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Abstract 

Background: Non‑contact resonant ultrasound spectroscopy (NC‑RUS) has been proven as a reliable technique for 
the dynamic determination of leaf water status. It has been already tested in more than 50 plant species. In parallel, 
relative water content (RWC) is highly used in the ecophysiological field to describe the degree of water saturation in 
plant leaves. Obtaining RWC implies a cumbersome and destructive process that can introduce artefacts and cannot 
be determined instantaneously.

Results: Here, we present a method for the estimation of RWC in plant leaves from non‑contact resonant ultrasound 
spectroscopy (NC‑RUS) data. This technique enables to collect transmission coefficient in a [0.15–1.6] MHz frequency 
range from plant leaves in a non‑invasive, non‑destructive and rapid way. Two different approaches for the proposed 
method are evaluated: convolutional neural networks (CNN) and random forest (RF). While CNN takes the entire ultra‑
sonic spectra acquired from the leaves, RF only uses four relevant parameters resulted from the transmission coeffi‑
cient data. Both methods were tested successfully in Viburnum tinus leaf samples with Pearson’s correlations between 
0.92 and 0.84.

Conclusions: This study showed that the combination of NC‑RUS technique with deep learning algorithms is a 
robust tool for the instantaneous, accurate and non‑destructive determination of RWC in plant leaves.
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Background
Most common methods to asses plant water status, 
through the measurement of either relative water con-
tent or water potential [1–4], are destructive techniques 
that preclude repetitive measurements in a given tis-
sue [5]. Attempts to find a non-invasive technique suit-
able for the study of dynamic water changes within the 
same plant tissue have been a challenge during the last 
decades. In this sense, thermocouple psychrometers have 

been successfully used for measuring plant water poten-
tial [6]. However, their complexity installation might not 
be useful for a quick leaf monitoring [7–9]. Methods such 
as infrared thermometry [7] or canopy reflectance [8, 9] 
can also be used for plant water continuous estimations. 
Nevertheless, their accuracy is highly reduced by plant 
architecture [10], making these techniques more appro-
priate for crop science [7] than for accurate physiologi-
cal measurements. Another set of techniques to estimate 
plant water status are based on the continuous monitor-
ing of turgor pressure changes [11, 12]. In this sense, the 
ball tonometry method estimates the dynamic changes 
in plant water status by applying an external pressure 
on plant cells [12]. A requirement of this technique is 
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that cell walls must be relatively thin, constituting a 
strong limitation for its widespread use. By contrast, 
the high-precision pressure probe developed by Zim-
mermann et al. [13] which allows the online monitoring 
of water relations in a great variety of species, requires 
a continuous contact with the leaf surface, not allow-
ing the completely free transpiration of the leaf. Finally, 
the reflectivity in microwave L-band has been proven to 
estimate accurately the water content in poplar [14]. This 
technique takes advantage of the development of digital 
cordless telephony (DCT) but its use in leaves with dif-
ferent sizes implies the fabrication of different types of 
antennas.

Among all these plant-based methods, non-contact 
resonant ultrasound spectroscopy (NC-RUS) has been 
proven as a non-destructive, non-invasive and rapid 
method for the dynamic determination of leaf water sta-
tus [15]. NC-RUS technique excites thickness resonances 
in plant leaves, using ultrasonic waves in the [0.15–1.6] 
MHz frequency range (Fig.  1a). These thickness reso-
nances are sensitive to leaf microstructure, composition 
and water status in the leaf [16]. Later work was devel-
oped in order to compare these ultrasonic measurements 
to well-established techniques such as pressure–volume 
curves in drying experiments on several species [17]. As 
a result, it was observed that relative water content values 
at turgor loss point (RWC TLP) obtained using the NC-
RUS technique did not show any significant difference 
compared to those obtained using p–v curves approxima-
tion (Fig. 1b). In parallel, an effective medium approach 
was used to interpret the transmission coefficient spec-
tra of the leaf and not only the resonant frequency value 

[18, 19]. This model allows an accurate determination of 
effective properties of the leaf such as thickness, volu-
metric density, velocity of ultrasound through the leaf, 
ultrasound attenuation coefficient, acoustic impedance 
(velocity and density product), among others. These esti-
mations can be improved by using a layered leaf model, 
closer to the real leaf structure considering the leaf 
formed by two acoustically different layers [20, 21]. Some 
results from these studies showed that the transmission 
coefficient of the ultrasonic waves is sensitive not only to 
changes in different abiotic stimuli studied, but also on 
the specific properties of the leaves of particular species, 
the environmental conditions under which the plant was 
grown and the actual state of the leaf and consequently, 
of the plant itself [22, 23].

