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The impacts of nonlinearities and shifts in ecosystems in 

optimal groundwater pumping patterns 
 

 

Abstract  

Groundwater management is currently one of the main issues in environmental 

regulation worldwide. The large depletion and contamination of these resources 

during recent decades, calls for the implementation of control measures capable of 

reduce or dampen down the escalating global depletion, which is above 150 Mm3 

per year. While several efforts have been done analyzing suitable regulations and 

measures to control extractions and protect these resources, the impacts of 

groundwater resources over their dependent aquatic ecosystems is still a pending 

issue. The large degradation of ecosystems, especially fresh water biota and 

habitats, requires the protection of specific ecosystems and their habitats. During 

recent decades, the interest on studying ecosystems has increased exponentially, 

with much more accurate analysis of the behavioral response of ecosystems to 

changes in their habitat. A broad literature suggests that the existence of 

nonlinearities in ecosystem behavior seems to be most precise representation of 

ecosystem status. Additionally, the existence of shifts in ecosystem’s behavior due 

to large deterioration of their external conditions appears to be a quite frequent 

feature. This paper purpose is to include ecosystems as very important elements to 

be considered in groundwater management. The contribution of this paper is the 

inclusion of nonlinearities and switches in the ecosystem’ status due to habitat 

deterioration (groundwater depletion). Using a two-stage optimal control method, 

we obtain the optimal patterns of irrigation water extractions and water table levels. 

The results highlight how both the economic value and the ecosystem’ status 

functions have important impacts on water extractions and groundwater levels. 

Additionally, the existence of shifts in ecosystem’s behavior affects critically the 

characterization of the optimal groundwater strategy.  

 

      

Keywords: freshwater ecosystems; ecosystems behavior function; nonlinear 

ecosystems; shifts in ecosystems; groundwater management; two-stage optimal 
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1. Introduction  

Since the second half of the XX century, the exponential growth of population 

and income, and the resulting change in consumption’s patterns have triggered 

massive pressures over the environment. Human activities have become the major 

driver of worldwide natural resources deterioration. Problems such as water 

contamination and depletion, air quality deterioration, erosion and loss of soils, or 

biodiversity and ecosystems losses are some of the most important environmental 

problems worldwide. Additionally, global warming will bring substantial changes 

in weather patterns (temperatures and precipitations) with more frequent extreme 

events and further degradation of the environment and the natural resources.  

Ecosystems consist of living organisms and their interactions that are 

adapted to specific habitats. Ecosystems provide a large set of good and services 

which are essential to the maintenance of human activities and societies. However, 

the large pressures over natural resources, with substantial alterations in 

ecosystems’ habitats and increasing degradation and exploitation of ecosystems, is 

threatening their survival.  The Global Living Planet Index (WWF, 2014) shows a 

decline of 52% in vertebrate species population since the 1970s. Freshwater 

ecosystems are the most impacted systems with a decline in population of around 

76% (WWF, 2014), and 65% of the aquatic habitats supported by river flows being 

classified as moderately to highly threatened (Davis et al., 2015: Vörösmarty et al., 

2010). The main threats to freshwater ecosystems are associated with human 

activities ending up in ecosystems’ habitat degradation and depletion because of 

reduced streamflows and large pollution loads degrading freshwater resources 

(Collen et al., 2014). Additionally, several studies have also reported large impacts 
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on ecosystems and biodiversity driven by climate change (Walter et al., 2002; 

Leemans and Eickhout 2010; Woodward et al., 2010). The protection of freshwater 

ecosystems requires, not just a better knowledge of the interactions and behavior 

of these ecosystems, but also the defense and restoration of freshwater bodies.  

Freshwater is considered one of the most important resources on the Earth, 

essential to maintain human and ecosystems activities and their survival 

(Vörösmarty et al. 2010). Most freshwater resources on the planet are collected or 

linked to aquifer systems. Underground water systems are the main source of 

human drinking water and the major support of agricultural activities in several 

regions of the world. Additionally, these resources are the main feeder of habitats 

supporting freshwater ecosystems. However, over the last 50 years these resources 

are being put under unprecedented pressure (Konikow, 2011; Wada et al., 2010). 

