas suele ser un trabajo penoso y es difícil encontrar mano de obra para esta tarea en las zonas industrializadas o adyacentes. Sin embargo, no se puede descartar, por su gran utilidad preventiva, en los rodados o manchas precoces, o para bajas infestaciones de poblaciones resistentes.

La siega mecánica es un eficaz sistema de mantenimiento muy empleado en cultivos plurianuales forrajeros y leñosos, así como en cunetas y zonas encrapadas. Generalmente hay que combinarlo con otros sistemas de control y, además, la flora arvenses también se adapta a los cortes al cabo del tiempo, proliferando las especies rastreras (Portulaca oleracea, Stellaria media, Chamaesyce spp., Polygonum aviculare) y con gran capacidad de rebrote (Aster squamatus, Rumex spp.). Es esencial que las especies resistentes se sigan antes de producir semilla.
Tabla 8. Métodos de control agronómico recomendables o no según propiedades de las malezas

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Ejemplos</th>
<th>Método de control eficaz</th>
<th>Método de control poco eficaz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germinación agrupada</td>
<td>Lolium rigidum</td>
<td>Retraso de siembra Falsas siembras Cambio de cultivo</td>
<td>Pastoreo con ovino Labor de cultivador</td>
</tr>
<tr>
<td>Germinación escalonada</td>
<td>Abutilon teophrasti, Papaver rhoeas, Avena spp.</td>
<td>Barbecho más largo estimulando la germinación y eliminando las plantas emergidas</td>
<td>Retraso de siembra Falsas siembras Cambio de cultivo</td>
</tr>
<tr>
<td>Producción de semillas muy elevada</td>
<td>Abutilon teophrasti, Papaver rhoeas, Cruciferas</td>
<td>Siega en verde o pastoreo para evitar floración. Falsas siembras</td>
<td>Cambio de cultivo en el mismo ciclo</td>
</tr>
<tr>
<td>Latencia y supervivencia de las semillas en el suelo elevada</td>
<td>Abutilon teophrasti, Papaver rhoeas, Avena spp. Cruciferas</td>
<td>Barbecho más largo estimulando la germinación y eliminando las plantas emergidas</td>
<td>Volteo del suelo (arado) para enterrar las semillas</td>
</tr>
<tr>
<td>Latencia y supervivencia de las semillas en el suelo mediana o baja</td>
<td>Lolium rigidum, Bromus spp.</td>
<td>Agotamiento del banco de semillas mediante laboreo: Falsas siembras o barbecho</td>
<td>No laboreo, Siega, Pastoreo</td>
</tr>
<tr>
<td>Ciclo biológico muy similar al cultivo</td>
<td>Cereal-Avena, Maíz-Setaria, Algodon-Abutilon, Tomate-Solanum nigrum</td>
<td>Cambio de cultivo Retraso de siembra</td>
<td></td>
</tr>
<tr>
<td>Especies parásitas</td>
<td>Jopo en girasol o habas Cuscuta en alfalfa</td>
<td>Cambio de cultivo</td>
<td>Métodos mecánicos en general</td>
</tr>
<tr>
<td>Especies de reproducción vegetativa (tubérculos, rizomas, cebollas)</td>
<td>Cyperus rotundus, Oxalis spp., Sorghum halepense</td>
<td>Métodos mecánicos que agoten las reservas: siegas frecuentes Pastoreo: Porcino-cyperus, Ocas-oxalis</td>
<td>Métodos mecánicos que troceen los órganos reproductivos</td>
</tr>
<tr>
<td>Especies de porte rastrero</td>
<td>Stellaria media, Chamaeeyce serpens, Portulaca oleracea</td>
<td>Laboreo, grada de varillas</td>
<td>Siega, Pastoreo</td>
</tr>
</tbody>
</table>

3.2.4.1 **El laboreo convencional**

Los métodos mecánicos usando todo tipo de aperos como rejas de cultivador, gradas de púas o de discos, rotovator, arados, etc. han sido durante mucho tiempo, y son todavía, una opción viable en muchos cultivos. La oportunidad de la escarda, es decir, su momento de ejecución, suele ser decisivo en la eficacia contra las malezas. Debido a la conciencia tomada sobre el efecto de la alteración de la estructura y erosión del suelo producida por el laboreo, particularmente el que voltea el suelo y debido a su mayor consumo de energía, en la actualidad se tiende a una reducción, practicándose más las labores verticales o superficiales. Esto conduce a un cambio en la flora arvense, observándose infestaciones de especies que antes estaban confinadas en los ribazos (en España Bromus spp., Vulpia spp.) y aumento en la densidad de otras que se adaptan a las condiciones de mínimo laboreo (p.ej.: Lolium rigidum, Salsola kali).

El uso de los aperos tiene ventajas e inconvenientes que hay que conocer y valorar, ya que según la biología y el estado de desarrollo de la maleza tendremos diferentes objetivos y para alcanzarlos serán más adecuados unos aperos que otros (Tablas 9 y 10).
Tabla 9. Herramientas recomendables o no según objetivos y características biológicas de las especies a eliminar

<table>
<thead>
<tr>
<th>Biología</th>
<th>Objetivos</th>
<th>Herramientas</th>
<th>Herramientas que no se deben usar</th>
<th>Ejemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anuales (semillas con latencia larga)</td>
<td>Desenterrar, fragmentar</td>
<td>Cultivador, rotovator</td>
<td>Arado de vertedera</td>
<td>Crucíferas</td>
</tr>
<tr>
<td>Anuales (con latencia corta)</td>
<td>Enterrar la semilla</td>
<td>Arado de vertedera</td>
<td>Cultivador superficial</td>
<td>Bromus spp.</td>
</tr>
<tr>
<td>Perennes (raíces pivotantes o con rebrote)</td>
<td>Fragmentación y agotar reservas</td>
<td>Rotovator, cultivador</td>
<td>Arado de vertedera</td>
<td>Cirsium spp.</td>
</tr>
<tr>
<td>Perennes (con rizomas frágiles)</td>
<td>Desenterrar y agotar reservas</td>
<td>Cultivador repetido</td>
<td>Rotovator</td>
<td>Sorghum halepense</td>
</tr>
<tr>
<td>Perennes (con rizomas flexibles)</td>
<td>Desenterrar y arrastrar</td>
<td>Cultivador, grada</td>
<td>Rotovator, arado de vertedera</td>
<td>Cynodon dactylon</td>
</tr>
<tr>
<td>Perennes (tubérculos, bulbos)</td>
<td>Desenterrar y exponer a condiciones adversas</td>
<td>Arado de vertedera, discos</td>
<td>Rotovator, cultivador</td>
<td>Cyperus, Oxalis</td>
</tr>
<tr>
<td>Perennes hidrófilas (enraizamiento profundo)</td>
<td>Drenaje</td>
<td>Cincel, subsolador</td>
<td>Rotovator, arado de vertedera</td>
<td>Equisetum, Juncus, Phragmites</td>
</tr>
</tbody>
</table>
Tabla 10. Acción sobre la flora arvense de diversos aperos para el laboreo según su biología y desarrollo (Ferrero y Casini, 2001)

<table>
<thead>
<tr>
<th>Tipo de maleza/maleza</th>
<th>Sin cultivo</th>
<th>Con cultivo General</th>
<th>Con cultivo Entre las filas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subsolador</td>
<td>Vértedera</td>
<td>Discos</td>
</tr>
<tr>
<td>Plántulas</td>
<td>L</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Anuales jóvenes</td>
<td>L</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Anuales adultas</td>
<td>N</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Vivaces adultas</td>
<td>N</td>
<td>S</td>
<td>L</td>
</tr>
</tbody>
</table>

Las gradas de varillas flexibles son aperos sencillos y que están teniendo aceptación en agricultura ecológica. Permiten la escarda de cultivos sembrados en líneas como cereal de invierno, maíz, habas, vezas, puerros, etc. y en estados precoces de las malezas. Su labor es poco profunda (hasta 5 cm), las hierbas anuales son arrancadas y expuestas al aire. No crean suela de labor ni compactación, habiendo menos peligro de erosión que con una labor convencional. Muy eficaces contra plántulas dicotiledóneas en secanos semiáridos. El control es incompleto escapándose especies miméticas del cultivo, así como especies vivaces o perennes.

La eficacia suele ser muy variable (20-95 por ciento) dependiendo del tamaño de las malezas y la humedad del suelo. A menor tamaño, densidad de malezas y humedad del suelo, mejor efecto. A veces, una pequeña eficacia con la grada, que le proporcione al cultivo ventaja sobre la maleza, es suficiente para alcanzar un buen rendimiento (Pardo et al., 2004) (Se adjunta la Tabla 11 a modo de resumen sobre eficacias de distintas técnicas).

Tabla 11. Eficacia aproximada de algunas técnicas culturales en condiciones favorables contra especies que han generado resistencias en los cereales del norte de España (a partir de Recasens et al., 2001; Cirujeda et al., 2003 y Pardo et al., 2004)

<table>
<thead>
<tr>
<th>Barbecho</th>
<th>Labor de vertedera</th>
<th>Labor de cultivador</th>
<th>Retraso de siembra</th>
<th>Labor de grada de varillas (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lolium rigidum</td>
<td>Eficaz</td>
<td>Eficaz</td>
<td>Ineficaz</td>
<td>Variable (2)</td>
</tr>
<tr>
<td>Avena ludoviciana</td>
<td>Variable (2)</td>
<td>Ineficaz</td>
<td>Insuficiente</td>
<td>Variable</td>
</tr>
<tr>
<td>Papaver rhoeas</td>
<td>Eficaz</td>
<td>Ineficaz</td>
<td>Eficaz</td>
<td>Variable</td>
</tr>
</tbody>
</table>

(1) sobre el cultivo.
(2) A veces muy eficaz.

Existen también numerosos aperos ligeros, con nuevos diseños y materiales, que permiten escardas y binas con gran rapidez y precisión.

3.2.4.2 La escarda de precisión

Otra opción de desherbado en las filas de los cultivos es la de utilizar métodos mecánicos. Ya que los espacios cercanos a las plantas de cultivo son los más difíciles de desherbar, conviene utilizar aperos de precisión que puedan ser dirigidos, bien con la conducción del tractor o bien
empleando aperos que pueden ser regulados independientemente del mismo. El principal inconveniente de estos aperos es la dificultad en ser selectivos. Por ello es necesario realizar unos buenos ajustes de los mismos en función del marco de plantación del cultivo y del tipo de suelo. Los sistemas de guiado automático o detección de hileras permiten maximizar el área escardada al posibilitar acercarse sin riesgos al cultivo (91-95 por ciento), aumentando la velocidad y reduciendo el coste (Kurstjens, 1999). Actualmente existen dos cámaras de guiado comerciales (Eco-Dan y Robocrop Galford) que ajustan la posición del apero escardador durante el avance del tractor. Una de las principales ventajas del laboreo de precisión es que constituye un método de escarda que puede integrarse con los demás sistemas, diversificándolos y evitando, por ejemplo, la presión de selección de los herbicidas sobre la flora arvense, causa de la aparición de resistencias.

Uno de estos aperos son los denominados cepillos rotativos horizontales. Si bien la primera descripción de un diseño suizo (marca Bártsc hi) fue publicada en 1986 (Geier y Vogtmann, 1986) apenas se han encontrado estudios sobre su efecto. Se ha observado que las púas de plástico de un cepillo rotativo horizontal profundizan hasta unos 3 a 4 cm (Floch, 2003). Su eficacia es buena sobre plántulas de malezas en sus primeros estados de desarrollo, es decir en un estadio de hasta 4 hojas, aproximadamente, según comprobaron Netland et al. (1994), Székelyné (1994) y Radics y Székelyné (2002). El principal inconveniente de este apero vuelve a ser el entrenamiento requerido para conseguir una elevada selectividad.