All these physical parameters obtained from ultrasonic 
measurements can provide critical information about 
the leaf properties and their relation with the leaf water 
status, specifically with the relative water content (RWC) 
[24]. RWC is an appropriate measure of plant hydration 
state and generally accepted as a proxy of the physiologi-
cal consequence of cellular water deficit. However, esti-
mation of RWC is still bound to traditional, destructive 
and time-consuming techniques relying on mass dif-
ferences of the same leaf sample at different hydration 
states (including turgid and dry states as references) [25]. 
Despite the relative simplicity of classical methods, RWC 
measurements require from careful work in a controlled 
environment that is usually far away from field-grown 
locations. The need of sample transportations, together 
with the ephemeral character of fresh leaves; hence imply 
important limitations to achieve a successful and reliable 

Fig. 1 RWC measurements using NC‑RUS. a Transmission coefficient spectra measured using NC‑RUS technique in a detached Viburnum tinus 
leaf while drying at RWC values of 1, 0.96, 0.92, 0.84, 0.79 and 0.72. b Relationship between RWC values and f/f0 obtained through the NC‑RUS 
technique (circles) and relationship between RWC values and the inverse of water potential (1/Ψ) obtained with the p–v curves (triangles) for 
Viburnum tinus leaf. The shaded rectangle marks the TLP on both relationships
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estimation of RWC. In fact, important indicators such 
as RWC TLP requires of a whole set of RWC values for its 
computation.

This work represents a step forward in the instantane-
ous estimation of RWC in a non-invasive, non-destruc-
tive and rapid way. The proposed approach uses NC-RUS 
measurements and apply advanced machine learning 
regression and especially deep-learning method to infer 
RWC value from one single measurement. Deep convo-
lutional neural networks (CNN) [26] is the most recent 
major advance in machine learning and computer vision. 
CNNs can automate the critical steps of feature extrac-
tion and selection by learning high-level features based 
on spatial relationships in data, and thus seemed well 
suited to exploit the spectral nature of NC-RUS data 
for the analysis of water status in plants. Although deep 
learning has proven to be a very effective tool for detec-
tion, segmentation, classification, and regression prob-
lems, its application in plant science is still limited. A 
small amount of works have shown the advantages of 
these techniques for image-based plant phenotyping 
tasks [27–29], but to the best of our knowledge, the only 
attempt to use machine learning to estimate plant water 
status was carried out in plant fields from multispectral 
imagery and using simple neural networks [30]. In this 
work, we use deep neural networks to estimate water 
content of plants from NC-RUS measurements on indi-
vidual leaves from one single measurement.

Results
Table 1 summarize obtained values of R and RMSE (used 
to measure the efficiency) from the different methods 
applied. Results display high correlations and small errors 
for both machine-learning approaches when using all 
augmented data: N = 1960. Results remain almost the 
same when evaluating the mean prediction of the seven 
different interpolated versions corresponding to the same 
leaf and hydration state: N = 280. In fact, there is no sta-
tistical differences between RWC predictions obtained 

with the different interpolated versions as shown in 
Additional file 1: Figure S1a, supporting the robustness of 
our approach and prediction models against noise and/or 
measurement imprecisions.

Additional file  1: Figure S1b displays the comparison 
between RF and CNN results: the latter clearly excels 
in performance, confirmed by lower mean prediction 
errors obtained with the CNN approach. RF results sug-
gest that the four NC-RUS-derived parameters contain 
essential information related to leaf water status, as pre-
viously reported in the literature. However, the use of the 
complete spectral data increases the exactness of RWC 
predictions. Therefore, NC-RUS information discarded 
so far when using only the established derived-parame-
ters, although not core contains relevant information on 
leaf structure and corresponding water status. The use 
of CNNs allows not only to analyze the entire spectral 
information, but to do so by maintaining the continuous/
sequential configuration of NC-RUS signals in the fre-
quency range, rather than treating different variables as 
independent or unrelated.

