Detection of capsinoids by ESI-mass analysis

ORETO FAYOS1, MARÍA SAVIRÓN2, JESÚS ORDUNA2, CRISTINA MALLOR1, GERARDO F. BARBERO3 AND ANA GARCÉS-CLAVER1

1Centro de Investigación y Tecnología Agroalimentaria de Aragón. E-50059 Zaragoza, Spain. 2Centro de Química y Materiales de Aragón. E-50059 Zaragoza, Spain. 3Grupo de Investigación Químico Analítico del Vino y Productos Agroalimentarios. Universidad de Cádiz. E-11510 Puerto Real. Cádiz, Spain.

INTRODUCTION

Capsaicinoids are the compounds responsible for the pungency in pepper fruits (Capsicum spp) and exhibit several healthy effects (Reyes-Escogido et al. 2011), however, their use is limited due to pungency. Another capsaicinoid-like substances, named **CAPSINOIDS**, have been discovered in pepper fruit extracts (Yazawa et al. 1989). Chemical structure and biologic activity of capsinoids are almost the same as the capsicinoids unlike pungency. As it happens with the capsaicinoids, pepper fruits may contain others capsinoids not yet described. Therefore is important develop new analytical techniques more accurate for determining minor compounds such as capsinoids.

OBJECTIVE

Optimization of a mass spectrometry method that allows accurate m/z measurements of capsinoid ions and their product ions and the characterization of the fragmentation patterns of capsiate and dihydrocapsiante.

RESULTS

ESI-MS² (QTOF) analysis (positive ion mode) and ESI-MSⁿ (ion trap) analysis (positive mode) were used

PROPOSED FRAGMENTATION PATTERNS FOR CAPSIATE (A) AND DIHYDROCAPSIIATE (B)

The most intense product ion was observed at m/z 159.0 corresponding to the sodiated vanillyl ring shared by all capsinoids.

The product ions at m/z 137.1 and 177.1 corresponding to different fragmentations of the sodiated vanillyl ring.

CONCLUSION

This study opens the possibility of applying ESI-MS(QTOF) analyses to identify potential unknown capsinoids in pepper fruit extracts and also to confirm the identification of the three know capsinoids in vegetable matrices. The fragmentation patterns obtained supply valuable information for further characterization of unknown capsinoid-type compounds.

ACKNOWLEDGEMENTS: This study was supported by the Spanish Ministry of Science (PID2021-130701-C02-01) and by the Aragon Government (Group A16).