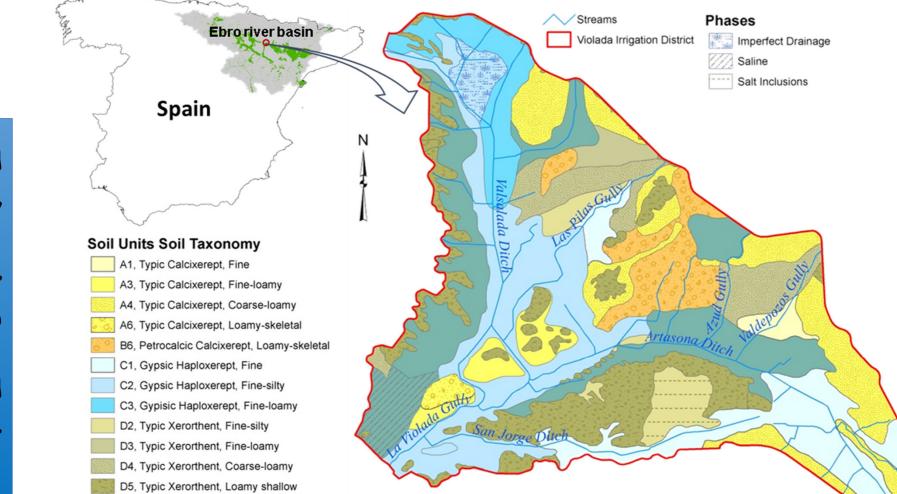
DSSAT MODELLING FOR BEST IRRIGATION MANAGEMENT PRACTICES ASSESSMENT UNDER MEDITERRANEAN CONDITIONS



FARIDA DECHMI^{1,2} and WAFA MALIK¹

¹Soils and Irrigation Unit (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre of Aragon, Avda. Montañana 930, 50059 Zaragoza, Spain, <u>fdechmi@aragon.es</u> ²Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, España

Introduction and objective

Sustainable water management in agriculture aims to match water availability and water needs in terms of quantity and quality and in space and time with acceptable environmental impact, especially in arid and semi-arid regions, where irrigation is required to reach a competitive and profitable agriculture. The objectives of this research were to (1) calibrate and validate the DSSAT model for the main crops of a modernized irrigation district located in the Ebro Valley (Spain) after irrigation performance characterization at the farm-field scale and (2) determine the best management irrigation practices under different soil types and crop requirements.

Materials and Methods

- The field experiments were performed during the 2015 and 2016 crop seasons in 54 farmer's fields of the VID (Fig. 1). Measured data from the 54 plots were used for DSSAT model calibration and evaluation of the main crops (barley, wheat, maize long season (maize-LS) and maize short season (maize-SS) and sunflower). In the case of alfalfa, the field experiment described by Malik et al. (2018) was used.
- The field crops selection was conducted in order to represent the dominant soil types (8 soil types) in the study area for each crop.
- Two irrigation scenarios were evaluated in the eight soil types for both seasons (the current irrigation practices and the irrigation dose adjusted to crop requirement and soil properties).

Results and Discussion

Both DSSAT calibration and validation demonstrated a good performance for all crops (Table 1). This study indicate that farmers' practices do not match well with irrigation schedule and depth (Table 2). The same irrigation scheduling was observed for the different soils. Yield losses due to drought stress were identified for wheat, barley and alfalfa and excessive irrigation water depth was applied for maize-LS, maize-SS and sunflower. The optimal irrigation schedule could improve the water use efficiency by 22.5%, 22.0%, 86.0%, 35.0% and 26.0% for maize-SS, maize-LS, sunflower, barley and alfalfa, respectively. Also could reduce the amount of leached N and deep percolation losses by 31% (4.48 T) and 34% (1.2 hm³),

Vegetative biomass Grain Yield R² d-stat BIAS RMSE d-stat BIAS RMSE 607 0.42 -385 1934 Calibration 0.90 0.97 460 0.96 Maize_SS 622 0.78 Validation 0.98 -448 183 2895 0.98 0.94 808 0.78 -259 694 0.26 -0.65 1434 Calibration 0.99 Maize_LS 0.88 -277 679 0.21 0.73 2392 Validation 0.90 2522 Calibration 0.97 0.91 424 565 0.73 0.75 521 733 Sunflower Validation 0.98 463 0.55 0.71 -282 380 603 0.91 478 Calibration 0.88 497 0.85 167 0.88 379 0.92 Barley Validation 0.97 478 0.82 -443 0.99 75 0.91 934 Calibration 1.00 1.00 -102 2231 317 1.00 2087 0.72 Wheat