- **Los sistemas de guiado automático permiten desherbar con gran precisión.**
- **Hay que integrar el laboreo de precisión con los demás sistemas.**
- **Los cepillos rotativos, los escardadores de dedos y de torsión pueden proporcionar un desherbado selectivo.**

Parece haber tenido gran aceptación entre la comunidad científica un apero con cepillos verticales ajustables en separación de la línea y en su ángulo de posición (de la firma Thermec, Suecia) del que constan varias publicaciones: Melander (1997) y Fogelberg y Gustavsson (1999). No obstante, este modelo se dejó de fabricar en el año 2001 debido a problemas de tipo económico y no por dar resultados insatisfactorios. A pesar de que estos cepillos de eje vertical son más ajustables y precisos, son de difícil adquisición por lo que de momento hay que usar los cepillos de eje horizontal, con los que ya se han obtenido eficacias aceptables en cultivos hortícolas (Pardo et al., 2005).

Otros aperos utilizados en los últimos años en cultivos hortícolas son los denominados escardador de dedos “finger weeder” y escardador de torsión “torsion weeder”. En el norte de Europa el primero prácticamente ha sustituido el desherbado manual en horticultura ecológica (Leinonen et al., 2004). Consta de unos discos de goma que, guiados por otros discos metálicos remueven el suelo cercano a la fila del cultivo.

3.2.4.3 Laboreo nocturno

El control fotobiológico consiste en realizar labores preparatorias a la siembra y en sembrar por la noche, en plena oscuridad, o de día, tapando los aperos con lonas opacas a la luz, evitando que las semillas de las malezas reciban el estímulo de la luz necesario para germinar. Existen numerosos experimentos realizados principalmente en el Norte de Europa recopilados por Juroszek y Gerhards (2004) que, desgraciadamente, dan resultados contradictorios. Esta variabilidad está relacionada con la diferente sensibilidad a la luz de las especies, con la
La humedad del suelo y con el régimen de temperaturas (recopilado por Cirujeda y Taberner, 2006). Antes de aplicar esta técnica se debe considerar la composición del banco de semillas presente en el suelo. En función de las especies cabrá esperar cierta reacción al tratamiento o no. Después, los numerosos factores externos podrán influir para que haya desde una reducción muy notable de la germinación hasta un efecto nulo. No obstante, ya que el coste de realizar esta operación en la oscuridad, especialmente recubriendo los aperos, es bajo, puede ser recomendable utilizar esta técnica como una herramienta más esperando que germinen menos o igual número de malezas que sembrando con luz.

Para finalizar los apartados relativos al laboreo, es necesario recomendar que se observen las buenas prácticas de la escarda mecánica, que se deben seguir para evitar o reducir los inconvenientes de este sistema de desherbado (Tabla 12).

Tabla 12. Recomendaciones de las buenas prácticas de la escarda mecánica, haciendo hincapié en las condiciones adecuadas, durante la que se deben llevar a cabo

<table>
<thead>
<tr>
<th>Buenas prácticas en la escarda mecánica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las buenas prácticas de las intervenciones mecánicas deberán buscar las condiciones óptimas de su uso, fijándose en:</td>
</tr>
<tr>
<td>• Escoger el apero adecuado a cada tipo de suelo y marco de plantación o densidad de siembra.</td>
</tr>
<tr>
<td>• Reglaje de la profundidad de trabajo, velocidad de avance, inclinación de los dientes u otros ajustes necesarios, dependiendo del apero.</td>
</tr>
<tr>
<td>• Evitar las labores en dirección paralela a la línea de pendiente.</td>
</tr>
<tr>
<td>• Estado adecuado del cultivo y de la flora. Evitar retrasos en la intervención. Generalmente, cuanto más pequeñas las hierbas, mejor eficacia cabe esperar.</td>
</tr>
<tr>
<td>• Contenido de humedad del suelo: realizar labores profundas con sazón o tempero adecuado. El suelo ha de estar seco en superficie para las labores superficiales: las malezas tendrán más dificultad para volver a enraizar.</td>
</tr>
<tr>
<td>• Tener en cuenta las previsiones de las condiciones climáticas después de la labor y evitar el control mecánico si se esperan lluvias, ya que las plantas volverán a enraizar con facilidad.</td>
</tr>
</tbody>
</table>

3.2.4.4 La escarda térmica

Otra alternativa al desherbado químico es la piroescarda, es decir, el uso de calor mediante quemadores para el control de las malezas. Éstos métodos fueron muy experimentados en los Estados Unidos de América en los años 60 poco antes de la extensión de los herbicidas (Muzik, 1970). En los años 90 ha vuelto el interés para su uso en agricultura ecológica (Ascard, 1998). Interesa principalmente para ser utilizado en la fila del cultivo, sustituyendo lo que sería una aplicación dirigida de herbicidas en agricultura convencional (Netland et al., 1994). El mecanismo de acción de la piroescarda es doble: el efecto directo del calor que repercute sobre las membranas celulares afectando sus proteínas, mientras que el efecto indirecto provoca una desecación (Ascard, 1995).

La piroescarda muestra una serie de ventajas frente a los métodos mecánicos: se puede emplear sobre suelo húmedo cuando no se puedan utilizar aperos que remueven el suelo. Al no alterar el suelo, no cambia la estructura del mismo y no se favorece la germinación de nuevas semillas. Otra ventaja es que no se alteran las raíces del cultivo al ser un tratamiento superficial. Respecto a su coste cabe decir que, generalmente y en Europa, es más barato que una escarda manual (Bond y Grundy, 2001).
A pesar de que se han obtenido resultados muy satisfactorios utilizando el desherbado térmico para diferentes cultivos hortícolas (Ascard y Fogelberg, 2002; Radics et al., 2002; Tei et al., 2002; Raffaelli et al., 2004), también diferentes autores describen que la germinación siguiente no se ve inhibida y se comentan casos en los que la emergencia de algunas especies determinadas puede verse aumentada (Bond y Grundy, 2001). Ascard (1995) observó más plantas de Poa annua tras el tratamiento térmico, y Netland et al. (1994) observaron un incremento para Capsella bursa-pastoris y Chamomilla graveolens tras usar el quemador. También Suso et al. (2003) encontraron más brotación de Cyperus rotundus tras usar el piroescardador en uno de los años de ensayo.

Un inconveniente característico de la escarda térmica es la percepción de peligro de los operarios que deben trabajar con gases licuados del petróleo que, por supuesto, es mucho mayor que cuando trabajan con herbicidas.

<table>
<thead>
<tr>
<th>El desherbado térmico</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Controla plántulas anuales.</td>
</tr>
<tr>
<td>• No altera el suelo.</td>
</tr>
<tr>
<td>• Funciona con suelo húmedo.</td>
</tr>
<tr>
<td>• No afecta a las raíces del cultivo.</td>
</tr>
<tr>
<td>• No deja residuos.</td>
</tr>
<tr>
<td>Pero:</td>
</tr>
<tr>
<td>• Puede quemar hojas del cultivo.</td>
</tr>
<tr>
<td>• Hay que repetir el tratamiento.</td>
</tr>
<tr>
<td>• A veces, en especies vivaces, estimula la emergencia.</td>
</tr>
<tr>
<td>• Consume mucha energía.</td>
</tr>
<tr>
<td>• Parece más peligroso.</td>
</tr>
</tbody>
</table>

En la literatura se encuentra un gran margen de la intensidad de tratamiento requerida para el pirodesherbado en función de la especie a controlar y del tamaño de las mismas (Ascard, 1995). Se han realizado curvas de dosis-respuesta para las especies Chenopodium album, Urtica urens, Chamomilla suaveolens, Poa annua, Capsella bursa-pastoris, Stellaria media, Senecio vulgaris (Ascard, 1995) y para Abutilon theophrasti, Amaranthus retroflexus y Echinochloa crus-galli (Peruzzi et al., 1998). Mientras que en la mayoría de especies el control es mejor al tratar plántulas pequeñas, E. crus-galli se mostró más sensible cuando ya había desarrollado varias hojas. Por otro lado, no fue posible controlar P. annua en ninguna de las dosis ni en los estados de desarrollo ensayados. C. bursa-pastoris y C. graveolens rebrotaron en cuanto fueron tratadas en fases de desarrollo avanzadas (Ascard, 1995). Si bien se encuentran datos en la literatura sobre el control de diversas especies infestantes dicotiledóneas (la mayoría de las cuales son sensibles al tratamiento térmico) y sobre algunas gramíneas (normalmente de más difícil control), no se han encontrado referencias sobre especies vivaces de difícil control, como por ejemplo C. rotundus.

Según los estudios realizados en laboratorio con el fin de encontrar la “dosis” de propano necesaria unos valores indicativos del consumo necesario son entre 7 y 65 kg de propano ha⁻¹ (Peruzzi et al., 1998) o de 20 a 100 kg de propano ha⁻¹ (Ascard, 1995). En ensayos de campo los valores de consumo empleados suelen ser aún mayores, ya que la flora objeto de control se encuentra en estados diversos de desarrollo y normalmente se trata de una flora mixta. Raffaelli et al. (2004) necesitaron un consumo de 107,5 kg ha⁻¹, en ensayos propios realizados en Aragón se utilizó 92 kg ha⁻¹ y Netland et al. (1994) emplearon dos aplicaciones repetidas de 50 kg ha⁻¹ de propano cada una.
Ascard (1995) estudió el efecto de dosis reducidas de pirodesherbado aplicadas repetidamente tras diferentes periodos de tiempo sobre el control de determinadas especies. Encontró que aplicaciones repetidas tras 3 ó 13 días fueron más eficaces que aplicadas tras pocas horas o minutos. Esta metodología puede ser útil para las especies tolerantes a la piroesarda y aquellas que germinan o brotan paulatinamente (como el caso de Cperus rotundus).

No obstante, ya que el pirodesherbado tiene una acción de contacto, ésta no suele ser suficiente, por lo que debe ser combinado con otros métodos culturales o físicos (Tei et al., 2002).

En los últimos años se están realizando estudios con el uso de vapor de agua como agente térmico. Debido al elevado consumo energético todavía es necesaria más investigación en esta área.

La solarización puede considerarse también como un método físico basado en el aprovechamiento del calor del sol. No altera desfavorablemente el suelo, ni deja residuos, es eficaz contra nematodos y patógenos, capaz de estimular el crecimiento de cultivos posteriores. Sus principales inconvenientes son: la ocupación del terreno en meses de máxima productividad, eficacia parcial y sólo en zonas soleadas de ciertas latitudes, y el empleo de plástico, que hay que reciclar posteriormente. Últimamente, la biofumigación tiene gran interés en suelos de horticultura intensiva para la sustitución de los tratamientos de desinfección con bromuro de metilo. Consiste en hacer fermentar materia orgánica en el suelo húmedo para que los gases producidos eliminen los patógenos y malezas. Tiene gran utilidad en zonas cálidas y, en particular, en los cultivos bajo invernadero de plástico.

3.2.4.5 El acolchado plástico

Otra de las alternativas a los herbicidas utilizados en horticultura es el uso de cubiertas plásticas con polietileno negro que conlleva una serie de ventajas técnicas y ambientales. Entre otras cabe destacar el incremento de los rendimientos y de la calidad, mejor manejo de malezas e insectos, la mayor eficiencia en el uso del agua y de los fertilizantes y un cierto control sobre la erosión.