Despite the large importance of these resources, most of the aquifers worldwide 

are currently mismanaged. The application of environmental regulations to control 

and manage these resources are facing several problems of implementation and 

control, which hinder the correct protection of groundwater resources. The scarcity 

of information on groundwater status and the complexity of groundwater systems 

hamper the efficient implementation and operation of regulations (van 

Engelenburg et al., 2018; Figureau et al., 2015).  

Due to the great importance of groundwater resources, a large set of 

literature deals with the analysis of efficient paths to manage these resources (see 

the reviews by Koundouri (2004) and Koundouri et al. (2017)). However, the 

effective management and control of groundwater resources is still far from being 



 

 5

achieved. Furthermore, many studies on groundwater management ignore the 

relationships between these resources and dependent ecosystems, which can not 

survive when aquifers are depleted. Recent studies analyze or categorize 

groundwater dependent ecosystems and their connections and interactions with 

groundwater resources (e.g., Tuinstra and van Wensem, 2014; Klove et al., 2011a; 

Klove et al., 2011b; Howard and Merrifield, 2010; Hancock et al. 2008; Eamus and 

Froend, 2006). By contrast, other studies focus on how quality and quantity 

problems are affecting ecosystem’s habitats and its survival (Goedhart and Pataki, 

2011; Whiteman et al., 2010; Elmore et al., 2003). Finally, a string of the literature 

includes ecosystems functions and services in groundwater management 

(Pongkijvorasin et al., 2018; Gutrich et al., 2016; Esteban and Dinar, 2016; Esteban 

and Albiac, 2011).  

The purpose of this paper is to extend groundwater management literature 

by analyzing how shifts and nonlinearities in ecosystems’ behavior alter the 

optimal groundwater extractions paths. Previous literature has already 

demonstrated that the inclusion of ecosystems, as an additional groundwater user, 

changes the optimal groundwater strategy (Esteban and Dinar, 2016; Esteban and 

Albiac, 2011). However, these analyses are based on linear ecosystem behavior 

functions where the status of the ecosystem does not change rapidly even though 

the habitat is largely deteriorated. In this article we extend this analysis by 

including nonlinearities and shifts in the ecosystems’ status which seems to be a 

more realistic assumption on the biological behavior of ecosystems (e.g., Beisner et 

al., 2003; Suding et al., 2004; Scheffer et al., 2001).  
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As expected, the results show how the inclusion of nonlinear ecosystems’ 

behavior and predictable changes in their status are very relevant elements in 

groundwater management. This analysis contributes to a better understanding of 

the relationship between groundwater and ecosystems, and can be quite helpful for 

the design and implementation of groundwater policies. A sustainable use of 

groundwater resources requires coordinated actions to protect these resources, 

taking into account the impacts and links between groundwater and ecosystems. 

Following, in section 2 we present a traditional groundwater model and we 

establish a nonlinear ecosystem’ function with a critical threshold once a specific 

water table level is exceeded. In section 3 we solve the mathematical optimal 

control problem by implementing the ‘two-stage’ optimal control method. Finally, 

section 4 concludes.   

 

2. Groundwater model with nonlinearities and shifts in ecosystems: model 

equations 

We state a typical groundwater model based on previous literature (e.g., Gisser and 

Sanchez 1980, 1982; Fienerman and Knapp, 1983; Brill and Burness, 1994). 

Traditionally, groundwater models assume a single-cell aquifer with a flat bottom 

and a fix natural recharge (�). The aquifer resources are being exclusively used for 

irrigation purposes, where equal irrigators extract water to maintain their 

economic activities (�� ). The total water in the aquifer is represented by the 

difference between the surface level (��) and the aquifer water table level (��). A 

simple illustration of an aquifer is represented in Figure 1.  
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Figure 1. Traditional aquifer representation  

 

The groundwater budget (�� ) is a function of the natural recharge (R) minus 

net water extractions (1−∝) ∙ �� . Where net water extractions are the total 

withdrawals (��) minus the rate of water that infiltrates again to the aquifer after 

irrigation use (∝).  

(1) �� = ��� ∙ (� − (∝ −1) ∙ ��) 

The total groundwater available (��) is a ratio between the aquifer’s volume 

multiplied by the storativity level, which represents the unconfined part of the 

aquifer or the water effectively available. 

