Farm resilience: a farmers’ perception case study

E. Muñoz-Ulecia, A. Bernués, I. Casasús and D. Martin-Collado
CITA-Aragón, Animal Production and Health Unit, Avda. Montañana 930, 50059 Zaragoza, Spain; emunozu@ctia-aragon.es

In Europe, the number of mountain farms is decreasing due to various socioeconomic drivers. Although mountain livestock farming systems are generally considered as extensive, they are actually very diverse, influenced by both internal (use of natural resources, purchased feedstuffs, farmer’s age, etc.) and external factors (agricultural policy, socioeconomic context, environmental conditions, etc.). In addition, farmers need to adapt to crucial challenges that affect agriculture globally, e.g. increasing risk of droughts due to climate change and higher prices of inputs due to market dynamics. Understanding farmers’ views on the relevance of actions and strategies to face these challenges is key to study mountain farming resilience. The aim of this study was to analyse: (1) farm resilience strategies according to farmer response to climate and market changes; and (2) the influence of farms and farmer characteristics on those strategies. We carried out a survey on 54 beef farmers in the central Pyrenees (Spain), gathering information about farm structure, management and economic performance. We also measured farmers’ perception on the importance of different actions to deal with: (1) 2-year-long drought; and (2) rise of input prices, using a Likert scale from 1 (not important) to 5 (extremely important). Specifically, we considered actions related to pastures and feed management, reproductive management, herd size, external advice, development of quality brands, diversifying farm activity or seeking for other sources of income outside farming. According to farmers, the most relevant actions to face droughts were using new areas of pasture (average score of 3.4) or reducing herd size (3.3), as opposed to seeking for external advice (2.4) that had the lowest importance. Several farm and farmer profile characteristics influenced their views on the relative importance of actions to face these challenges; e.g. farmer age, size of utilized agricultural area, or farm type (fattening on-farm or not).
Assessing pubertal age through testicular and epididymal histology in Bísaro pig
G. Paixão, A. Esteves, N. Carolino, M. Pires and R. Payan-Carreira

Genetic parameters of feeding behaviour traits in Finnish pig breeds including social effects
A.T. Kavlak and P. Uimari

Economic optimization of feeding strategy in pig-fattening units with an individual-based model
M. Davoudkhani, F. Mahé, J.Y. Dourmad, E. Darrigrand, A. Gohin and F. García-Launay

Session 41. Resilient livestock farming systems in the context of climate and market uncertainties

Date: Wednesday 28 August 2019; 8.30 – 12.30
Chair: Lee

Theatre Session 41

Resilience of livestock farming systems: concepts, methods and insights from case studies on organic
G. Martin, M. Bouttes and A. Perrin

How much is enough – the effect of nutrient profiling on carbon footprints of 14 common food products
G.A. McAuliffe, T. Takahashi and M.R.F. Lee

Farm resilience: a farmers’ perception case study
E. Muñoz-Ulecia, A. Bernués, I. Casasús and D. Martin-Collado

Resilience of yak farming in Bhutan
N. Dorji, M. Derks, P. Dorji, P.W.G.G. Koerkamp and E.A.M. Bokkers

Measurement enhanced the operationalization of resilience concept applied to livestock farms
M.O. Nozières-Petit, E. Sodre, A. Vidal, S. De Tourdonnet and C.H. Moulin

Environmental footprint and efficiency of mountain dairy farms
M. Berton, S. Bovolenta, M. Corazzin, L. Gallo, S. Pinterits, M. Ramanzin, W. Ressi, C. Spigarelli, A. Zuliani and E. Sturaro

Enhancing resilience of EU livestock systems; what is the role of actors beyond the farm?
M. Meuwissen, W. Paas, G. Taveska, E. Wauters, F. Accatino, B. Soriano, M. Tudor, F. Appel and P. Reidmsa

Organization of an alfalfa hay sector between cereal farms, livestock farms and a local cooperative
E. Thiery, G. Brunschwig, P. Veysset and C. Mosnier

Performance, longevity and financial impacts of removing productive ewes early from mountain flocks
H. Wishart, C. Morgan-Davies, A. Waterhouse and D. McCracken