Los principales inconvenientes de esta técnica son el precio del plástico, los costos de manejo y la dificultad de recoger completamente los restos del plástico tras la cosecha. Además, algunas especies de malezas perennes no son controladas ya que perforan el plástico (por ejemplo, Cyperus spp.) o aprovechan pequeñas fisuras (Convolvulus arvensis) y es necesario el tratamiento herbicida o el control mecánico entre hileras. Otro inconveniente del uso de plástico de polietileno negro es que en años calurosos o en zonas muy cálidas puede perjudicar a los cultivos debido al excesivo calentamiento del suelo (Radics y Székelyné, 2002; Pardo et al., 2005). Pero probablemente el problema de generación de desechos sea uno de los mayores inconvenientes de esta técnica de control de malezas (Camacho, 2004 y Martín-Closas y Pelacho, 2004). Solamente en la región española del valle del Ebro (Navarra, Aragón y La Rioja) se estimó el consumo de plástico para cubiertas de suelo en 2131 t en el año 2002. La generación de un residuo sólido no reciclable lleva a la acumulación del mismo en vertederos autorizados y a la utilización de prácticas contaminantes por parte del agricultor. Se estima que la práctica común de enterrar el plástico en el suelo supone una carga contaminante de 140 kg/ha y año de plástico (González, 2003). El efecto acumulativo es importante si se considera que la degradación del polietileno en el ambiente es muy lenta; se necesitan 300 años para degradar una lámina de polietileno sin aditivos de 60 micras (Feuilloley et al., 2003). Otra opción es el quemado del plástico pero conlleva la correspondiente contaminación atmosférica. El volumen de residuos plásticos generado es tan...
Manejo de poblaciones de malezas resistentes a herbicidas: 100 preguntas sobre resistencias

grande que cuestiona seriamente la sostenibilidad de este sistema de cultivo. Además hay que tener en cuenta que estos plásticos para uso agrícola contienen metales pesados (p.ej.: 16,1 ppm de Pb; 11,1 ppm de Cu; 7,2 ppm de Ni en nuestros análisis).

Cabe distinguir el uso de acolchados con polietileno negro u opaco del polietileno transparente. Mientras que en el primer caso el objetivo principal es controlar la proliferación de malezas privándolas de luz, en el segundo caso el objetivo principal es conseguir precocidad en el cultivo.

3.2.4.6 El uso de plásticos biodegradables
Los acolchados con polímeros biodegradables intentan dar solución a las dos problemáticas de fondo que conlleva el uso de acolchados de polietileno: el problema de residuos y el ahorro en el consumo de recursos fósiles no renovables.

Los polímeros biodegradables con un mayor potencial son aquellos que provienen de recursos renovables, concretamente del propio sector agrícola (almidón de distintos orígenes, fibras vegetales, aceites vegetales, etc.).

La toma de conciencia durante los años 70 sobre la creciente escasez de recursos energéticos, dio ya lugar a los primeros trabajos relacionados con la obtención de plásticos biodegradables (Griffin, 1994). Los primeros plásticos que se produjeron como biodegradables fueron mezclas de polietileno y almidón y poliésteres de origen bacteriano. Actualmente existen más de 30 tipos distintos de materiales biodegradables en el mercado. Algunos de estos materiales tienen las características y la procesabilidad muy parecida a la de los plásticos tradicionales (Bastioli et al., 1990 y 1993).

Sin embargo, existen todavía problemas a solucionar que se ponen de manifiesto por la aún baja utilización de estos materiales. Su degradación a veces es excesiva, otras veces es insuficiente. Se estima que en España existían 118 000 ha de acolchado con estos materiales en 2000, lo que representa todavía una muy baja proporción de la superficie total (Papaseit, 2001).

El primer problema es el coste de los plásticos biodegradables comercializados actualmente en el mercado, ya que supone un gasto para el agricultor de 3 a 4 veces el del acolchado convencional (Bastioli, 2003; Gutiérrez et al. 2003), que corresponde mayoritariamente al mayor coste de la granza de polímeros biodegradables. Esto supone que en la mayoría de cultivos se considere a priori no viable el uso de estos materiales desde el punto de vista económico. Esta diferencia se puede reducir si se mantiene el incremento de los precios del petróleo y aumenta la demanda de estos materiales, lo que permitirá reducir los costes de su fabricación (Martín-Closas y Pelacho, 2003). El control de las malezas con los acolchados biodegradables es similar a los convencionales (entre 86 y 93 por ciento de control medio con biodegradable, 97-100 por ciento con convencional).

3.2.4.7 El uso del papel
El papel es una alternativa interesante al uso de plásticos como cubiertas de suelo, ya que es un material económico, biodegradable y que ofrece facilidades para su adquisición y manejo en cantidades suficientes para explotaciones medianas o grandes. Probablemente una de las mayores limitaciones para el uso de este material sea su colocación con la maquinaria (ya que se rompe con facilidad) y la durabilidad del mismo en condiciones de campo, debido a que la humedad puede acelerar su degradación bajo tierra.
Algunas investigaciones previas muestran que diversos papeles (Kraft de 90-200 g/m²) cumplen de forma muy satisfactoria con su función del control de flora arvense. El grado de control (77-96 por ciento) ha sido equivalente al del polietileno a lo largo del ciclo de cultivo de tomate de industria de tres meses. Destaca particularmente el excelente control de *Cyperus rotundus* obtenido con papel de 90-200 g/m² que no es capaz de traspasar. La biodegradación del papel ha sido también muy satisfactoria, desapareciendo totalmente los restos del acolchado una vez enterrados. La instalación mecánica es factible si bien hay que adaptar la acolchadora (bajar la tensión, evitar microperforación y disminuir la velocidad de instalación). Es conveniente trabajar con papeles reciclados, siempre y cuando los niveles de metales pesados contenidos en el papel sean bajos.

En todo caso, será necesario combinar los conocimientos sobre la biología de las malezas, métodos culturales como el uso del acolchado del papel y control directo para conseguir que las poblaciones de malezas se mantengan en unos niveles adecuados (Bond y Grundy, 2001).

<table>
<thead>
<tr>
<th>El papel:</th>
<th>Pero:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puede controlar muchas malezas, incluso Cyperus, si es grueso.</td>
<td>Según la calidad su precio puede ser elevado.</td>
</tr>
<tr>
<td>Es biodegradable.</td>
<td>Puede ser difícil de encontrar.</td>
</tr>
<tr>
<td>No retiene la humedad del suelo como el plástico.</td>
<td>Su colocación es engorrosa.</td>
</tr>
<tr>
<td>Regula la temperatura del suelo.</td>
<td></td>
</tr>
</tbody>
</table>

3.2.4.8 El uso de restos vegetales como cubiertas de suelo para el control de malezas

Se ha propuesto también el uso de restos orgánicos de cualquier tipo, incluyendo restos de transformación de productos agrarios como de la caña de azúcar, cascara de café o de arroz, pajas de cereales, cortezas, aserrín, alperujo, etc. En cada caso se deberá experimentar cuál es la cantidad y el manejo adecuados. Debido a la necesidad de colocación del material, esta técnica es apropiada para cultivos hortícolas o arbóreos.

Las cubiertas de los residuos de cosechas y otros materiales orgánicos afectan a la germinación, la supervivencia, el crecimiento y la habilidad de competencia de las malezas. En general, parece que los efectos perjudiciales de los restos son mayores sobre especies de semillas pequeñas que sobre especies de semillas grandes. Debido a que las semillas de la mayoría de los cultivos son de una a tres veces más grandes que las de las malezas con las que compiten, el manejo de los residuos de cosecha ofrece una importante oportunidad para la supresión de las malezas (Liebman y Mohler, 2001).

Los efectos de estas cubiertas sobre las malezas se pueden clasificar en efectos directos e indirectos. Los efectos directos se producen por la interacción de la cubierta con las plantas y/o semillas de malezas, mientras que los efectos indirectos suceden por la modificación del ambiente donde se desarrollan las malezas debido a la presencia de la cubierta del suelo. Además, el uso de residuos de cosecha como cubiertas de suelo juega un importante papel en la conservación del suelo.
3.2.4.9 **Efectos directos de restos vegetales utilizados como cubiertas sobre las malezas:**

* a) **La barrera física**

Las cubiertas suponen una barrera física que debe ser superada por las plántulas de malezas para su brotación desde el suelo. El tipo de cubierta (continua o discontinua), el espesor y la dureza del material que se utilice como cubierta juegan un importante papel dentro de este tipo de efecto. Lógicamente, cuanto mayor sea la masa del material de cobertura, mayor será la cobertura del suelo alcanzada y, por lo tanto, mayor será la limitación para la emergencia de las plántulas de malezas.

Otro efecto que producen las coberturas sobre las malezas es la limitación de luz que supone la barrera que forma la cubierta. El sombreo que produce la cubierta sobre el suelo implica la imposibilidad para las malezas de acceder a la luz solar, limitando así la fotosíntesis. (Bilalis *et al.* 2003).

Existen ejemplos exitosos como por ejemplo, los ensayos hechos por Radics y Székelyné (2002) que indican que la paja de centeno utilizada como cubierta de suelo obtiene los mejores resultados en el control de malezas en el cultivo del tomate, al ser comparada con el control mediante uso de herbicidas.

También los residuos de cosecha del maíz conforman un material muy interesante para su uso como cobertura del suelo para el control de malezas. Este residuo posee una excelente capacidad para cubrir el suelo, ya que, de forma general, unas 2 t ha⁻¹ son capaces de cubrir el suelo en un 30 por ciento (Erenstein, 2002). Sin embargo, estos valores dependen del tamaño de los componentes del residuo (hoja y tallo) y de la forma de dispersión del mismo en el campo.

En la Tabla 13 se muestra la eficacia obtenida con diferentes tratamientos contra las malezas presentes en un ensayo de tomate de industria. El control obtenido con las pajas fue escaso pero suficiente para tener un rendimiento aceptable (datos sin publicar).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Rendimiento (%)</th>
<th>Control de las malezas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polietileno (15μ)</td>
<td>100</td>
<td>78.1</td>
</tr>
<tr>
<td>Testigo sin desherbar</td>
<td>29.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Desherbado manual</td>
<td>81.5</td>
<td>66.4</td>
</tr>
<tr>
<td>Herbicida (2)</td>
<td>71.4</td>
<td>42.3</td>
</tr>
<tr>
<td>Mater Bi (plástico biodegradable 15μ)</td>
<td>72.5</td>
<td>68.3</td>
</tr>
<tr>
<td>Saikraft (papel marrón 200 g/m²)</td>
<td>85.9</td>
<td>90.5</td>
</tr>
<tr>
<td>Paja de arroz (10 t/ha)</td>
<td>75.5</td>
<td>58.1</td>
</tr>
<tr>
<td>Paja de maíz (10 t/ha)</td>
<td>80.8</td>
<td>44.2</td>
</tr>
<tr>
<td>Paja de cebada (10 t/ha)</td>
<td>62.2</td>
<td>42.8</td>
</tr>
<tr>
<td>Rendimiento (t/ha) en el acolchado con polietileno y cobertura del suelo por malezas (%) en el testigo sin desherbar</td>
<td>78.7</td>
<td>89.4</td>
</tr>
</tbody>
</table>

(1) Las principales malezas presentes fueron *Cyperus rotundus, Portulaca oleracea, Chenopodium album* y *Digitaria sanguinalis*.

(2) El herbicida utilizado fue rimsulfuron (0.015 kg i.a./ha) en 2005 y rimsulfuron + metribuzina en 2006 (0.0125 kg i.a./ha + 1.75 kg i.a./ha).