Figure 2 shows the obtained correlation between esti-
mated and measured RWC values for CNN (Fig.  2a) 
and RF models (Fig.  2b). The linear regressions show 
a deviation from the perfect regression in both cases 
(CNN prediction = 0.8651·RWC + 0.1122; RF predic-
tion = 0.7978·RWC + 0.1631), but as mentioned ear-
lier, CNN performance is higher. Additionally, the 
distributions of relative prediction errors are cen-
tered around zero in both cases. It is worth mention-
ing that the lower number of measurements below 
RWC = 0.75, which correspond to the noisiest meas-
urements, deviates the regression line from the opti-
mal values. Indeed, the linear regression between the 
RWC [0.75–1] values is very close to the perfect regres-
sion line (CNN prediction = 0.9736·RWC + 0.0109; RF 
prediction = 1.0186·RWC + 0.0424).

Discussion
The proposed technique for an instantaneous estimation 
of RWC through non-invasive and non-destructive ultra-
sonic measurements combined with machine learning 
approaches has been proved successfully in Viburnum 
tinus leaves.

In general, transmission coefficient spectra obtained 
using the NC-RUS technique are able to monitor changes 
in the water status of leaves connected or detached to 
the plant rapidly without direct contact. In this work, 
we combined this ultrasonic technique with two differ-
ent machine-learning algorithms in order to translate 
that information directly into a well-known and widely 
used parameter as RWC. Our main aim is to obtain RWC 
instantaneously, avoiding the normalization process and 

Table 1 Results of  Pearson’s correlations (R) and  root 
mean squared errors (RMSE) comparing predictions 
under  the  machine learning approaches proposed 
and the experimentally measured RWC values

Number 
of ultrasonic 
signals

Method R RMSE

1960 Random forest 0.8400 0.0591

1960 Convolutional neural network 0.9225 0.0407

280 Random forest 0.8453 0.0585

280 Convolutional neural network 0.9228 0.0406
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hence the need of previously knowing the fresh and dried 
mass of the sample under study.

A total of 280 measurements from V. tinus leaves cov-
ering different hydration states were used in this work, 
comprised of NC-RUS transmission coefficient spectra 
and their corresponding RWC values measured experi-
mentally. Sixty-three percent of the measurements 

corresponded to RWC values in the range of 1 to 0.88 
(above turgor loss point, TLP), while the rest (37%) 
are distributed between 0.88 and 0.52 (below TLP). 
Although we had enough data points to achieve good 
correlation models throughout the whole RWC range 
(Fig. 2), we mainly focus the measurements above TLP 

Fig. 2 RWC estimation results. Comparison between RWC values and predictions performed with CNN (a) and RF (b) approaches. Dotplots (top) 
display actual RWC values and predictions, including linear regression lines (red/blue) and the reference line for a perfect regression (dashed black). 
Each dot corresponds to one interpolated version of NC‑RUS data sample. Histograms (bottom) show the distribution of prediction errors
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as is the range for many plant physiological processes 
like plant growth or gas exchange.

We processed the magnitude and phase spectra using 
1-dimensional CNNs (Fig. 3a) to estimate RWC values of 
leaves at each drying state. Additionally, four NC-RUS-
derived parameters that probed to contain important 
structural information were also used in parallel to per-
form the prediction using random forest (RF) as machine 
learning method: maximum spectral magnitude and the 
corresponding frequency, phase and bandwidth. The 
generation and evaluation of regression models were car-
ried out mimicking a representative practical scenario 

where a RWC-prediction model was constructed using 
measurements from a set of leaves with different hydra-
tion states. This set of leaves was afterwards used to esti-
mate the RWC of completely new leaves, with unknown 
hydric state, that were never used for training that model 
(Fig.  3b). Therefore, training and test sets were created 
treating leaves separately.