This traditional model has been taken as reference, but including the 

existence a groundwater user, irrigators, that extracts water to maintain their 

private economic income and the existence of some aquatic ecosystems which 

survival is conditioned by the aquifer water level. The social planner problem 

consists in maximizing the net present value of future income streams from both 
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the private irrigators (�(��, ��)) and the environment (�(��)). The model can be 

stated as following: 

(2) Max��,�� � ��� !�"�(��, ��) + �(��)$%&'(      

with ��  and ��  being, respectively, total groundwater extractions (control 

variable) and the groundwater table level (state variable). r is the discount rate, 

which is a positive parameter. This maximization is constrained to the dynamic of 

the resource (eq. 1), the initial condition of the water table level �(0) = �(, and the 

positive value of the water table level �� ≥ 0.  

The irrigators’ private income follows the same specification of previous 

works based on a quadratic benefit function minus the pumping costs that depends 

on fix costs and the marginal pumping costs (Koundouri et al., 2017).  

(3) �(��, ��) = +(��) − ,(��, ��) =  �./ ∙ �. − 0/ ∙ � − (,( − ,��)�     

where private benefits from groundwater extractions (+(��)) come from a linear 

specification of a groundwater demand function � = 1 + 2 ∙ 3  (being P the 

groundwater price, g and k parameters, with 1 > 0 and 2 < 0). The total costs of 

groundwater extractions (,(��, ��)) depend on the total withdrawals and the 

distance of the water table level, with 6( being a fix costs and 6� being the marginal 

costs from groundwater extractions.  

On the other hand, this model includes the existence of several aquatic 

ecosystems which survival is linked with the groundwater resources, �(��). We 

assume that the behavior of this general ecosystem, or habitat, is represented by a 

quadratic nonlinear function. This function represents the fact that the lower the 
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water table level (��), the more difficult the survival of the ecosystem1 (see Fig. 2), 

with the ecosystem health decreasing at a non-constant rate. Additionally, as has 

been largely supported by the literature, the model includes a critical threshold that 

switch the behavior of the ecosystem once it is exceeded (�7). We also assume that 

whereas the ecosystem can largely reduce its ‘health’ or status, it will not totally 

disappear. This type of ecosystem’s formulation has been largely stated in the 

literature as a typical behavior of several ecosystems and habitats (Scheffer et al., 

2001; Hughes et al., 2013). Despite there are controversy in the literature on the 

empirical evidence of nonlinearities on freshwater ecosystems’ behavior (Capon et 

al., 2015), nonlinearities and shifts in freshwater ecosystems have been supported 

in the literature (Heffernan, 2008; Utz et al., 2008). 

Figure 2. Nonlinear ecosystem function 

 

 

 

 

 

 

 

 

 

 

Note: HC is the ecosystem critical threshold. Once this level of the water table level 

is reached the ecosystem state switches to a different status. When the aquifer is 

full (SL = H) the status or health of the ecosystem is at maximum.  

                                                        
1 We assume a general function that can represent several issues as habitat biodiversity, total 

number of species, number of members into a specific population, etc. 

SL-H 
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HC 
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Following the previous ecosystem representation stated on Figure 2 the 

mathematical expression can be stated as follows:2 

(4)          �,(��) = 8 (9: 9;)∙(�< ��):�=: + >�                                    ?@ (�� − ��) ≤ �B � ∙ (�� − ��). + + ∙ (�� − ��) + ,        ?@ (�� − ��) > �B             

where >�  and >.  are the positive parable parameters, ( �� − �� ) represents the 

aquifer depletion, and  � = 9:(�< �=):  ,  + = − . �<∙9:(�< �=): , , =  �<:∙9:(�< �=):  . The parable 

parameters have been defined by assuming that in the point where the critical 

threshold (�7) is reached the ecosystem status has the same value both right and 

left the function. Additionally, we assume that when the aquifer is totally depleted 

(�� = 0) the ecosystem is extinguished. The total economic value of the ecosystem 

is: 

(5)                           �(��) = C ∙ �,(��) 

We establish that this ecosystem provides several goods and services to 

society that contributes with the social welfare. We state that the aggregate 

economic value of the ecosystem is a constant (C). The greater the total welfare or 

health of the ecosystem the higher the benefits to society.  