(3) A los 63 días después del trasplante.
b) La alelopatía

Por otra parte, muchos de los residuos de cosecha que se utilizan como coberturas poseen capacidad alelopatía sobre las malezas. La alelopatía, en su acepción original, es la producción de sustancias químicas a partir de tejidos vegetales vivos o en proceso de descomposición que causan efectos inhibitorios o de estimulación, en forma directa e indirecta, sobre las plantas vecinas (Molisch, 1937 citado en Catizone y Zanin, 2001). En la alelopatía, que se refiere en la práctica a los efectos negativos sobre plantas vecinas, también se deben considerar las sustancias químicas que son liberadas por las plantas y son después transformadas por microorganismos (Liebman y Mohler, 2001).

La liberación de estos aleloquímicos puede suceder desde plantas vivas o desde residuos orgánicos en descomposición, por lo que el uso de restos vegetales como cobertura tiene el potencial de sumar este efecto de tipo químico al físico de barrera. La alelopatía es un proceso complejo, donde intervienen numerosos factores propios de las plantas o material en descomposición, de las plantas receptoras del compuesto, del suelo, condiciones meteorológicas, etc. Existen diversos materiales de acolchados como la paja de arroz o de centeno que sí contienen compuestos aleloquímicos que pueden inhibir la germinación y el desarrollo de malezas. No obstante, la alelopatía no sólo puede afectar a las malezas, sino que es lógico que también tenga efectos sobre el cultivo, es decir, carece de selectividad fisiológica, por lo que se deben usar con prudencia.

3.2.4.10 Efectos indirectos de los residuos vegetales utilizados como cubiertas sobre las malezas

Aparte de los efectos directos citados también existen unos efectos indirectos como el impacto que producen en la dinámica poblacional de malezas, en especial a largo plazo. La utilización de cubiertas orgánicas para el control de las malezas es una forma de aportar materia orgánica al suelo y es ampliamente conocido el importante papel que juega ésta en la definición de las características del suelo, y de allí, en la relación suelo-malezas. Por ejemplo, se ha observado que la incorporación de materia orgánica al suelo puede reducir la presión que ejercen las malezas sobre la producción del cultivo, en especial en cultivos hortícolas (Liebman y Davis, 2000). Sin embargo, se ha observado que los cambios en el manejo de los cultivos orgánicos ecológicos producen incrementos en la diversidad de malezas, por lo que el manejo de malezas es una de las prioridades en estos sistemas. Ello puede ser muy útil en la lucha contra las especies resistentes.

A manera de resumen, podemos comentar que las principales ventajas del uso de cubiertas de origen vegetal son: 1) control de malezas, en particular especies anuales; 2) conservación de la humedad del suelo, técnica atractiva para sistemas de producción agrícola en zonas áridas o semiáridas; 3) reducción de la erosión, por lo que es una técnica ampliamente recomendada en los programas de conservación de suelo; 4) mantenimiento del régimen térmico del suelo a través de su efecto regulador de temperatura, ya que se disminuye la amplitud en las variaciones diurnas/nocturnas; 5) aporte de materia orgánica al suelo; 6) captación de carbono en el suelo, 7) reciclaje de materiales que normalmente son tratados como residuos y 8) efecto generalmente favorable sobre la vida microbiana y la fauna del suelo.

Sin embargo, como toda técnica agronómica, el uso de cubiertas orgánicas, en especial aquellas originadas de residuos de cosecha, posee una serie de inconvenientes que es importante resaltar. Desde el punto de vista económico, la utilización de coberturas orgánicas es relativamente poco atractiva, en especial si se mide su impacto a corto plazo. El transporte y la colocación de este material en el campo pueden constituir un importante gasto del cultivo, e incluso puede ser mayor que en los sistemas donde se utilizan cubiertas plásticas. La
colocación de las cubiertas en el campo es una de las tareas que consume mayor cantidad de mano de obra en el uso de esta tecnología, por lo que se han diseñado diferentes tipos de implementos que logran mecanizar la labor como, por ejemplo, el descrito en Schäfer et al. (2002).

Los acolchados orgánicos o empajados:
- Controlan malezas anuales.
- Conservan la humedad.
- Reducen la erosión.
- Regulan la temperatura del suelo.
- Aportan materia orgánica al suelo.
- Pueden favorecer algunas plagas.

Otros de los inconvenientes que pueden encontrarse en el uso de cubiertas de restos de cosechas es que se requiere cierta técnica en el manejo, que pueden ser propensas a incendiarse (en especial la paja seca), la mayor incidencia de roedores y caracoles que pueden atacar al cultivo y que existen especies arvenses que se adaptan muy bien a la técnica (Zaragoza, 2003). El último aspecto enumerado es particularmente importante para especies perennes, las cuales son poco controladas por las cubiertas vegetales. También es necesario indicar que con la introducción de cubiertas orgánicas al cultivo es muy probable que se introduzcan semillas de malezas, ya que en la biomasa de los residuos de cosecha suelen venir mezcladas malezas, que en muchos casos ya han fructificado. Así mismo, la presencia de semillas del propio cultivo de la cubierta que pueden originar ríos o plantas espontáneas de maíz, cebada, etc., que pueden obligar a su eliminación.

Finalmente, otro inconveniente en zonas frías puede ser la falta de calentamiento del suelo necesario para determinados cultivos como el tomate y el pimiento, especialmente al principio.

3.2.4.11 Conclusión
Se concluye que ninguno de estos métodos alternativos a los herbicidas va a ser una solución por sí mismo, sino que es necesario integrarlos en una estrategia lo más diversificada posible. El técnico deberá escoger el método que le parezca más adecuado y adaptable a su explotación, teniendo en cuenta criterios económicos y valorando ventajas e inconvenientes.

Estas técnicas pueden reducir la necesidad de herbicidas y ello nos puede ayudar a reducir la presión de selección de éstos sobre la flora arvense, lo que va a reducir la creación de resistencias. Por supuesto, utilizando alguno de estos métodos, tendremos otros problemas, pero ya no serán los mismos.

Referencias sobre integración de métodos no químicos en la lucha contra resistencia de malezas

Manejo de poblaciones de malezas resistentes a herbicidas: 100 preguntas sobre resistencias

Martín-Closas L. y Pelacho A.M. 2004. Los acolchados biodegradables como alternativa a los acolchados de papel y de polietileno en un sistema de producción ecológica de tomate. VI Congreso de la Sociedad Española de Agricultura Ecológica (SEAE), Almería, 1559-1572.

3.3 EL MANEJO INTEGRADO DE LAS MALEZAS

Para prevenir la aparición de la resistencia, las actividades de desherbado han de plantearse a medio y largo plazo y no anualmente, integrando varios métodos de lucha contra las infestantes. Cuanto más diversa sea la variedad de técnicas y herbicidas utilizados, menor será el riesgo de aparición de resistencias.

Hay que tener en cuenta que la repetición de cualquier técnica de control, sea mecánica, cultural o de uso de herbicidas suele tener como consecuencia la adaptación de alguna especie de maleza. La mejor herramienta de manejo es la de cambiar de estrategia a menudo.

Consideramos que el manejo integrado de malezas es la manera más eficaz de combatirlas.

Se define como integrado un sistema que se basa en el uso de diferentes conocimientos y técnicas en una estrategia coordinada a medio y largo plazo.

Existen, además, otras definiciones, entre las que se pueden citar como por ejemplo:

- Utilización conjunta de todos los métodos de control posibles de manera que se refuercen unos con otros aprovechando al mismo tiempo los puntos más débiles de la maleza.

- Estrategia a largo plazo que incluye la combinación distintos métodos de control, tanto directos como indirectos, a fin de mantener la infestación de las malezas por debajo de un umbral admisible económicamente (Zwerger, 1996).

En todos los casos se trata de combinar el máximo número posible de métodos para que, utilizados de forma conjunta, den como fruto un control sostenible de las malezas en el tiempo.

El interés por el control integrado lo demuestran las numerosas publicaciones que se han dedicado a él, como por ejemplo Fernández-Quintanilla et al (1999).

Un programa de control integrado debe ser (adaptado de CRC, 2006):
• Flexible, capaz de responder a las condiciones de cultivo en el momento en que se aplique.
• Basado en una buena comprensión del ciclo biológico y características de la maleza que se trata de controlar.
• Adaptado a las condiciones de la finca: clima, suelo, historia.
• Ligado a la consecución de los objetivos de negocio de la explotación a largo plazo.
• Barato (con una buena relación coste – eficacia) a corto plazo.

A continuación se ofrecen unos ejemplos en la Tabla 14 para ilustrar el manejo integrado de las malezas.

<table>
<thead>
<tr>
<th>Tabla 14. Tres ejemplos de malezas resistentes y posibles técnicas de cultivo para su manejo integrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>Resistencia a herbicida</td>
</tr>
<tr>
<td>Cultivo afectado</td>
</tr>
<tr>
<td>Posibles técnicas de control en presiembra</td>
</tr>
<tr>
<td>Posibles técnicas de control durante el cultivo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Posibles técnicas de control después de la cosecha del cultivo</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4. LA TRANSFERENCIA DE LA INFORMACIÓN A LOS AGRICULTORES EN MATERIA DE RESISTENCIA DE LAS MALEZAS A LOS HERBICIDAS

4.1 RECOPILACIÓN DE INFORMACIÓN

En la prevención de las resistencias es muy importante el transmitir las directrices a seguir por parte de los agentes involucrados.

Esta transferencia debe ser realizada de acuerdo con las condiciones locales y por personas del área en la que se trabaja. Esto es así porque precisamente se trata de involucrar y concienciar a quienes pueden generar las resistencias con un uso inadecuado o abusivo de los herbicidas.

En general esto se ha hecho mediante Grupos de Trabajo Nacionales, en los que participan representantes de todos los estamentos ya descritos anteriormente. En el caso de España ha dado muy buen resultado el que a su vez este Grupo de Trabajo sea un Grupo de la Sociedad Española de Malherbología, lo que ha refacilitado su funcionamiento y ha ayudado a la divulgación de sus mensajes.

La información a transmitir es:

- Que el problema de las resistencias es real.
- Describir los casos en que se produce y la extensión que alcanza.
- Explicar las soluciones que se pueden aplicar.

Debe tenerse en cuenta que las resistencias son un problema localizado que afecta a sustancias herbicidas en concreto, de manera que se pueden encontrar soluciones de entrada con una correcta utilización de los herbicidas y a medio y largo plazo implementado programas de control integrado.

La recopilación de la información a transmitir proviene de prospecciones directas en campo, recogiendo muestras de distintas poblaciones y testando posteriormente la existencia de resistencias en laboratorio.

También útil recoger información a través de encuestas. Como ejemplo, se aportan los modelos utilizados en cuatro ocasiones:

- Encuesta del CPRH español (año 2002).
- Encuesta del Grupo de Trabajo sobre Malezas y Herbicidas de los Servicios de Sanidad españoles (año 2005).
- Prospección para evaluar la extensión de la resistencia de *Sorghum halepense* a glifosato en Argentina (año 2006).

En todos estos ejemplos se desea cuantificar la magnitud del problema y concretar, en caso de desconocerse, a qué herbicidas se han desarrollado. Evaluar la extensión real es difícil, dado que las resistencias afectan a poblaciones (campos) concretos. Por ello, en ocasiones se da el número de campos afectados y se estima las hectáreas de superficie que puedan suponer.
4.1.1 Encuesta para estimar la distribución de malezas resistentes a herbicidas en cereal de invierno en España (2002)

¿Quién impulsa esta encuesta?
El CPRH (Comité para la Prevención de Resistencias a Herbicidas) es un grupo de trabajo integrado por representantes de industria de productos fitosanitarios con implantación o representación en España, Universidades e instituciones públicas o privadas sin ánimo de lucro y departamentos de la Administración Pública Central o Autonómica. Su finalidad es la de facilitar la prevención y el control de la resistencia a los herbicidas.

