

Training session on Design of Experiments

Experimental unit: 5 seedlings

Plot: 1-5

Eduardo Notivol
C.I.T.A. Aragon (Spain)
Unidad de Recursos Forestales
enotivol@aragon.es

Sketch out

- Introduction
- Stages
- Principles
- Designs and analysis theory
- Operational tools for design
- [Analysis of experiments]

OUTLINE

- ❖Introduction
- Stages
- Principles
- ❖Designs and analysis theory
- ❖Operational tools for design
- ❖[Analysis of experiments]

- DoE ← → AoE
- Practical aspects
- Some statistics theory
- Operational tools for design
- Data collecting
- Preprocessing (screening, outliers)
- Checking assumptions
- [Analysis of experiments]

Introduction

Goal

Tool for addressing analytical problems without fixed laws

- Variability
 - Existence
 - Dealing and understanding
 - Modeling and controlling

Planning of an experiment (i)

- Definition of objectives
- Definition of all sources of variation
 - Treatments and their levels
 - Experimental units
 - Nuisance factors: blocking, noise & covs
- Setting up the experimental units & treatments

Planning of an experiment (ii)

- Definition of response variable, experimental process and issues foresight
- Set up the model
- Scheme of analysis steps
- Set up sampling size
- Review all foregoing points and modifying if necessary

Stages (i)

- Definition of the problem
- Definition of objectives
- Selection of treatments to test (interactions)
- Selection of the material to test
- Selection of the experimental design (simple)
- Selection of the experimental unit size and number of replications

Stages (ii)

- Control of "surroundings" effects
- Kind of data to be taken
- Selection of statistical tests
- Accomplishment of the experiment
- Analysis and interpretation of results
- Final reporting (conclusions)

Principles (i)

- 1.Replicatio $\bf n$ s. (experimental error basis)
 Standard Error of Difference
 Agronomic trails SED<1/3 diff $_{SED}=\sqrt{\frac{2\sigma^2}{n}}$ Material selection SED<1/6 diff
 Knowing s² & d ==> n
- 2. Treatment (broad sense) Randomization
- 3. Local control of existing variation in trial site (**B**locking or spatial analysis)

"typical numbers & expressions"

4 replications 25 plants per plot atments zation a Atreatments randomization 3 sites 2 border lines latinization **RCB** 25 genotypes 5 x 5 m spacing single tree plot

Principles (ii)

Number of available effectives

Site constraints (topography, surface ...)

Technical limitations (machinery,)

Measurements

Competence, specific needs,

Future treatments, thinings,...

Spacing, density

Experimental design

Initial assumptions or constraints:

Additivity

Normality

Homocedasticity.

Different treatment errors are independient & distributed $N(0,\sigma^2)$

Statistic tests:

N: Shapiro-Wilks, graphs distrib, freq acum., res * pred

H: Barlett, Levenne, ratios variances

Transformations

No parametric methods

Elementary Designs

Model: $y_{ij} = \mu + t_i + \epsilon_{ij}$

	dof	SS	MS	F	EMS
Total	rt-1	а	a/rt-1		
Treat	t-1	b	b/t-1	MS _T / MS _E	$\sigma_{\rm e}^2 + r \sigma_{\rm t}^2$
Error	t(r-1)	С	c/t(r-1)		$\sigma_{\rm e}^2$

Model y = treat;

Elementary Designs

Model: $y_{ijk} = \mu + t_i + b_j + \epsilon_{ijk}$

	dof	SS	MS	F	EMS
Total	rb-1	а	a/rb-1		
Treat	t-1	b	b/t-1	MS _T / MS _E	σ_{e}^{2} +b σ_{t}^{2}
Blq	b-1	С	c/b-1	MS _B / MS _E	
Error	t-1)(r-1)	d	d/t(r-1)		σ _e

Model y = treat blq;

Experimental design

Possible structure of treatments

Factorial: total combination all x all

Possibility interactions study (GxE)

Reaction norms

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

No interaction

quantitative interaction

qualitative interaction

Experimental design

Possible structure of treatments

Hierarquical or nested: Impossible combination

$$y_{ijk} = \mu + \alpha_i + \beta_j (\alpha_i) + \epsilon_{ijk}$$

Model
$$y = pop fam(pop)$$
;

Is it important the treatment structure?

other structure + important.....

¿Fixed o Random?

- 1. Critic decision
- 2. Not well documented on texts
- 3. Usually based on subjective statistic agreements

Fixed: Levels of factor clearly targeted or selected Results & conclusions from anova are for these levels Main aim: Mean estimation of the variable for each level (BLUE)

Random: Levels are a random sample from all posible.

Results & conclusions from anova can be extrapolated + levels

Main aim: Variability estimation of the variable or factor

or perhaps prediction at a given level

(BLUP)

	dof	MS	A y B fixed	A y B rand	A:fix B:rand
Total	abr-1				
А	a-1	MS _A	MS _A / MS _E	MS _A / MS _{AB}	MS _A / MS _{AB}
В	b-1	MS _B	MS _B / MS _E	MS _B / MS _{AB}	MS _B / MS _E
AxB	(a-1)(b-1)	MS _{AB}	MS _{AB} / MS _E	MS _{AB} / MS _E	MS _{AB} / MS _E
Error	ab(r-1)	MS _E			

$$\sigma_e^2 + c_1 \Phi_\alpha$$
 $\sigma_e^2 + n \sigma_{ab}^2 + nb \sigma_a^2$

¿Fixed o Random?

How to asses? **A PRIORI**

Scientific Criteria:

- 1) is it possible to repeat the factor levels in other site or year?
- 2) has it meaning this replication?

Yes + Yes = Fixed

Statistic Criteria:

"Random" few levels (3-5) => weak variance estimation, Better setting as fixed and use the results only at these levels

"Fixed" with many levels (>10) without structure, better setting as random and estimating means by BLUPs

E.M.S. Numeric difficulty

¿Fixed o Random?

GLM

```
Model y =loc blq(loc) var var*loc;
Random loc blq(loc) var*loc /test;
```

- 1º Calculation as fixed
- 2º Calculation EMS
- 3º Repeat F-tests with proper denominators

MIXED MODELS

Incomplete Blocks

Evaluation: high no genotypes

limited material

'Many genotypes' means huge blocks # no control

I.B. Not all treat by block, so several blocks are needed for a complete replication

Based on

Aditivity:
$$B-C=(B-C)_3$$

$$= (B-A)_1 - (C-A)_2$$

Experimental error independent of treatment

B

Α

Α

Incomplete Blocks

- Coexist direct & indirect comparisons
- Lost of accuracy on indirect comparisons but experimental error reduction

Resolvable designs

i.e.: g=k bi

α-latice, latinized, row-columns,...

Complex specific Software

interblock info

 $x_{ijklmn} = \mu + repl_i + block_j(repl_i) + plot_k + pop_l + seedlot_m(pop_l) + \varepsilon_n$

Mixed model REML BLUP & BLUE

ACGVELA Project Training session on DoE. CTFC-Solsona (Spain) 11-12/05/2016