   

3. Optimal groundwater management patterns under nonlinearities and 

switches in the ecosystem status 

Assuming the equations established in previous section 2 the resolution of the 

social planner problem requires the implementation of more sophisticated 

optimization tools. Ordinary optimal control theory states the resolution of 

                                                        
2 We have included a parable as a functional equation of the ecosystem behavior in order to obtain 

mathematical solutions in the optimal control problem.  
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dynamic problems by a single optimization phase (Amit, 1986). However, when 

abrupt changes occur and the problem’s objective function suddenly switches to a 

different status, which prevail during a certain time, the problem requires different 

phases to get an optimal solution (‘multi-stage’ dynamic optimization problems). 

‘An optimal multiprocess problem is a dynamic optimization problem involving a 

collection of control systems coupled through constraints in the endpoint of the state 

trajectories…’ (Babad, 1995).   

In this case, the social planner maximization becomes in a ‘two-stage’ optimal 

control problem that need to be solved recursively. We denoted the infinite horizon 

discounted two-stage optimal control problem as SW, and we can rewrite problem 

(2) as follows: 

(6)          DE�  ��(��, �� , &�) = 

          F � !��;
�G ∙ H�(��, ��) + ξ ∙ J (>. − >�)(�� − ��).�B. + >�KL %& + 

F � !�'
�; ∙ "�(��, ��) + ξ ∙ (� ∙ (�� − ��). + + ∙ (�� − ��) + ,)$%&     

                       
    M. &.          �� = "� + (O − 1)�$��  
                    �(&) ≥ 0      @P��                                     �(0) = �(      EQ%   �(1) = �_�   1?S�Q                                  &�   @P��        
A, B, and C are the ecosystem function’s parameters (eq. 4), and �_� being the critical 

water table level at which the threshold is reached (T�� − �_�U = �B).   

This problem represents existence of different objective function depending 

on the status of the ecosystem, which switches when a threshold (�7) is reached at 

a time &�. The resolution of the ‘two-stage’ optimal control problem, corresponding 
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with the two ecosystem regimes, is solved by imposing a sequence of two phases 

with two different Pontryagin problems (Tomiyama, 1985; Tomiyama and Rossana, 

1989; Makri, 2004; Aisa et al., 2007). The ‘two-stage’ method proceeds by backward 

solving the two problems.  

The optimal control problem (�3.) is primarily solved by: 

(7)          DE�  �3.(�., �., &�) = 

F � !�'
�; ∙ "�(�., �.) + ξ ∙ ( � ∙ (�� − �.). + + ∙ (�� − �.) + ,)$%&     

               M. &.         ��. = "� + (O − 1) ∙ �.$��  
                              �.(&�) = �_�   1?S�Q                                           &�   @P��        
with  �. and  �. being respectively the optimal solutions of the water extractions 

and the water table level under the Pontryagin problem corresponding to the sub-

problem 2 (�3.).  

The Hamiltonian associated to the first Pontryagin problem is: 

(8)         ℋ.(&, �., �., W.) = −� !�"�(�., �.) + ξ ∙ (�(�� − �.). + +(�� − �.) +
,)$ + W. ∙ "XY(Z �)∙�:$��   

with W. being the co-estate variable of the sub-problem 2. By solving the first order 

conditions we obtain the optimal results of this problem (�3.∗(�.∗, �.∗, &�)), and the 

optimal values of the state and control variables (�.∗ and �.∗ respectively):3 

(9)           �.∗(&) = +\ ∙ ��∙]: − _̂     

(10)         �.∗(&) = `∙a\]: ∙ ��∙]: + b!∙cd ef_  

                                                        
3 A complete resolution of the first part (phase 1) of the two-state optimal control problem is placed 

on the Appendix. 



 

 13

with where k = (Z �)�� ,  D = X��, Q = −P ∙ ,� ∙ 2 + 2 ∙ ξ ∙ A ∙ k ∙ 2, and p = T−P ∙ 1 −
,( ∙ 2 ∙ P + 2 ∙ ,� ∙ D − k ∙ 2 ∙ ξ ∙ (2 ∙ � ∙ �� + +)U. Additionally, �2 = ! T!:Yq∙_∙`U; :r

.  is 

the negative root of the polynomial equation from the system of two differential 

equations established to obtain the optimal solutions of the problem (see Appendix, 

eq. A11). Finally, the coefficient +\  is calculated using the initial conditions of the 

problem, and can be expressed as: 