¿Cuál es el objetivo de realizar esta encuesta?
En cereales de invierno actualmente la resistencia de determinadas especies de malezas a los herbicidas es un hecho reconocido. Al ser un problema dinámico, su magnitud es cambiante en el tiempo. Por ello, se propone una encuesta como complemento a proyectos de cuantificación de la resistencia ya realizados para poder estimar la superficie de cereal de invierno afectada en España por la presencia de una u otra especie de hierba resistente a uno o varios herbicidas.

¿Quién contestará a esta encuesta?
Esta encuesta está dirigida a delegados de las principales empresas comercializadoras de productos fitosanitarios.

¿Cómo completar la encuesta?
Indique los datos por separado para cada provincia en la que usted distribuye sus productos. Si se trata de una zona o región determinada dentro de la provincia, indíquelo. Anote el número aproximado de campos que conoce que contengan hierbas resistentes a herbicidas de uno u otro grupo y la superficie aproximada que considera que éstos abarcan. Se pide que contesten únicamente refiriéndose a los productos que ellos representan y distribuyen. Si las hierbas son resistentes a más de un herbicida, por favor indíquelos. Utilice tantas hojas como sea necesario.

<table>
<thead>
<tr>
<th>Empresa que representa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área de distribución</td>
<td></td>
</tr>
<tr>
<td>Herbicidas más vendidos en la zona</td>
<td></td>
</tr>
<tr>
<td>¿Hay rotación de cultivos en la zona?</td>
<td></td>
</tr>
<tr>
<td>¿Se labra el suelo? (Arado de vertedera)</td>
<td></td>
</tr>
</tbody>
</table>

Para cualquier comentario, no dude en ponerse en contacto con:
CPRH (Comité para la Prevención de Resistencias a Herbicidas)

Avena spp. (*Avena loca, cugula*)

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Región/zona/localidad</th>
<th>Imidazolinonas (1)</th>
<th>Fops, dims (2)</th>
<th>Ureas (3)</th>
<th>Otros (especificar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nº campos</td>
<td>Superf. (ha)</td>
<td>Nº campos</td>
<td>Superf. (ha)</td>
</tr>
</tbody>
</table>

(1) Los herbicidas Assert, Savex, Chacal pertenecen a este grupo.
(2) Los herbicidas Topik, Colt, Iloxan, Puma, Gamo, Splendor pertenecen a este grupo.
(3) Los herbicidas conteniendo las materias activas clortolurón o isoproturón pertenecen a este grupo.
Manejo de poblaciones de malezas resistentes a herbicidas: 100 preguntas sobre resistencias

Lolium rigidum (Vallico, luello, margall, fenaç etc.)

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Región/ zona/ localidad</th>
<th>Fops, dims (4)</th>
<th>Ureas (5)</th>
<th>Sulfonilureas (6)</th>
<th>Otros (especificar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N° campos</td>
<td>Superf. (ha)</td>
<td>N° campos</td>
<td>Superf. (ha)</td>
<td>N° campos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Los herbicidas Topik, Colt, Iloxan, Gamo, Splendor pertenecen a este grupo.
(5) Los herbicidas conteniendo las materias activas clortolurón o isoproturón.
(6) Los herbicidas Glean, Belure pertenecen a este grupo.

Papaver rhoeas (Amapola, ababol, rosella, roella, etc.)

<table>
<thead>
<tr>
<th>Provincia</th>
<th>Región/ zona/ localidad</th>
<th>Sulfonilureas (7)</th>
<th>Auxinas (8)</th>
<th>HBN’s (9)</th>
<th>Otros (especificar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N° campos</td>
<td>Superf. (ha)</td>
<td>N° campos</td>
<td>Superf. (ha)</td>
<td>N° campos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(7) Los herbicidas Granstar, Posta pertenecen a este grupo.
(8) Los herbicidas que contienen 2,4-D, MCPA, MCPP, diclorprop o dicamba pertenecen a este grupo.
(9) Los herbicidas conteniendo las materias activas ioxinil, bromoxinil pertenecen a este grupo.
4.1.2 Encuesta sobre la resistencia a herbicidas en Aragón (2005)

Nombre: ___

Zona de trabajo: __

1. ¿Ha oído hablar de la resistencia a herbicidas? □SI □NO

2. ¿Considera Ud. que hay problemas de malezas resistentes a los herbicidas que suelen emplear los agricultores de su zona? □SI □NO □No sé

3. ¿Cree que no hay resistencias sino malas aplicaciones?
 □Resistencias □Malas aplicaciones □Las dos

4. ¿En qué cultivos?

5. ¿Desde cuándo?

6. ¿Qué malezas? (Indicar nombre vulgar o científico si se conoce)

7. ¿A qué productos?

8. ¿En qué términos municipales?

9. ¿Cree que está extendido el problema o está muy localizado?
 □Extendido □Localizado

10. ¿Qué superficie aproximada considera afectada?
 □Rodales, manchas □1-10 ha □10-50 ha □> 50 ha

11. ¿Cómo resuelven el problema de la resistencia? ¿Se han tomado algún tipo de medidas? ¿Cuáles?

12. ¿Cree que representa un grave problema?

13. ¿Cree que el agricultor tiene suficiente información sobre estos problemas?

14. ¿Conoce los folletos editados por el CPRH (Comité de Prevención de Resistencia a Herbicidas)? □SI □NO

15. Otros comentarios sobre el tema:

Por favor, una vez contestada la encuesta, envíela por correo electrónico.
4.1.3 Prospección para evaluar la extensión de la resistencia de Sorghum halepense a glifosato en Argentina (año 2006)

FICHA PARA NOTIFICACIÓN Y DETECCIÓN DE PLAGAS RESISTENTES
Caso Sorgo de Alepo a Glifosato

1. COLABORADOR
Nombre: ___

Actividad: ___

Productor [] Investigador [] Asesor [] Profesional []
Laboratorio [] Empresa [] Otro []

Institución/Empresa: ___
Dirección postal: ___
Teléfono: ___
Correo electrónico: __

2. IDENTIFICACIÓN SITUACIÓN

2a) Si la observación se hizo a campo

<table>
<thead>
<tr>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localización geográfica lote afectado (indicando provincia, departamento, localidad)</td>
</tr>
<tr>
<td>Ubicación con GPS (si se dispone)</td>
</tr>
<tr>
<td>Nombre establecimiento</td>
</tr>
<tr>
<td>Referencia para acceder al lote/ establecimiento</td>
</tr>
<tr>
<td>Situación Barbecho/Cultivo (estado fenológico)</td>
</tr>
<tr>
<td>Área afectada en hectáreas (estimada)</td>
</tr>
<tr>
<td>Distribución de la maleza en el lote (tache lo que no corresponda)</td>
</tr>
<tr>
<td>Altura de la maleza</td>
</tr>
<tr>
<td>Cultivo antecesor</td>
</tr>
<tr>
<td>Herbicidas aplicados al cultivo afectado (indicar principio activo, formulación, dosis y equipos)</td>
</tr>
</tbody>
</table>

Manchones generalizados

Por favor, una vez contestada la ficha, envíela por correo electrónico.
4.2 FUENTES DE INFORMACIÓN
Desde un punto de vista académico, las fuentes de información son muy numerosas, con la existencia de libros y publicaciones, algunos de ellos recogidos en la bibliografía de este trabajo, así como información online. En este último caso, algunas webs de especial interés son:

- www.weedscience.com
- www.plantprotection.org
- www.weeds.crc.org.au
- www.pesticides.gov.uk
- www.semh.net

Sin embargo, la fuente de información más directa, son las prospecciones locales y las encuestas como se han descrito en el apartado anterior.

4.3 CANALES DE DISTRIBUCIÓN DE LA INFORMACIÓN
Para distribuir la información, los canales más usuales son:

- Jornadas Técnicas
- Grupos de trabajo
- Folletos
- Internet

Las Jornadas Técnicas son oportunidades excelentes para distribuir información sobre resistencias. Estas jornadas deben ser cortas, con una duración de medio día o un día, deben ser ágiles, directas, amenas y, sobre todo, muy participativas. Por todo ello, es imprescindible que participen activamente agentes locales, conocedores de la idiosincrasia y características propias de la zona en que la se quiere realizar la divulgación.

Son muy útiles las Jornadas realizadas en el campo, sea toda una jornada o sólo una parte, con un grupo no excesivamente numeroso y frente a un problema real. En este caso, es óptima la situación en la que se pueda comparar qué sucede sin tomar ninguna medida paliativa con lo que se consigue con un adecuado manejo de la población mediante un programa de control integrado.

Los Grupos de Trabajo tienen un carácter más técnico. También deben tener una duración no excesiva y permiten tratar con más profundidad la problemática que se ha generado con las resistencias. Según la idiosincrasia de la zona o región puede ser útil invitar a una persona experta y de reconocido prestigio.

Dentro de las actividades del CPRH español ha tenido una importancia especial esta actividad de transferencia y la experiencia adquirida ha indicado muy interesante el organizar encuentros en los que puedan intervenir participantes, a ser posible de la zona en que se realice el evento, tanto de los Servicios de Investigación, como de los Servicios de Sanidad Vegetal, de la distribución de herbicidas, de la industria que los fabrica y, finalmente, de los agricultores a quienes afecta el problema.
Mediante participaciones cortas y concretas el público recibe con agrado la información proveniente de un conjunto heterogéneo de puntos de vista, que actúan de forma coordinada y que le resultan próximos por intereses y por origen geográfico.

Los folletos son otro canal interesante de divulgación. Deben ser ameno e impactantes. Para su distribución es útil realizarlos de manera que se puedan adjuntar con otras informaciones que reciba el agricultor, por ejemplo con la facturación o con otras informaciones de tipo técnico que pueda recibir, bien sea desde la Administración o desde los canales de distribución de los productos fitosanitarios.

Finalmente, pero no menos importante, existe la posibilidad de la divulgación a través de Internet.

4.4 ÍNDICE PARA UN ENCUENTRO DE DIVULGACIÓN

Como ejemplo, se aporta la agenda de realización de un encuentro de divulgación sobre prevención de resistencias:

Este horario deberá adaptarse a las costumbres y usos locales en lo referente a duración de las exposiciones.

<table>
<thead>
<tr>
<th>Hora</th>
<th>Tema</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30-11:00 hrs</td>
<td>Bienvenida por autoridades y personalidades locales</td>
</tr>
<tr>
<td>11:00-11:10 hrs</td>
<td>Explicación sobre el Grupo de Trabajo local</td>
</tr>
<tr>
<td>11:10-11:30 hrs</td>
<td>Estado de las resistencias en la zona o país</td>
</tr>
<tr>
<td>11:30-12:00 hrs</td>
<td>Manejo de poblaciones resistentes de las malezas de que trate</td>
</tr>
<tr>
<td>12:00-12:15 hrs</td>
<td>Coloquio. En cada exposición debe darse también ocasión para la realización de preguntas y respuestas.</td>
</tr>
<tr>
<td>12:15-12:30 hrs</td>
<td>Pausa breve</td>
</tr>
<tr>
<td>12:30-13:00 hrs</td>
<td>Conferencia sobre la problemática local por parte de un experto o autoridad de la zona</td>
</tr>
<tr>
<td>13:00-13:30 hrs</td>
<td>Conferencia sobre las bases teóricas de la resistencia por parte de un representante de un centro de investigación o universidad</td>
</tr>
<tr>
<td>13:30-13:45 hrs</td>
<td>Actividades para el año en curso</td>
</tr>
<tr>
<td>13:45-14:00 hrs</td>
<td>Coloquio y final de la jornada. En cada exposición debe darse también ocasión para la realización de preguntas y respuestas</td>
</tr>
<tr>
<td>14:00 hrs</td>
<td>Refrigerio</td>
</tr>
</tbody>
</table>
5. CIEN PREGUNTAS SOBRE RESISTENCIAS Y EJERCICIOS PARA EL TRABAJO DE TRANSFERENCIA DE TECNOLOGÍA EN RESISTENCIAS DE LAS MALEZAS A LOS HERBICIDAS

En este último apartado se recogen preguntas y respuestas que ayuden a la comprensión del texto escrito hasta aquí y que sirvan también de ayuda a actividades de transferencia que se puedan organizar.