Both approaches excelled in performance: results sug-
gest that RWC can be determined immediately from 
transmission coefficient spectra measured directly over 
leaves by using CNN previously trained with data from 
plants on the same location. Moreover we assumed, 

Fig. 3 Deep learning architecture and evaluation strategy. a CNN architecture to predict RWC values from non‑contact resonant ultrasound 
spectroscopy measurements (magnitude and phase). b Graphical representation of machine learning strategy to train and test the system 
(leafOO‑CV)
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based on our previous work, that four main parameters 
derived from coefficient spectra (maximum magnitude 
of the transmission coefficient, phase and frequency at 
which this maximum is located and the bandwidth at 
6  dB) contained information enough about the water 
status of the leaf to train and estimate its RWC value. 
This assumption was successfully revealed on the RF 
results, whose correlation is slightly below the one per-
formed using CNN. The main advantage of the RF-based 
approach is that the frequency range of the ultrasonic 
transmission coefficient needed is narrower and thus the 
measurement only require one pair of ultrasonic sensors.

Conclusions
We proposed herein a new tool to estimate instantane-
ously RWC from ultrasonic measurements using NC-
RUS technique in a non-destructive and non-invasive 
way applying two different machine-learning algorithms 
(CNN and RF) previously trained with experimental data 
coming from leaves within the same species and location. 
Although both algorithms excelled in performance, we 
consider that RF resulted more convenient since is able 
to predict RWC values using only one pair of ultrasonic 
transducers centered at the same working frequency. 
This might be translated into a faster, easier and cheaper 
application in the field.

Further work on collecting RWC-ultrasonic experi-
mental data from different species or same species at 
different locations must be done in order to evaluate the 
suitability of applying transfer-learning methods, which 
can lead to a big improvement on the scalability of this 
technique.

Altogether, NC-RUS and the proposed RWC estima-
tion method have the potential of becoming a rapid and 
robust tool to measure the hydration state of plants, 
which may provide a breakthrough in the irrigation 
scheduling of agriculture systems.

Materials and methods
Plant material
Viburnum tinus leaves were collected from The Royal 
Botanical Garden of Madrid (40° 24′ 40″ N, 3° 41′ 30″ W) 
steadily during 18 months. The easy availability of V. tinus 
leaves throughout the year and the high accuracy of NC-
RUS measurements in this species, promoted its selec-
tion as plant material for this study. In the early morning, 
branches were collected, rapidly introduced in plastic 
containers with water in order to ensure a water–vapor 
saturated atmosphere and carried to the laboratory. Once 
in the lab, shoots were re-cut under water to avoid embo-
lism and kept immersed (avoiding the wetting of leaves) 
for 24 h at 4 °C to ensure full leaf hydration [17].

Drying experiments
Full hydrated leaves were covered with a dark plastic 
container and were allowed to dry slowly at room tem-
perature. During this dehydration process, leaf mass 
and ultrasound measurements were repeatedly obtained 
in a sequential manner to achieve different levels of leaf 
water status. Afterwards, leaves were introduced in a 
stove (48 h, 80 °C) to obtain the leaf dry mass (DM). Leaf 
mass was measured with a precision balance (Precisa XT 
220A) right before the acquisition of NC-RUS measure-
ments. Experiments were performed on a set of 31 fully 
mature leaves. Around nine paired measurements of 
leaf mass and ultrasonic parameters were performed in 
each leaf. Finally, a set of 280 paired measurements were 
obtained.

RWC calculation
Relative water content (RWC) was calculated following 
the expression: RWC = (FM − DM)/(TM − DM), where 
TM in the leaf turgid mass obtained at the beginning of 
the dehydration process, FM is the sample fresh mass 
measured at any moment of the process and DM is the 
leaf dry mass obtained as explained above.

Pressure–volume analysis
p–v relationships were determined using a pressure 
chamber (Model 600 Pressure Chamber Instrument, 
PMS Instrument Co., Albany, OR, USA) and follow-
ing the free-transpiration method described in previous 
studies [31–34]. The water relations parameter calculated 
as a mean and standard error of individual values was the 
RWC at the TLP.