 (11)            +\ = ]:̀ . � �;∙]: . J�_� −  b!∙cd ef_ K 

 Having the optimal value of the �3., the second phase is the optimization of 

the second Pontryagin problem that correspond with the first sub-problem (�3�): 

(12)           DE�  �3�(��, ��, &�) = 

F � !��;
( ∙ H�(�., �.) + ξ ∙ J (>. − >�) ∙ (�� − ��).�B. + >�KL %&                                            

+ �3.∗(�.∗(&�), �.∗(&�), &�)   
    M. &.          ��� = "� + (O − 1) ∙ ��$��  
                    ��(0) = �(    1?S�Q                                  ��(&�) = �_�   1?S�Q                                        &�   @P�� 
with ��  and  ��  being the solutions, water pumping and water table level 

respectively, under the sub-problem 1 (�3�).  

The Hamiltonian associated with the second Pontryagin problem is: 

(13) ℋ�(&, ��, ��, W�) = −�−P& s�(��, ��) + ξ ∙ b (9: 9;)(�< �;):�=: + >�ft + W� ∙ "�+(O−1)∙�1$��  

with W� being the co-estate variable of the sub-problem 1.  

By solving the first order conditions and imposing the continuity condition 

where W�∗ (��∗(&�), ��∗(&�), &�∗) = W.∗ (�.∗(&�), �.∗(&�), &�∗)  and the transversality 
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condition ℋ�(&�) = u�v:∗(�:∗(�;),�:∗(�;),�;)u�;   we obtain the optimal solutions for the 

pumping extractions, the water table level, and the optimal time (&�∗). For a detailed 

resolution of the problem see Appendix.   

 (14)           ��∗(&) = ,�\\\\ ∙ ��w; + ,+\\\\ ∙ ��w:    − ^̀      
(15)           ��∗(&) = `∙7�\\\\w; ∙ ��w; + `∙7a\\\\w: ∙ ��w: + (!∙ c  d   ee__ ) 

the parameters ,�\\\\  and ,+\\\\  are the equations´ constants determined with 

restrictions ��(0) = �(  and ��(&�) = �_� of the sub-problem 1 (SP1). Additionally, 

k = (Z �)�� ,  D = X�� , QQ = −,� ∙ 2 ∙ P + 2 ∙ x ∙ 2 ∙ k ∙ (9: 9;)�=: , and pp = −P ∙ 1 − ,( ∙
2 ∙ P + 2 ∙ ,� ∙ D − 2 ∙ x ∙ 2 ∙ k ∙ (9: 9;)�=: ∙ �� . Finally, y�  and y.  are the roots of the 

polynomial equation (y. − P ∙ y − QQ ∙ k = 0) established to solve the problem4. 

The value of the constants ,�\\\\  and ,+\\\\ can be expressed as: 
(16)                  ,�\\\\ = �_� − �(��;w: + J!∙ c  d   ee__ K ��;w:

`∙w; ∙ (��;w; −∙ ��;w:)  

(17)                ,+\\\\ = y.k ∙
|}
~ �( − �P ∙ ^  `  − ppQQ � − �� − �(��;w: + J!∙ c  d   ee__ K ��;w:

(��;w; − ��;w:) ��
�

 

The optimal paths of the optimal water extraction level (�∗) and the optimal 

water table level depend on the solutions of the two sub-problems stated on eqs. 7 

and 12. The main conclusions we can extract from the expressions is that both 

variables largely depend on the economic value of the ecosystem ( x ), the 

                                                        
4 See Appendix for a detailed explanation. 
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specification of the ecosystem’s function (�,(��)), and finally the threshold where 

the ecosystem shifts from one state other (�7). These results clearly highlight how 

the determination of the optimal levels of water pumping and water table can be 

very difficult to establish if a combined policy, that aims to maximizes the social 

benefits of private income from groundwater pumping and to protect ‘sensitive’ 

ecosystems, is implemented.   

   

4. Conclusions  

Ecosystems functioning has been mostly disregarded in groundwater management. 

The large decay in ecosystems during recent decades, especially freshwater 

habitats, has increased the awareness for protecting these systems. One main factor 

threatening freshwater ecosystems is the strong deterioration of the quantity and 

quality of water bodies. In particular, the large overexploitation and depletion of 

groundwater resources worldwide is one of the major pressures to ecosystems’ 

health.  