Estas cuestiones se han organizado en cinco grandes grupos de preguntas sobre:
- Temas generales
- Herbicidas
- Cultivos modificados genéticamente
- Métodos no químicos
- Control Integrado

Las preguntas han ido surgiendo a lo largo de la preparación del texto. En algún caso el aspecto tratado no se recoge explícitamente en el texto, si bien se ha procurado que la mayoría se esté recogida en él.

Las respuestas, muy breves, pueden ser matizadas y completadas, aquí solo sirven de aclaración y como motivo de discusión posterior en grupo.

Esperamos que este ejercicio sobre resistencias resulte útil para una mejor comprensión del mismo.

5.1 PREGUNTAS SOBRE TEMAS GENERALES

1. ¿El problema de las resistencias es realmente importante?
Depende. No es tan importante como pueden ser otros problemas presentes en la agricultura como los de tipo económico: precios bajos de la producción,… Si se tiene en cuenta la superficie afectada también puede parecer un problema menor. No obstante es un problema creciente que puede devaluar algunos productos herbicidas baratos, eficaces y medioambientalmente aceptables. Así mismo, puede dificultar el proceso de producción del cultivo (Apdo. 1.3)

2. ¿Qué diferencia hay entre una planta sensible, insensible y resistente?
Planta sensible: planta que muere tras la aplicación de un herbicida a dosis normal y en condiciones favorables.
Planta insensible: planta que no muere tras la aplicación de un herbicida a dosis normal en ningún campo.
Planta resistente: planta que no muere tras la aplicación de un herbicida a dosis normal y en condiciones favorables, en un campo concreto, pero que antes sí moría (Apdo. 1.4).

3. ¿Qué diferencia hay entre una inversión de flora y resistencia?
Ambos casos son una respuesta al uso repetitivo de una materia activa herbicida. En la inversión de flora se observa como especies insensibles (que nunca han sido bien controladas por este herbicida) van reemplazando el espacio cedido por las especies que sí son sensibles y mueren. En el caso de una resistencia no hay un reemplazo de especies sino que observamos como una población de una especie que antes moría ha dejado de ser sensible (Apdo. 5).
4. ¿Qué diferencia implica que una resistencia esté codificada por un gen dominante o por un complejo de genes recesivos?
La resistencia codificada por un gen dominante se manifiesta tanto en ejemplares heterocigóticos como en los homocigóticos dominantes y por ello, se transmite más deprisa. La resistencia se manifestará como existente o inexistente, sin graduación. Cuando se trata de un complejo de genes recesivos se manifestará menos y habrá más graduación de casos.

5. ¿Qué es la frecuencia inicial de individuos resistentes?
Es el número de plantas resistentes que existen en un campo de forma natural dividido entre el número de plantas totales. Lo normal en poblaciones naturales no tratadas es que sean frecuencias muy bajas (p.ej. se estiman en 10^{-6} o inferiores).

6. Una población resistente ¿es un conjunto de individuos insensibles?
No. Un individuo insensible pertenece a una especie que nunca ha mostrado afectación con el herbicida en cuestión, mientras que un individuo resistente pertenece a una especie que sí muere en condiciones normales de cultivo al aplicarse el herbicida (Apdo. 1.4).

7. El carácter de resistencia a un herbicida ¿siempre penaliza al individuo que la posee respecto al que es sensible?
No. En el caso de la resistencia a triazinas es común encontrar poblaciones resistentes cuyas plantas son o bien más pequeñas, se reproducen menos, o tienen una adaptabilidad menor que las sensibles (“fitness penalty”) pero en otros casos las malezas resistentes muestran la misma capacidad de supervivencia y vigor que las sensibles (Apdo. 2.4).

5.2 PREGUNTAS SOBRE HERBICIDAS

8. ¿Cuáles son los principales problemas que se pueden generar con el uso incorrecto de herbicidas?
Se pueden generar resistencias de las malezas, inversiones de flora y contaminación del medio.

9. ¿Cuántos años puede tardar en desarrollarse una resistencia a un herbicida?
Depende del herbicida, del manejo y de la especie de maleza. En cuanto al herbicida, los de los grupos A, B y C son de máximo riesgo, lo que significa que, usándolos repetidamente, en 4 años se puede crear una resistencia. Si el manejo no es diverso y se centra exclusivamente en el uso de herbicidas, puede crear resistencia rápidamente. Hay especies de malezas que son más rápidas en generar resistencias (p.ej. *Lolium rigidum*, *Amaranthus* etc.). (Apdo. 2).

10. ¿Cómo puedo saber que en mi campo tengo resistencias?
Tiene que cumplir con diferentes requisitos para que se descarte que se haya producido una mala aplicación del herbicida y ser, además, una capacidad heredable (Apdo. 2.1).

11. ¿De qué tipos de pruebas se dispone para detectar resistencias?
Existen pruebas que se basan en semillas, haciendo germinar las plantas sobre diferentes medios que contienen herbicida. Otras pruebas consisten en pulverizar tejidos nuevos de plantas que han sobrevivido con el herbicida en cuestión. Existen pruebas más
específicas como, por ejemplo, la que se basa en detectar diferencias de degradación de la clorofila por emisión de fluorescencia, en el caso de usar inhibidores de la fotosíntesis, o técnicas biotecnológicas que se usan para distinguir las plantas que presentan una mutación genética (Apdo. 2.1.).

12. ¿Qué importancia tiene conocer la historia de la parcela en que se sospecha hay una resistencia?
Fundamentalmente para observar si ha habido una disminución de la eficacia de un herbicida sobre una especie.

13. ¿En qué detalles de la historia de la parcela hay que fijarse?
En la calidad de los tratamientos, tamaño de las plantas al ser tratadas, condiciones climáticas antes, durante y después del tratamiento. Para comparar eficacias entre años diferentes hay que conocer estos detalles, así como la eficacia en las parcelas vecinas (Apdo. 2.1).

14. ¿Qué importancia tiene detectar los primeros focos de resistencia en el campo o en la explotación agrícola?
Cuánto antes se detecten y se controlen, más se podrá frenar la expansión de la resistencia (Apdo. 2.1).

15. ¿Cómo puedo evitar que aparezcan malezas resistentes en mi campo?
Alternando y diversificando los métodos de control y el manejo de las malezas (Apdo. 3).

16. ¿Cuál es la dosis óptima de herbicida que se debe utilizar?
La dosis óptima es la mínima que proporcione el máximo control.

17. ¿Puede aparecer un herbicida nuevo que solucione el problema de las resistencias?
Sí, pero la solución puede durar poco tiempo si se emplea el herbicida repetidamente (Apdo. 3).

18. Si se deja de utilizar un herbicida por problemas de resistencias, ¿la resistencia disminuye?
La resistencia es hereditaria y por tanto siempre habrá semillas en ese campo que mantengan la resistencia. Ésta puede disminuir pero no erradicarse. (Apdo. 2)

19. ¿Qué diferencia hay entre mezcla, secuencia y rotación en el uso de herbicidas?
Mezcla: dos o más materias activas herbicidas aplicadas a la vez.
Secuencia: dos o más materias activas herbicidas aplicadas una después de otra a lo largo del tiempo, generalmente en un mismo período de cultivo.
Rotación: dos o más materias activas herbicidas aplicadas en diferentes períodos de cultivo (Apdo. 3.1.2).

20. ¿Qué mecanismos hay de resistencia de las malezas a los herbicidas?
Los mecanismos más frecuentes son: mutación en el lugar de acción, el metabolismo acelerado, falta de absorción y el confinamiento en vacuolas (Apdo. 2.2).
21. ¿Existen malezas resistentes al herbicida glifosato? ¿Por qué ha tardado tanto su aparición?
En el año 2006 había citadas 12 especies diferentes resistentes a glifosato. La principal explicación de porqué ha tardado tanto en aparecer es que de la frecuencia inicial de plantas resistentes a este herbicida en la naturaleza es muy baja (Apdo. 1.3).

22. ¿Qué medidas se pueden adoptar para retardar la aparición de las resistencias a glifosato? Tanto en plantas anuales como en perennes.
Disminuir la frecuencia de aplicación del herbicida alternando con otros métodos de control, incluyendo otras materias activas si es necesario (Apdo. 1.4).

23. ¿Qué es la presión de selección de un herbicida?
Es el efecto del tratamiento herbicida sobre el conjunto de malezas infestantes de un campo por el que es capaz de seleccionar biotipos resistentes (Apdo. 2.3).

24. ¿De qué depende la presión de selección de un herbicida?
Depende del tipo de herbicida, de la forma y frecuencia de aplicación, de su eficacia y de la especificidad del modo de acción; depende también de algunas características de la maleza, como son su período de emergencia, duración del banco de semillas, y depende de si se realizan medidas alternativas de control que diluyen esta presión.

25. La presión de selección de un herbicida, ¿puede ser modificada por el agricultor?
Sí. El agricultor puede reducir la presión de selección de un herbicida al utilizarlo menos veces y si realiza medidas alternativas de control (Apdo. 2.3).

26. ¿Todos los herbicidas ejercen la misma presión de selección? ¿Todos los herbicidas tienen el mismo riesgo de generar resistencias?
La presión de selección depende de la eficacia del producto y, si se aplica a la dosis correcta, es independiente del herbicida. La frecuencia inicial de genes resistentes en la naturaleza es variable según los herbicidas y es la principal causa de las diferencias en cuanto al momento de aparición de las resistencias (Apdo. 2.3).

27. Los herbicidas se clasifican de acuerdo con los criterios del HRAC en distintos grupos, a los que se les asigna una letra a cada uno de ellos. ¿Qué significado y qué aplicación tiene esta clasificación?
Los herbicidas pertenecientes a un mismo grupo tienen un mecanismo de acción similar, por lo que una maleza resistente a uno de estos herbicidas puede fácilmente ser resistente a otro herbicida del mismo grupo (mostrando resistencia cruzada) mientras que será sensible a herbicidas de los otros grupos (a no ser que muestre resistencia múltiple). Cuando hablamos de rotación de herbicidas se recomienda usar moléculas de grupos HRAC distintos para reducir el riesgo de aparición de resistencias (Apdos. 3.1.1 y Tabla 4).

28. ¿La clasificación WSSA es la misma que la HRAC? ¿Se utiliza igual?
Son los mismos grupos con diferente notación. El modo de empleo es el mismo.

29. Cuando aparece una resistencia de una maleza a un herbicida en un campo, ¿puede continuar la aplicación de este mismo herbicida si bien mezclado con otros, de manera que se siga resolviendo el problema?
No. Se debe evitar el uso de esa materia activa, aunque sea en mezcla, porque podemos aumentar la presión de selección de la misma y seguir incrementando el problema (Apdo. 3.1).