How can we better support the future in dairy farmers from the point of view of the stakeholders?
A.-L. Jacquot, F. Kling-Eveillard and C. Disenhaus

How agro–ecological transition could sustain goat keeping in nomadic systems of Iran
F. Mirzaei

Poster Session 41

Italian ryegrass yield prediction for forage supply to ruminant livestock farming in South Korea
J.L. Peng and L.R. Guan

EAAP – 70th Annual Meeting, Ghent 2019
Farm resilience: a farmers’ perception case study

Muñoz-Ulecia, E., Bernués, A., Casasús, I., Lobón, S., Martín-Collado, D.
CITA-Aragón, Animal Production and Health Unit, Av. Montañana 930, 50059 Zaragoza, Spain.

Introduction

The number of mountain farms is decreasing

Internal factors
- Use of natural resources
- Farmers’ age

External factors
- Agricultural policy
- Environmental conditions
- Market dynamics
- Increasing risk of droughts
- Higher prices of inputs

Objectives

• The aim of this work was to analyze:
 i) Farmers’ perception about strategies to face a situation of climate and market change and,
 ii) the influence of farms and farmers’ characteristics on those strategies

Methodology

• Data collection
 - Survey on 54 beef farmers
 - Farmers’ perception
 - Farm structure, management and economic performance
 - 2-year-long drought
 - Rise of input prices
In these situations, would any of these measures improve the continuation of your farm and how important would they be?

- Reproduction
- Sanitary management
- Feeding
- General management
- Commercialization

Methodology

- Data collection

Methodology

- Data processing and analysis

Results: Drought

Results: Inputs prices
Results: Farms and farmer characteristics

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Variable</th>
<th>a</th>
<th>b</th>
<th>ANOVA</th>
<th>Pair-Wise test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase prices</td>
<td>Age Young (<51)</td>
<td>F</td>
<td>p</td>
<td>0.021 *</td>
<td>ab</td>
</tr>
<tr>
<td></td>
<td>Old (>51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New pastures</td>
<td>0.49</td>
<td>1.126</td>
<td>5.621</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase prices</td>
<td>Fattening</td>
<td>F</td>
<td>p</td>
<td>0.0167 *</td>
<td>ab</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1.08</td>
<td>0.389</td>
<td>6.482</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.012</td>
<td>0.485</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>Drought period</td>
<td>New machinery</td>
<td>-0.87</td>
<td>-0.173</td>
<td>6.690</td>
<td>0.015 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario</td>
<td>Variable</td>
<td>a</td>
<td>b</td>
<td>ANOVA</td>
<td>Pair-Wise test</td>
</tr>
<tr>
<td></td>
<td>Land Area</td>
<td>F</td>
<td>p</td>
<td>0.00054 **</td>
<td>0.0024</td>
</tr>
<tr>
<td></td>
<td>Big (>77 ha)</td>
<td>1.104</td>
<td>0.364</td>
<td>8.211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small (<77)</td>
<td>0.104</td>
<td>0.394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drought period</td>
<td>Barn diets</td>
<td>1.104</td>
<td>0.364</td>
<td>8.211</td>
<td>0.00054 **</td>
</tr>
</tbody>
</table>

Final remarks

1. Farmers considered eliminating worst adapted animals, diversifying activity out agriculture and seeking for new pastures and self-sufficiency as some key strategies for both, increase in inputs prices and a period of droughts scenarios.
2. In a 2-year-drought scenario farmers considered modifying barn diet as one relevant action, while this wasn’t too relevant in an increase in inputs prices scenario.
3. Farm and farmers’ characteristics such as farmer age, size of agricultural area and whether they fatten in farm or not were relevant to identify how farmers face these challenges.
4. Some of the most relevant actions that are usually pointed out when analyzing farming at a systemic level such as introducing more adapted breeds, diversifying farm activity, seeking for external advice or modernizing farm technologies, were considered by farmers as having low importance.
5. And as a final remark, note that this study focused on how farmers would adapt to short term scenarios, and that their strategies to adapt to mid or long-term perturbations might be different.

Thank you for your attention