The study of groundwater resources has been addressed in the literature 

with growing complexity during the last fifty years. From an economic perspective, 

the literature since the 1970s has been based on how to achieve an efficient 

management of these resources to both support economic activities and preserve 

groundwater bodies. However, the mismanagement of groundwater resources is 

still a pending issue worldwide, with many aquifer systems under escalating 

overdraft levels and serious depletion in arid and semi-arid regions. The lack of 

information on groundwater resources and their physical interactions, the 
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insufficient information on withdrawals and recharges, and the lack of workable 

control instruments on extractions are elements that hinder the sustainable 

management of these resources.  Additionally, most current regulations to protect 

these resources do not take into account the existence of dependent ecosystems 

whose survival is linked to the status of groundwater resources.  

 In this paper we develop an economic groundwater management model 

where aquatic ecosystems, which depend on the groundwater status, are included 

in the optimization problem. The contribution of this paper is the consideration of 

nonlinear ecosystem responses with rapid changes in ecological status or behavior 

when critical water level thresholds are reached. In general, linear ecosystems’ 

behavior has been considered a good approximation to explain the performance of 

ecosystems to habitat changes. However, recent analytical findings show that 

nonlinear specifications and process regime shifts, including hysteresis, are much 

better approximations to the behavior of ecosystems (Scheffer et al., 2001). Based 

on these findings, we model the changes in optimal patterns of water extractions 

and water table levels when nonlinearities and ecosystems’ shifts are taken into 

account. 

 The results highlight how the optimal groundwater management is largely 

conditioned by the ecosystem functions’ specification, the economic value of the 

ecosystem, and the threshold that modify the status of the ecosystem. When 

ecosystems are not considered, water pumping is frequently very intense leading to 

substantial depletion and falling water table levels. However, when the nonlinear 

ecosystem response is considered, the extractions should be curtailed allowing for 
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higher levels of the water table, in order to preserve the ecosystem. These results 

can be very useful for policymakers in order to implement better policies to control 

groundwater extractions and maintaining a healthy level for linked ecosystems. 

Despite the fact that these results can be very useful for implementing enhanced 

groundwater regulations, better knowledge on ecosystems and their interactions 

with groundwater bodies are still needed. Future developments call for the 

empirical illustration of this model results, applied to well-studied aquifers 

sustaining dependent ecosystems.  
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Appendix 

A detailed resolution of the two-stage optimal control problem  

The social planner problem consists in the maximization of the social welfare, that 

is defined as the irrigators’ private profits from groundwater pumping and the 

economic contribution of an aquatic ecosystem. The ecosystem depends on the 

groundwater resource and its functioning presents a shift to other status, once a 

critical threshold (�7) is exceeded. The maximization (eq. 6) is a two-stage optimal 

control that needs to be solved through the resolution of two sub-problems with 

their associated Pontriagyny problems: 

The first sub-problem can be stated as follows (eq. 7): 

(�1)  DE�  �3. = F � !�'
�� ∙ � 122 ∙ �.. − 12 ∙ �. − (,( + ,� ∙ �.) ∙ �. 

                                  + x ∙ (� ∙ (�� − �.). + + ∙ (�� − �.) + ,)$%& 
              M. &.          �.� = "� + (O − 1)�.$��  
          �.(&) ≥ 0 
                              �.(&�) = �_�   EQ% 1?S�Q  
                               &�     @P��   

The Hamiltonian of the social planner problem is expressed as: 

(�2)      ℋ. = −� !� s �./ ∙ �.. − 0/ ∙ �. − (,( + ,� ∙ �.) ∙ �.+ 
 x ∙ (� ∙ (�� − �.). + + ∙ (�� − �.) + ,)$ + W. ∙ H� + (O − 1) ∙ �.�� L       

The first order conditions (FOC) of the Hamiltonian are: 

(�3)            �ℋ�� = −� !� �12 ∙ �. − 12 − (,( + ,� ∙ �.)� + W. ∙ �O − 1�� � = 0   
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(�4)            �ℋ�� = � !�(,� ∙ �. + 2 ∙ x ∙ � ∙ (�� − �.) + x ∙ +)  =  −W.�    
(�5)          �ℋ�W. = �.� = "� + (O − 1) ∙ �.$��              
(�6)          �?k�→' W.(&) = 0                                 