30. **¿Qué consecuencias tiene la utilización de la mezcla de dos o más herbicidas para el control de las malezas?**
Siempre que controlen la misma especie problema, se retrasa la aparición de la resistencia, ya que es menos probable que desarrolle resistencia a dos mecanismos de acción al mismo tiempo (Apdo. 3.1.2).

31. **¿Qué puede retrasar más la aparición de resistencias, la mezcla de herbicidas o la rotación de cultivos?**
La rotación de cultivos. Ésta permite cambiar los ciclos de los cultivos y reduce la densidad de la maleza resistente. También permite el uso de otros herbicidas con los que se puede reducir también la densidad de la maleza resistente (Apdo. 3.1.2).

32. **¿Qué aspectos deben tenerse en cuenta para una correcta aplicación de un herbicida?**
Aplicación en las condiciones climáticas correctas (temperatura, humedad del suelo, ausencia de viento); dosis correcta y no inferior a la recomendada; volumen de caldo adecuado; aplicación uniforme estado fenológico de la maleza y del cultivo adecuados y no posteriores a los recomendados.

33. **La persistencia de un herbicida, ¿es un factor de riesgo para que presente resistencias?**
Sí. Ejerce la presión de selección durante todo el período en el que está activo (Apdo. 3.1).

34. **¿Los herbicidas pueden sustituir totalmente a los métodos no químicos de control?**
No. Necesitan complementarse unos con los otros, formando parte del denominado manejo integrado.

5.3 **PREGUNTAS SOBRE CULTIVOS MODIFICADOS GENÉTICAMENTE**

35. **A veces se habla de cultivos modificados genéticamente resistentes a herbicidas, ¿esta terminología es correcta?**
Sí, con matices. Con todo hay que distinguir que se habla de resistencia de malezas cuando por el uso inadecuado de un herbicida se seleccionan sin querer biotipos que no son controlados por este herbicida. En el caso de los cultivos modificados genéticamente, el proceso es controlado por el hombre.

36. **¿Los cultivos modificados genéticamente pueden aportar beneficios al manejo de las malezas?**
Sí, siempre que el cultivo modificado sea resistente a un herbicida distinto al que resiste la maleza y que se haga un uso adecuado del mismo, alternando su empleo con otros métodos de control (Apdo. 3.1.4).
37. ¿Cómo puede influir la siembra de un cultivo transgénico en la aparición de malezas resistentes?
Los cultivos transgénicos resistentes a un herbicida pueden suponer tratamientos repetidos con ese herbicida, lo repetido en el tiempo es un factor de riesgo evidente. Debe tenerse en cuenta que puede tratarse de herbicidas de bajo coste, lo cual estimula más su utilización a fin de mejorar la rentabilidad del cultivo. (Apdo. 3.1.4).

38. En el control de malezas se ha dicho que los OMG son un “arma de doble filo” ¿Por qué?
Por un lado presentan una oportunidad para controlar malezas resistentes usando otro herbicida al que son sensibles. Pero un uso no adecuado y abusivo (aplicaciones tardías, repetidas en el tiempo o a dosis demasiado bajas) puede provocar resistencia también a este otro herbicida. Se deben usar con prudencia.

39. ¿Se pueden desarrollar resistencias a herbicidas en los cultivos modificados genéticamente para resistencia a herbicidas?
Sí, se pueden desarrollar malezas resistentes si se trata repetidamente con la misma materia activa.

40. ¿El flujo de polen procedente de cultivos modificados genéticamente, puede generar una “superraleza” que no se pueda controlar con ningún herbicida?
No, en el sentido de que no pueda ser controlado con ningún herbicida. No obstante, las malezas de la misma especie que el cultivo transgénico (por ejemplo el arroz rojo en arroz transgénico resistente) pueden cruzarse y adquirir la resistencia.

41. ¿Las plantas de Sorghum halepense pueden ser polinizadas por plantas de maíz modificado genéticamente?
No. No están lo suficientemente emparentadas.

42. En un cultivo modificado genéticamente para resistencia a un herbicida, ¿éste se puede aplicar en cualquier momento del cultivo, repetidamente y a cualquier dosis?
No. El herbicida debe ser aplicado en el momento y numero de veces en cada ciclo de cultivo que se indique en la etiqueta.

5.4 PREGUNTAS SOBRE MÉTODOS NO QUÍMICOS

43. ¿De qué métodos se dispone para el control de malezas que no impliquen el uso de herbicidas?
Existen numerosos métodos no químicos de control de malezas: métodos preventivos, culturales, mecánicos, físicos (Apdo. 3.2).

44. ¿Qué acciones ejercen los métodos mecánicos sobre las malezas?
Al igual que los herbicidas, los métodos mecánicos presentan diferentes “modos de acción”: entierran, arrancan, fragmentan, desentierran, etc. (Apdo. 3.2.4).

45. ¿Los métodos no químicos de control de malezas, tienen aspectos negativos?
Sí. Es muy difícil alcanzar eficacias superiores al 80 por ciento con estos métodos, por lo que a veces es necesario combinarlos entre ellos si se desea incrementar la eficacia. También cabe tener en cuenta que no son métodos “totales”. Un método puede ser muy
eficaz para una especie de maleza en concreto pero inefectivo para otra. También cabe tener en cuenta que en muchos casos el consumo energético es elevado.

46. ¿Cuáles son los métodos no químicos de control de malezas de más fácil adopción por parte del agricultor?
Dependerá del agroecosistema en concreto. Los retrasos de siembra, barbechos y rotaciones de cultivo pueden ser muy efectivos. Las labores suelen ser de sencilla aplicación. También se pueden emplear en algunas situaciones la solarización, el desherbado térmico y el acolchado plástico u orgánico (Tabla 8).

47. ¿Cómo se controlan las malezas perennes sin utilizar herbicidas?
Principalmente, agotando sus reservas. A veces, arrancando y desenterrando rizomas o tubérculos (Tabla 9).

48. ¿Qué criterios deben seguirse al diseñar una rotación?
Dependiendo de la maleza a combatir, se trata de rotar fechas, ciclos, espacio ocupado, capacidad competitiva del cultivo o momento de cosecha (Apdo. 3.2.3).

49. ¿Hasta qué densidad de malezas por metro cuadrado se puede justificar un control manual de las mismas?
Dependerá de la competitividad del cultivo, la agresividad de la especie de maleza, del coste del desherbado manual y de si los rendimientos económicos del cultivo son elevados o no.

50. ¿Qué condiciones son las óptimas para la realización de un control mecánico?
Suelo homogéneo en tempero o seco, pocas piedras, malezas pequeñas, sol o viento después del control mecánico, malezas pequeñas. Seguir las normas de las buenas prácticas (Tabla 12).

51. ¿Cómo se puede evitar la producción o la incorporación de semillas al banco de semillas del suelo?
Segando, pastando, cortando o arrancando las hierbas antes de que florezcan y emitan semillas.

52. ¿Cómo se puede evitar o disminuir la producción de rizomas de una planta perenne?
Debilitando la planta (p.ej. a base de siegas) para que no pueda acumular sustancias nutritivas en los rizomas o tubérculos.

53. ¿Las malezas gramíneas son sensibles a los métodos mecánicos de control?
Depende de la especie y las condiciones climáticas. En general, son sensibles al enterrado, al laboreo profundo pero toleran bien al pase de grada de varillas y, en general, rebrotan después de una siega (Tablas 8, 9 y 10).

54. ¿Qué malezas dicotiledóneas son más sensibles a los métodos mecánicos?
Depende de las especies, tipo de labor y condiciones ambientales. Las semillas de crucíferas están muy bien adaptadas al enterramiento. Algunas anuales de raíz fasciculada son capaces de sobrevivir a un desenterramiento parcial. En resumen, las especies más sensibles suelen ser las especies anuales y con un sistema radicular fasciculado y no pivotante (Tablas 8, 9 y 10).
55. ¿El laboreo nocturno es más eficaz que el diurno?
Depende de la especie de maleza a combatir, pero en general su eficacia es similar (Apdo. 3.2.4.3).

56. ¿Qué se puede esperar de la piroescarda o desherbado térmico?
Es un método de desherbado total, eficaz sobre plantas anuales de pequeño porte, que no deja residuos químicos ni altera la estructura del suelo. Es necesario repetir periódicamente el tratamiento y está especialmente indicado en algunos cultivos en preemergencia y en frutales, maíz, liliáceas en postemergencia, así como en zonas sin cultivo. Se debe tener cuidado para evitar quemaduras (Apdo. 3.2.4.4).

57. ¿Qué se puede esperar del acolchado con plásticos o mulching orgánico?
Los plásticos han de ser opacos a la luz y habrá que desherbar los agujeros por donde salen las plantas de cultivo. En el caso de los materiales no degradables hay que sumar el coste de la retirada de los mismos. Una buena colocación es muy importante y se deben evitar roturas. Hay que adecuar el riego a menores necesidades. Algunas especies proliferan en mulching de paja, corteza, aunque la mayoría de malezas no son capaces de perforar los materiales (Apdos. 3.2.4.5 y 3.2.4.7).

58. ¿Hay sistemas de cultivo con más riesgo de generar resistencias?
Sí. Todos los sistemas de cultivo que en sí mismo o por la forma de llevarlo a cabo se apoye de forma preponderante en el uso de herbicidas obviando el uso de métodos no químicos de control: rotaciones, ...

59. ¿Cuál es el método de acolchado más barato?
En caso de disponer de material orgánico de deshecho (hojas, paja, corteza, etc.) abundante y cercano probablemente sea el más barato.

60. ¿Cómo se pueden clasificar los medios artificiales de acolchado desde los más económicos a los más caros?
Como más caro se puede considerar el papel especial para acolchado seguido de diferentes plásticos biodegradables, papel reciclado, plástico oxobiodegradable y como más económico se considera el polietileno.

61. ¿Se puede emplear la solarización en todas las zonas de cultivo?
No. Para una solarización eficaz es necesario asegurar en el suelo 40º C durante 20 días seguidos. Por este motivo solo se puede emplear en zonas con suficiente insolación.

62. ¿Se pueden producir resistencias a los métodos no químicos?
No. En realidad se trata de una adaptación, carácter que no es heredable.

5.5 PREGUNTAS SOBRE CONTROL INTEGRADO

63. ¿Qué características ha de tener un programa de control integrado de malezas?
Se deben alternar diferentes métodos de control que permitan reducir la presión de selección de cada uno de los métodos de control. Ha de ser lo más diverso posible, flexible, científicamente basado, adaptado y económico (Apdo. 3.3).
64. ¿De qué manera se pueden combinar el uso de herbicidas y los métodos no químicos de control de malezas?
En cereal, se pueden usar ambos en un mismo ciclo (por ejemplo, retraso de siembra y uso de herbicida) o de forma alternada entre años, aunque, por supuesto, depende del cultivo. En hortícolas se puede emplear herbicida, acolchado plástico y labor entre líneas. En frutales se pueden combinar siegas y herbicidas, También se pueden alternar entre años (Apdo. 3.3).

65. ¿Hay un procedimiento “mágico” para el control de malezas que resuelva el problema de las resistencias?
No.

66. ¿Cuál es la palabra a recordar en el manejo de las resistencias?
Diversificar.

67. ¿De dónde proceden las resistencias?
Proceden de una especie local que ha generado resistencia al ser tratada repetidamente con la misma materia activa o de una especie resistente traída del exterior (Apdo. 2).