Non‑contact resonant ultrasound spectroscopy 
measurements (NC‑RUS)
The NC-RUS technique is well described and in the liter-
ature [16, 35, 36] and schematically depicted in Fig. 4. In 
this case, the experimental setup consists of three pairs of 
air-coupled transducers developed, designed and built at 
CSIC lab. Frequency bands are 0.15–0.35, 0.35–0.95 and 
0.5–1.6  MHz, peak sensitivities of − 25, − 30, − 32  dB, 
and active area diameters of 20, 15 and 10 mm, respec-
tively [37, 38]. Transmitter and receiver are facing each 
other at a distance of 5 cm while embedded in a u-shaped 
holder specifically designed for these purposes. The leaf 
is located in a slot in between them at normal incidence. 
A commercial pulser/receiver (5077PR, Olympus, Hou-
ston, TX, USA) was used to drive the transmitter with 
a 200 V amplitude square semicycle tuned to the trans-
ducers centre frequency and to amplify and filter the 
electrical signal provided by the receiver transducer (up 
to 40 dB and low pass filtered: 10 MHz). The signal was 
then sent to a digital oscilloscope (TDS5054, Tektronix, 
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Beaverton, OR, USA), the bandwidth set at 20 MHz and 
the acquisition in averaged mode (between 80 and 120 
samples). Samples were digitized at 2, 5 and 10 MS/s, 
for measurements in the 250-, 650- and 1000 kHz bands, 
respectively, and at 8 bit (vertical). Afterwards, the signal 
was transferred to the oscilloscope PC, where a Matlab 
(The MathWorks, Inc., Natick, Massachusetts, United 
States) script applied Fast Fourier Transform (FFT) to it. 
Prior to every measurement, a calibration consisting in a 
measurement without any sample in between the trans-
ducers was taken. After measuring the leaf, we subtracted 
the calibration spectra from the measurement both in 
magnitude and phase in order to obtain the transmission 
coefficient. Once the leaf was measured using the three 
pairs of transducers, the magnitude and phase of the 
transmission coefficients were concatenated sorted by 
frequency.

NC‑RUS data annotation
NC-RUS transmission coefficient spectral data of leaves 
were annotated with their corresponding real RWC val-
ues, measured experimentally as previously explained. 
These annotations served as reference standard for both 
training and evaluation purposes.

NC‑RUS data preparation
Discrete magnitude and phase values measured by NC-
RUS creating the transmission coefficient spectra were 
first interpolated to conform continuous transmission 
coefficient spectra between 100 kHz and 1.6 MHz. Seven 
different interpolation methods were used (linear, cubic, 

splines, nearest neighbors, next, previous and Akima), 
creating disturbed versions of collected data, therefore 
providing a strategy for data augmentation increasing 
the amount of available samples (×7). These interpolated 
versions served as new real samples since the small per-
turbations could be obtained at acquisition time. We set 
a common frequency reference system for all samples 
(100  kHz–1.6  MHz) and a sampling rate of 2.5  kHz to 
generate the fixed-size magnitude and phase input data 
(601 values each). Therefore, a total of 1960 spectral sam-
ples of size [601 × 2] were used in this work.

Additionally, we also extracted four parameters whose 
relevance is known from previous works. They are: the 
maximum value of the magnitude of the transmission 
coefficient, the phase and the frequency at which this 
maximum is located and the bandwidth of the first reso-
nance peak (measured as the normalized separation of 
the frequencies with − 6  dB from the central frequency 
with maximum magnitude) [35].

Machine‑learning strategy
Measurements were grouped by leaf, forming 31 groups 
with variable amount of data representing different NC-
RUS measurements at several time points (with their 
corresponding different RWC values) obtained from the 
same leaf. A leave-one-out cross-validation (CV) strategy 
using these groups was followed to train and evaluate a 
model for the prediction of RWC values from NC-RUS 
measurements. Therefore, in each round of the cross-val-
idation procedure, measurements coming from 30 leaves 
were used for training purposes, and the evaluation was 

Fig. 4 Diagram of the non‑contact resonant ultrasound spectroscopy experimental setup
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performed over all measurements from the leaf that is 
left. We named this strategy as leaf-one-out CV (leafOO-
CV). It represents a realistic practical scenario where a 
RWC-prediction model would be used to estimate the 
RWC of a completely new leaf that was never used for 
training that model.