From the FOC (eqs. A3 to A6) we can obtain the optimal value of the co-estate 

variable W., 

(�7)        W. = ��(O − 1) � !� �12 ∙ �. − 12 − (,( + ,� ∙ �.)�   
Equation A7 is differentiated with respect to time (&), and then we can replace 

W.�  by the expression from equation A4, 

(�8)    − � !�(,� ∙ �. + 2 ∙ x ∙ � ∙ (�� − �.) + x ∙ +)  
 =  � !� ��(O − 1) J−P J�.2 − 12 − (,( + ,� ∙ �.)K + �.�2 − ,� ∙ �.� K 

 

Rearranging terms and substituting �.�  for its value (eq. A5) yields the 

following expression: 

(�9)      �.� = P ∙ �. + J(O − 1)�� 2. 2 ∙ x. � − P2,�K �. + 

�−P ∙ 1 − P ∙ 2 ∙ ,( + ��� ∙ 2 ∙ ,� − (O − 1)�� ∙ 2 ∙ (2 ∙ x. � ∙ �� + x ∙ +)� 

that can be simplified as 

(�10)      �.� = P ∙ �. + Q ∙ �. + p                  
where k = (Z �)�� ,  D = X��, Q = 2 ∙ x ∙ � ∙ 2 ∙ k − ,� ∙ 2 ∙ P, and p = T−P ∙ 1 − ,( ∙ 2 ∙
P + 2 ∙ ,� ∙ D − k ∙ 2 ∙ ξ ∙ (2 ∙ A ∙ S� + B)U 
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A system of two ordinary differential equations can be established with the 

previous expression, equation A10, and with the FOC of the problem, equation A5 

(�.� = k ∙ �.(&) + D):  

(�11)      J �� .�.� K  =  b P Qk 0f  � �.�. � +   b pDf             
The solution of this system of differential equations can be calculated as the 

sum of the solution of the homogeneous system plus the particular solution. The 

first homogeneous equation of the system (�� . = P ∙ �. + Q ∙ �.) can be derived 

with respect to time (t) and substituting with the second homogeneous equation 

(�.� = k ∙ �.(&)), we obtain the following expression: 

(�12)       �� . − P ∙ �� . − Q ∙ k ∙ �. = 0             
The solution to this homogeneous differential equation is 

(A13)        �.(&) = �̅ ∙ ��]; + +\ ∙ ��]:                                  
where the parameters �̅ and +\  are equation’s constants, and �1, �2 are respectively 

the roots of the polynomial equation (�2 − P ∙ � − Q ∙ k = 0).  

By integrating equation A12 we obtain the optimal solution of the water table 

problem (�.(&)) under the first sub-problem (SP2): 

(�14)      �.(&) = k ∙ �̅�� ∙ ��]; + k ∙ +\�. ∙ ��]:   
The optimal solutions of the optimal extractions and water table level under 

the social planner problem (SP2) are: 

(�15)        �.(&) = �̅ ∙ ��]; + +\ ∙ ��]: − Dk                
(�16)        �.(&) = k ∙ �̅�� ��]; + k ∙ +\�. ��]: + −p + P ^̀

Q         
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The coefficients �̅  and +\  are determined by using the sub-problem initial 

conditions, & = &� and �.(&�) = �_�. The value of +\  can be expressed as: 

(�17)    +\ = �.k . � �;.]: . J�_� − k ∙ �̅�� .  ��;�;  − P. pQ + DK 

To determine �̅, we use the transversality condition (eq. A6). This condition 

can only be satisfied when �̅ = 0  (similar to the result by Gisser and Sánchez 

(1980)).5 With the value of these parameters, the optimal solutions of the problem 

are: 

(�18)     �.(&) = +\ ∙ ��]: − Dk                
(�19)     �.(&) = k ∙ +\�. ��]: + −p + P ^̀

Q         
Having the optimal values for both the state and the control variables we 

proceed to evaluate the value of the functional defined in equation (A1): 

(�20)    F � !�'
��  @T�.(&), �.(&)U%& =  lim�→' F � !��

��  @T�.(&), �.(&)U%& 

It is demonstrated that it is a convergent integral because �. < 0 and P > 0.  