68. ¿Las resistencias de las malezas a los herbicidas tienen aspectos positivos?
Sí. Han provocado que las recomendaciones de alternar métodos de control, útiles para cualquier manejo de malezas, se tomen más en serio. Las malezas resistentes demuestran la importancia que tienen las malezas para los cultivos, ya que frecuentemente su importancia no es considerada lo suficiente, siendo sus efectos adversos a menudo menos espectaculares que los causados por plagas u enfermedades.

69. ¿Qué es más económico, prevenir o manejar una resistencia?
Teniendo en cuenta que es muy difícil eliminar por completo una maleza resistente de un campo, la prevención es más económica.

70. ¿Qué beneficios aporta la prevención de las resistencias de las malezas a los herbicidas?
Conseguir que no se produzca la resistencia, de tan difícil erradicación. Se consigue un mejor beneficio económico a largo plazo. (Apdo. 1.7).

71. En concreto, un programa de control integrado ¿Qué beneficios medioambientales aporta?
Se usan menos herbicidas porque se emplean también otros métodos no químicos.

72. ¿Los métodos mecánicos de control de malezas pueden llegar a sustituir a los herbicidas?
Únicamente en agricultura orgánica o ecológica, donde no se emplean. Bien utilizados, los herbicidas son una herramienta útil y eficaz. Sin embargo, tienen también inconvenientes, como cualquier método.

73. ¿Qué interés tiene el conocimiento de la biología de una especie para el manejo de poblaciones resistentes de esta especie?
Es imprescindible saber la forma de reproducción de la maleza (vegetativa o sexual), su época de germinación, su competitividad, la persistencia de sus semillas en el suelo, entre otras características (Tablas 8 y 9).
74. ¿Qué papel juega la maquinaria de cultivo, cosechadoras y otros aperos, en la dispersión de las resistencias?
Pueden ser agente de dispersión de semillas, si no se limpian bien entre campo y campo.

75. ¿Qué papel juegan las semillas producidas por una planta perenne en su ciclo biológico? ¿Cómo se pueden controlar?
Depende de la especie. En algunos casos, son su mecanismo secundario de reproducción y les asegura una mayor dispersión y recombinación genética. Se puede minimizar segando, pastando o cortando la planta para impedir su floración y dispersión de semillas.

76. ¿Qué papel juegan las deyecciones ganaderas en la dispersión de semillas de malezas?
Muchas semillas de malezas no se descomponen al pasar por el tracto digestivo de los animales, así que éstos las dispersan, a veces con mayor capacidad de germinación. Si se pastan las malezas antes de que florezcan, el pastoreo puede ser una manera eficaz de reducir la población de malezas (Apdo. 3.2.2 y 3.2.3).

77. ¿Qué efectos tiene el fuego del rastrojo en el control de malezas? ¿El fuego destruye la capacidad germinativa de las semillas?
Depende de la especie de maleza y de la intensidad del fuego. Por ejemplo, si éste pasa deprisa, en el caso de L. rigidum, el fuego parece que agrupa la germinación en el año siguiente. En el caso de Avena, la quema de rastrojo puede reducir su población, mientras que en el caso de Papaver rhoeas no se han encontrado reducciones en su germinación. Hay que tener en cuenta la emisión de CO₂ a la atmósfera, la pérdida de materia orgánica y el riesgo de incendio que supone quemar los rastrojos. (Apdo. 3.2.4.4).

78. ¿Qué aspectos de un cultivo disminuyen la presencia y desarrollo de las malezas?
Un cultivo sano, vigoroso, plantado a distancia correcta y que recibe el agua suficiente tendrá la capacidad de competir contra las malezas.

79. ¿Se puede incidir sobre las malezas antes de establecer un cultivo?
Sí, usando métodos preventivos y culturales (Apdo. 3.2.2).

80. ¿Todas las semillas de las malezas quedan destruidas por el hecho de ser enterradas en el suelo?
No. Las especies que tienen semillas con capacidad de latencia pueden permanecer vivas durante años (p. ej. Avena sterilis, Abutilon theophrasti) (Tabla 8 y 9).

81. ¿La “agricultura de conservación” puede favorecer la aparición de resistencias a herbicidas?
Depende. Este conjunto de técnicas pretende la conservación del suelo y otros recursos escasos. En cultivos herbáceos preconiza el abandono de las labores de volteo lo que reduce la diversificación y puede llevar a un empleo excesivo de herbicidas y, por lo tanto, a un aumento de la presión de selección. En cultivos leñosos en cambio promociona el empleo de las cubiertas vegetales, lo que puede reducir esta presión.
5.6 PREGUNTAS SOBRE BIOLOGÍA DE MALEZAS

82. ¿Donde se expanden más fácilmente las resistencias, en las plantas alógamas o en las autógamas?
En las especies alógamas (p. ej. Lolium rigidum, Papaver rhoeas) frente a la autógama Avena spp.

83. ¿Hay malezas perennes resistentes a los herbicidas?
Sí. Entre las de mayor importancia económica actualmente se conoce el caso de Sorghum halepense (Apdo. 3.1.3).

84. ¿En qué momento se puede asimilar el control de una maleza perenne con el de una maleza anual?
Durante el primer ciclo de vida, en estado de plántula, siempre y cuando la maleza perenne haya germinado a partir de una semilla y antes de que desarrolle órganos vegetativos.

85. ¿Cómo se manejan las resistencias en las malezas anuales? ¿Y en las perennes?
En ambas básicamente igual: alternando los métodos de control. Debido a la presencia de órganos de reproducción vegetativos, en las especies perennes hay que poner especial interés en evitar su diseminación a campos cercanos. Una vez establecida habría que tratar de erradicar los órganos vegetativos o reducir sus reservas (Tablas 8, 9 y 10).

86. ¿Qué importancia tiene el banco de semillas en el manejo de poblaciones resistentes?
Mucha. Si el banco de semillas es persistente, la población resistente se irá reforzando y respondiendo con nuevos individuos que vayan germinando.

87. ¿Por qué es importante evitar la producción de semillas en las malezas resistentes? ¿Se puede aplicar en el manejo de resistencias?
Porque es la forma de evitar que se acumulen en el suelo y sean una fuente de nuevos individuos resistentes. Se debe evitar que lleguen a producir semillas.

88. ¿Las semillas de las malezas, pueden moverse entre campos de una explotación o, incluso entre distintas explotaciones?
Las máquinas de preparación del suelo, las cosechadoras y los canales de riego y, en algunas especies, el viento, pueden mover las semillas de malezas resistentes a otros campos alejados (Tabla 8).

89. ¿Qué debe hacerse para impedir el movimiento de semillas de individuos resistentes a un herbicida?
Limpia bien las cosechadoras antes de entrar en un campo en el que no hay malezas resistentes. Colocar filtros en las acequias e instalación de riego. Vigilar la procedencia de los estiércoles y su descomposición adecuada.

5.7 PREGUNTAS SOBRE TRANSFERENCIA DE TECNOLOGÍA

90. El agricultor, el distribuidor de fitosanitarios y el consultor, ¿son conscientes del problema de las resistencias?
Depende de la región, pero probablemente quien más conciencia tiene del problema es el agricultor que debe observar si la eficacia disminuye gradualmente en su campo. Igualmente, el distribuidor no se debe limitar a vender sin más y el consultor debe estar bien informado.

91. El agricultor, el distribuidor de fitosanitarios y el consultor ¿saben que gran parte de la solución al problema de las resistencias está en su mano?
Algunos sí, pero hay muchos que no están informados y otros viven en la inconsciencia. De hecho el punto clave de la transferencia de tecnología en resistencias es adquirir un conocimiento reflexivo de esta problemática.

92. ¿Qué conocimientos deben transferirse a los agricultores?
Información teórica y estado de la situación en la zona. Y, sobre todo, se les debe transmitir que deben diversificar al máximo los métodos de control. Los conceptos a transmitir son: (Apdo. 4)
• Que el problema de las resistencias es real.
• Los casos en que se produce y la extensión que alcanza.
• Las soluciones que se pueden aplicar.

93. ¿De qué fuentes de información se dispone sobre resistencia de malezas?
Se tienen numerosas hojas informativas en varios idiomas y diferentes webs en Internet a su disposición. Existen numerosas publicaciones y folletos explicando estas técnicas. En la web www.weedscience.com se citan la mayor parte de éstas. También es útil realizar charlas explicativas en las zonas afectadas. Desde un punto de vista académico, las fuentes de información son muy numerosas, con la existencia de libros y publicaciones, algunos de ellos recogidos en la bibliografía de este trabajo, así como información en Internet. (Apdo. 4.1)

94. ¿Qué métodos hay para la transferencia de los conocimientos de que disponemos para el manejo de las resistencias?
Se pueden agrupar en presenciales y en no presenciales (“on line”). Presenciales son visitas de campo con agricultores de la zona, jornadas técnicas y grupos de trabajo. Mediante Internet, se pueden consultar las web relacionadas con las resistencias, tanto de organismos académicos como de empresas comercializadoras de herbicidas.

95. ¿Qué contenidos debe tener una visita de campo? ¿Y un taller de 1 o 2 días?
Una visita de campo debe mostrar en la realidad casos de resistencia y, de ser posible, campos en los que se ha resuelto este problema. Ello permite comprobar in situ tanto la existencia del problema como la posibilidad de resolverlo.

En un taller de 1 ó 2 días, además de lo anterior, puede profundizarse en los conocimientos teóricos y recibir información de expertos sobre resistencias, intercambiando información entre agricultores o técnicos afectados por este problema. Como en toda labor de divulgación, es básico promover el máximo posible de diálogo.

96. ¿Qué se considera más efectivo para la transferencia: los métodos presenciales o los que se realizan a distancia mediante el uso de las nuevas tecnologías de la información y comunicación?
El que implique una mayor participación de la persona que debe recibir la información. También depende de la disponibilidad de medios informáticos y de redes de banda
ancha que se posean, de manera que la transmisión de la información sea rápida y amena. La visita *in situ* de problemas de resistencia es muy convincente para personas que no hayan tenido experiencia sobre esta problemática.

97. **Los técnicos consultores y los agricultores ¿Tienen necesidad de recibir transferencia sobre la resistencia de las malezas a los herbicidas?**

Naturalmente, pues son actores implicados en el problema.

98. **¿Qué informaciones se pueden obtener de las webs que tratan sobre resistencias de las malezas?**

En estas webs se pueden conocer los casos de resistencia confirmados oficialmente, tanto por especie de maleza, como por herbicida o país en que se ha detectado. Así mismo, se aporta información completa de los estudios realizados en cada caso. Otras informaciones son: como detectar las resistencias, como manejar las poblaciones resistentes e información específica para cada maleza.

99. **¿Es ético vender un herbicida para un campo sabiendo que puede existir una resistencia a ese herbicida?**

No es ético. Igual que un médico pregunta si el paciente es alérgico a tal o cual medicamento antes de recetarlo, el vendedor ha de preguntar al cliente por la historia del campo a tratar, a fin de comprobar las posibilidades de que se dispone para controlar la infestación que afecta al campo.

100. **¿Quién debe sentirse responsable de las resistencias?**

Todos los que participan en el control de las malezas. Desde quien aplica el herbicida hasta el comercializador de los productos pasando por los técnicos que asesoran en su control. De la actuación correcta de todos se puede contribuir a la prevención de las resistencias o al menos a su detección precoz.

101. **¿Se puede promocionar el uso de herbicidas en zonas en las que nunca se ha tratado con estos productos?**

Se puede basándose en un conocimiento profundo de los mismos para utilizarlos correctamente. Se debe aprender de los problemas generados en otras zonas en los que se emplean de forma sistemática y masiva.
Manejo de poblaciones de malezas resistentes a herbicidas
100 preguntas sobre resistencias