QTL analysis of flowering time in sweet cherry
 CALLE Alejandro ${ }^{1}$, CAI Lichm ${ }^{2}$, IEZZONI Amy ${ }^{2}$, and WÜNSCH Ana ${ }^{1}$.
 (${ }^{1}$ Unidad de Hortofiuticulnira, Centro de Investigación y Tecnologia Agroalimentaria de Aragón (CIIA), Instituto Agroalimentario de Aragón-L42 (CIIA-Universidad de Zaragoza), Avenida de Montañana 930, Zaragoza 50059, Spain; ${ }^{2}$ Departnent of Horticulture, Michigan State University, 1066 Bogue St, East Lansing MI (48824-1325), United State of America)

Abstract: Flowering time is a relevant trait in sweet cherry (Prnmus avium L.) production. Flowering time depends on climatic conditions and varies for each genotype. Sweet cherry cultivars must be suited to climatic conditions in growing areas to prevent crop loss associated with floral freeze injury and irregular floral development. Cultivars with low chilling requirements often show early flowering and may be relevant for growing at low chilling regions. In this work, 411 individuals from six sweet cherry families (4 cross-pollinations and 2 self-pollinations) were used to investigate the genetics of flowering time. These families derive from the landraces 'Cristobalina' and 'Ambrunés' and breeding cultivars including 'Brooks', 'Lambert' and ' $V i c$ ', and show from extra-early to late flowering dates. The families were phenotyped during four years (2015 to 2018) and genotyped with RosBREED Cherry 6 K Illumina Infinium SNP amray. Quantitative trait loci (QTL) analysis was carried out in a combined way for the six populations using the Bayesian approach implemented in FlexQTL ${ }^{T M}$ software. Various QTLs showing strong to decisive evidence were identified in various linkage groups. Major QTLs controlling this trait in this plant material as well as QTLs alleles putatively associated to extra-early flowering time in the low-chilling cultivar 'Cristobalina' will be discussed.

Key words: 'Cristobalina'; flowering date; early flowering; QTL; marker-assisted selection.

$9^{\text {th }}$ International Rosaceae Genomics Conference

June 26-30, 2018
Hanyuan Mansion, Nanjing, China

Program and Abstracts

Organized by

College of Horticulture, Nanjing Agricultural University (NAU)
Jiangsu Academy of Agricultural Sciences (JAAS)
Nanjing Botanical Garden, Institute of Botany Jiangsu Province and Chinese Academy of Sciences (NBG, JIB)

Conference Program

14:40-14:50	Elucidating the Molecular Mechanisms Underpinning a Novel Acyanic Trait in Apple Khethani Mhelembe, Agrcultural Research Council, South Africa	Sara Montanari
14:50-15:00	QTL Analysis of Flowering Time in Sweet Cherry Alejandro Calle, CITA-IA2, Spain	
15:00-15:10	Methylation Analysis of Dormancy Breaking in Almond Flower Buds [Prwnus dulcis (Mill.) D.A. Webb] Pedro Martinez-Gomez, CEBAS-CSIC, Spain	
15:10-15:30	Tea and coffee break	
Session 12: Selected Presentation in All Areas		
15:30-15:40	Heritability of Epigenetic Marks and its Impact on Phenotypic Variability in Apple Perrin Adrien, $\mathbb{R} H S-$ INRA, France	Anze Svara
15:40-15:50	Variation of Allergenic Lipid Transfer Protein in Diverse Chinese Peach Cultivars Zhongshan Gao, Zhejiang University, China	
15:50-16:00	Developing Genomic and Epigenomic Resources for Almond [Prunus dulcis (Mill.) D.A. Webb] Jonathan Fresnedo-Ramirez, The Ohio State University, USA	
16:00-16:10	Control of Bud Dormancy Process in Apple: A Genetic-Molecular Study Fernando Andrés, INRA, France	Valerio Pompili
16:10-16:20	Toward the Molecular Cloning of Two Genes Conferring Susceptibility to Apple Chlorotic Leaf Spot Virus Derived from Wild Malus Accessions Shigeki Moriya, Instirute of Fruit Tree and Tea Science, NARO, Japan	
16:20-16:30	Allopolyploid Origin in Rubus (Rosaceae) Inferred from Nuclear Granule-boumd Starch Synthase I (GBSSI) Sequences Yan Wang, Sichuan Agricultural University, China	
16:30-16:40	Genomic Selection - which Prospects in Prumus ammeniaca? Preliminary Results Issued from Fruit Quality Traits and Phenology Patrick Lambert, INRA, France	Daniel Edge-Garza
16:40-16:50	Polyploidy Iinfluences Resistance to Venturia Inaequalis in Malus x domestica Anze Svara, KU Leuven, Belgium	
16:50-17:00	Analyses of 127 Chloroplast Genomes Provide New Insights into the Phylogenetic Relationships among Cherry Species and Taxonomic Status of Cerasus (Rosaceae) Xiaorong Wang/Jing Zhang, Sichuan Agricultural University, China	
17:00-17:10	Introgressing Blue Mold Resistance into Elite Apple Cultivars with DNA Tests, a High-Density SNP Array, and Rapid Cycle Breeding Feixiong Luo, Washington State University, USA	Tingting Gu