Solving the integral and the limit we obtain the optimal value of the sub-problem, 

 �3.∗(�.∗(&�), �.∗(&�), &�).  
The second step of the ‘two-stage’ maximization method involves the 

resolution of the second sub-problem (SP1) with knowing the optimal solution of the 

first sub-problem (SP2). The first sub-problem (SP1) becomes: 

                                                        
5 Realice that �. < 0. 
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(�21)     DE�  �3�(��(&�), ��(&�), &�)
= F � !���

( ∙ � 122 ∙ ��. − 12 ∙ �� − (,( + ,� ∙ ��) ∙ �� 
                                                   + x ∙ b(9: 9;)(�< �;):�=: + >�ft %&+ �3.∗(�.∗(&�), �.∗(&�), &�) 
                M. &.          ��� = "� + (O − 1)��$��  
            ��(&) ≥ 0 
                                 ��(0) = �(     &(    and   �(   1?S�Q              
                                ��(&�) = �_�     @P��  

The Hamiltonian of the sub-problem (SP1) is expressed as: 

(�22)      ℋ� = −� !� s �./ ∙ ��. − 0/ ∙ �� − (,( + ,� ∙ ��) ∙ ��+ 
 x ∙ J(>. − >�)(�� − ��).�B. + >�KL + W� ∙ H� + (O − 1) ∙ ���� L       

with W� being the co-estate variable of the SP1. 

The first order conditions (FOC) of the Hamiltonian corresponding with SP1 

(ℋ�) are:   

(�23)    �ℋ���� = −� !� �12 ∙ �� − 12 − (,( + ,� ∙ ��)� + W� ∙ �O − 1�� � = 0   
(�24)    �ℋ���� = � !� �,� ∙ �� + 2 ∙ x ∙ J(>. − >�)(�� − ��)�B. K�  =  −W��    
(�25)   �ℋ��W� = ��� = "� + (O − 1) ∙ ��$��              
(�26)   ��∗  (0) = �(   EQ%   ��∗ (&�∗) = �_�                  
(�27)    ℋ�" ��∗ (&�∗),  ��∗ (&�∗),  W�∗ (&�∗), &�$ =  � SP.∗T� .∗ (&�), � .∗ (&�),&�U�&�       
From the FOC (eq. A23) we obtained the value of the co-estate variable:  
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(�28)   W� = ��(O − 1) � !� �12 ∙ �� − 12 − (,( + ,� ∙ ��)�   
Equation �28  is differentiated with respect to time (&), and then we can 

replace W��  by the expression from equation �24 . Rearranging terms and 

substituting ��� for its value, yields  the simplified equations: 

(�29)    �� � = P ∙ �� + QQ ∙ �� + pp                  
and 

(�30)     ��� = k ∙ ��(&) + D                            
with k = (Z �)�� ,  D = X��, QQ = −,� ∙ 2 ∙ P + 2 ∙ x ∙ 2 ∙ k ∙ (9: 9;)�=: , and pp = −P ∙ 1 −
,( ∙ 2 ∙ P + 2 ∙ ,� ∙ D − 2 ∙ x ∙ 2 ∙ k ∙ b(9: 9;)�=: ∙ ��f. 

A system of two ordinary differential equations can be established: 

(�31)   J �� ���� K  =  b P QQk 0 f  b �� f +   b ppD f             
The solution of this system of two homogeneous differential equations, 

which is solved just like previous sub-problem SP2, are the optimal extractions 

(��(&)) and water table level (��(&)) under the social planner problem 1, SP1: 

(�32)   ��∗(&)     = ,�\\\\ ∙ ��w; + ,+\\\\ ∙ ��w: − Dk                          
(�33)  ��∗(&) = k ∙ ,�\\\\y� ∙ ��w; + k ∙ ,+\\\\y. ∙ ��w: + (P ^  `  − pp)QQ  
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with ,�\\\\  and ,+\\\\ , that are calculated with using the problem restrictions, are 

constants as: ,�\\\\ = �« �G¬�;­:Y�®∙ c  d  ¯°°±± �¬�;­:
d­;∙(¬�;­; ¬�;­:)  and ,+\\\\ = w:̀ ∙ ²  �( − J!∙ c  d   ee__ K −

�« �G¬�;­:Y�®∙ c  d  ¯°°±± �¬�;­:
(¬�;­; ¬�;­:) ³. 

 