Table 1. Model calibration and validation performance.

respectively (Fig. 2).

able 2. Comparisor ield, irrigation dosond nd residual soil mi	es,	irriga	tion	appli	catio	n, de	rep p	erco	latior	n loss oility	ses, l soils	each	ed N	(A)	DPL (hm3)	
permeability soils.		Grain yield (kg ha ⁻¹)		# Irrigation events		Irrigation depth (mm)		Leached N (kg N ha ⁻¹)		Deep percolation (mm)		N soil (kg N ha ⁻¹)			$\begin{array}{c cccc} 0.0 - 0.1 \\ \hline 0.1 - 0.2 \\ \hline 0.2 - 0.3 \\ \hline 0.3 - 0.4 \\ \hline 0.4 - 0.5 \end{array}$	
		2015	2016	2015	2016	2015	2016	2015	2016	2015	2016	2015	2016	A C C C C C C C C C C C C C C C C C C C	0.5 - 0.6	
		11007	10014	0.6	105			ze-SS	1.40	101			1.6.6	Contraction of the second of t		
nallow / high permeability soils	CI	11037	10014	96	125	657	780	203	148	191	50	60	166	Veron M		
(B6, A4, D4)	OI	11037	11623	73	75	507	553	111	154	21	55	182	118			
Low permeability soils (E2, C1,	CI	11240	11593		125	653	780	57	15	25	2	104	127			
C2, C3, D5)	OI	11156	11652	76	72	515	523	5	15	1	2	150	117			
							Maiz	ze-LS						Celon Color		
hallow /high permeability soils	CI	12584	12106	95	110	766	732	108	17	176	123	71	152			
(B6, A4, D4)	ΟΙ	12584	12260	70	92	526	697	12	17	111	123	154	146		Leached N (T) 0 - 5	
ow permeability soils (E2, C1,	CI	12784	12250	95	110	766	732	9	1	24	7	112	114	810	5 - 10 10 - 15	
C2, C3, D5)	ΟΙ	12631	12303	77	92	569	685	0	1	5	7	128	114		15 - 20	
							Sunf	lower							20 - 25 25 - 30	
hallow / high permeability soils	CI	4148	2804	60	68	492	456	90	33	192	69	4	40			
(B6, A4, D4)	ΟΙ	4110	4207	34	59	229	466	36	33	69	69	3	5	and the second s		
Low permeability soils (E2, C1,	CI	4137	2326	60	69	486	458	9	0	45	0	4	67	Porta B		
C2, C3, D5)	ΟΙ	4037	4283	51	72	380	562	0	0	0	0	5	10	Vera Comment		
							Ba	rley								
hallow / high permeability soils	CI	7062	4851	24	35	253	248	8	52	69	132	61	67			

	Low permeability soils (E2, C1,	CI	68/4	5175	24	35	252	248	I	1	44	/6	90	106	
	C2, C3, D5)	OI	9430	8472	8	42	279	286	8	3	53	41	31	64	
		Alfalfa (2016)													
S	Shallow / high permeability soils	CI	15587		91		793		0.5		21		7		
	(B6, A4, D4)	OI	17824		169		1181		0.3		12		2	4	
	Low permeability soils (E2, C1,	CI	158	73	9	1	79	93	0.	0	()	7	7	
	C2, C3, D5)	OI	18154		16	52	11	.18	0.0		(0		5	

percolation losses (DPL, hm³) and leached N (T) under current irrigation (A) and optimal irrigation (B) in the VID.

Acknowledgments

This work was funded by AGL2013-48728-C2-2-R and RTI2018-100987-R-IOO projects and FPI predoctoral fellowship BES-2014-067945.

Conclusions

- > Despite the recent modernization of the VID, it has been identified that the farmers' current irrigation practices could be improved.
- > The DSSAT model demonstrated good performance for simulating the main crops in intensive cropping systems under Mediterranean conditions.
- > The optimal irrigation management scenario significantly improved the irrigation water use by adjusting the irrigation water applied according the actual evapotranspiration needs and the soil holding capacity.

References

Malik W, Boote KJ, Hoogenboom G, Cavero J, and Dechmi F (2018) Adapting the CROPGRO model to simulate alfalfa growth and yield. Agronomy J. 110:1777-1790.