A deep learning approach using one-dimensional (1D) 
convolutional neural networks (CNN) was used to create 
a regression model able to predict RWC from magnitude 
and phase NC-RUS spectral data, with the objective of 
fully using all the NC-RUS available information, and also 
exploiting the non-independent relationship that exist 
between signals measured in nearby frequencies (Fig. 3). 
Additionally, a traditional machine-learning approach 
based on random forest (RF) [39, 40] was followed for 
comparison purposes, using the four NC-RUS-derived 
parameters to construct the prediction model.

Convolutional neural network (CNN)
The architecture of the CNN comprised a total of 18 lay-
ers, including 3 1D-convolutional layers using (17, 55, 
70) kernels with sizes (11, 7, 11), respectively, and 3 fully 
connected layers with (25, 25, 1) nodes, respectively, as 
depicted in Fig. 3a. Batch normalization and rectified lin-
ear transformation were used after each convolutional 
layer. Max pooling layers with window size 2 were used 
after the last two convolutional blocks. Dropout layers 
after the first 2 fully connected layers deactivate some 
neurons randomly with a probability of 30%. Finally, a 
regression layer using mean-squared-error as loss func-
tion provides the prediction of RWC value as output. 
The network was trained during 350 epochs with a mini-
batch size of 32 using stochastic gradient descent with 
momentum (SGDM) optimizer, 0.0875 as initial learning 
rate with 3 drops of factor 10, L2 regularization term of 
1.25e−07, and momentum of 0.8247.

Random forest (RF)
The more traditional RF machine-learning approach that 
we tested bagged an ensemble of 400 regression trees 
using bootstrap samples. We used sampling with replace-
ment, half of the number of variables for each decision 
split, and a minimum number of 3 observations per tree 
leaf [39].

Training strategy
The imbalanced learning problem, caused by the huge 
dominance of RWC values close to 1 in our dataset, lim-
ited the proper construction of regression models able 
to generalize estimations in the whole range of possible 
RWC measurements [41]. In order to avoid bias on the 
learning process and the disregarding of lower RWC val-
ues in the models, a balancing of initial training data was 

carried out. A density-dependent downsampling of the 
samples in the training set was performed by equalization 
of corresponding RWC values [42], applying a random 
subsampling that outputs a set of samples with nearly 
uniform distribution of their RWCs. As consequence, 
only some interpolated versions of NC-RUS measure-
ments were kept for training purposes (train-set). The 
rest were aimed for pseudo-validation since these sam-
ples are not independent on the training set conformed 
by some of their interpolated siblings, and also samples 
corresponding to different measures but from the same 
leaf. This balance of training set was applied indepen-
dently in each round of leafOO-CV.

Evaluation of results
Prediction of RWC values were performed at each lea-
fOO-CV round in samples corresponding to the leaf that 
was left from training, using the correspondent CNN 
and RF regression models. To evaluate the goodness of 
RWC estimations, root mean square errors (RMSE) were 
calculated. A global RMSE, together with the Pearson’s 
linear correlation coefficient (R), were reported using 
final RWC-predictions of all samples from the 31 test-
ing leaves. Additionally, we also extracted RMSE and R 
values obtained after grouping and computing the mean 
of predictions for the seven interpolated versions of NC-
RUS measurements (a unique value per NC-RUS meas-
urement acquired).

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1300 7‑019‑0511‑z.

Additional file 1: Figure S1. Statistical analyses. a) Boxplots comparing 
interpolation methods for prediction of RWC values with CNN (left) and 
RF (right) approaches. Prediction errors obtained with each approach are 
not statistically different when using data preprocessed with different 
interpolation methods (repeated measures ANOVA with both Bonfer‑
roni and Tukey‑Kramer multiple comparison tests). b) Boxplot displaying 
RMSE values computed individually on each leaf confirm the superior 
performance of CNN method for estimation of RWC values (paired‑sample 
t‑test, **p‑value < 0.005).
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NC‑RUS: non‑contact resonant ultrasound spectroscopy; RWC : relative water 
content; CNN: convolutional neural network; RF: random forest.
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