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Bud dormancy in temperate perennials ensures the survival of growing meristems under
the harsh environmental conditions of autumn and winter, and facilitates an optimal
growth and development resumption in the spring. Although the molecular pathways
controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-
BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different
species. In the present study, we have characterized the orthologs of DAM genes in
European plum (Prunus domestica L.). Their expression patterns together with sequence
similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms
in European plum. Furthermore, other genes related to dormancy, flowering, and stress
response have been identified in order to obtain a molecular framework of these three
different processes taking place within the dormant flower bud in this species. This
research provides a set of candidate genes to be genetically modified in future research, in
order to better understand dormancy regulation in perennial species.

Keywords: European plum (Prunus domestica), DAM, bud dormancy, stress tolerance, flowering development
INTRODUCTION

Perennial species from temperate regions have to cope with seasonal changes in temperature,
photoperiod, and water availability. Bud dormancy is an important adaptative mechanism ensuring
survival during the cold period and paving the way for optimal growth resumption, flowering, and
fruit production. During bud dormancy, these species cease growth and activate defense
mechanisms, both essential to avoid injuries caused by the harmful environmental conditions
during winter (Welling and Palva, 2006; Hänninen and Tanino, 2011). In European plum (Prunus
domestica L.) and other members of the Rosaceae family, growth cessation and winter dormancy are
chiefly regulated by external temperature, unlike other temperate trees that are also sensitive to
photoperiod control (Heide and Prestrud, 2005; Heide, 2008). Winter dormancy presents two
phases: endo- and ecodormancy (Lang et al., 1987). During endodormancy (abbreviated to
dormancy in this study), the meristems remain protected within the reproductive and vegetative
buds without apparent growth (Cooke et al., 2012). In this phase, flower buds require exposure to a
specific range of chilling temperatures for proper flowering and subsequent fruiting. Chilling
fulfilment does not cause an immediate resumption of growth because exposure to higher
.org August 2020 | Volume 11 | Article 12881

https://www.frontiersin.org/articles/10.3389/fpls.2020.01288/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01288/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01288/full
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lloret_alb@gva.es
https://doi.org/10.3389/fpls.2020.01288
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.01288
https://www.frontiersin.org/journals/plant-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.01288&domain=pdf&date_stamp=2020-08-19


Quesada-Traver et al. Characterization of Plum DAM Genes
temperatures is also required during the phase of ecodormancy
to achieve bud break and flowering. Despite the importance of
distinguishing these two phases to understand the mechanisms
behind dormancy, there is a lack of phenological or biological
markers to detect the fulfilment of chilling (Fadón and Rodrigo,
2018). Since dormancy is highly dependent on temperature,
global warming is a developing threat with potential impact on
phenological transitions and fruit production. On the one hand,
warmer temperatures in spring are expected to increase the risk
of frosts associated with premature flowering (Luedeling et al.,
2011; Guo et al., 2014; Vitasse et al., 2018; Woznicki et al., 2019).
On the other hand, climatic scenarios leading to higher
temperatures in winter might cause severe reductions in winter
chill, becoming insufficient to fulfil chilling requirements for
dormancy release and thus causing inefficient and irregular
budbreak and important production losses in fruit crops (Erez,
2000; Luedeling et al., 2011; Guo et al., 2014; Legave et al., 2015).
Engineering fruit crops with altered dormancy, flowering,
and stress tolerance responses should enable substantial
advancements in breeding time and productivity. Therefore, it
is particularly important to search out the molecular factors
underlying these three processes (Lloret et al., 2018).

Several studies have been focused on a group of genes, called
DORMANCY-ASSOCIATED MADS-BOX (DAM) and other
orthologs of SHORT VEGETATIVE PHASE (SVP) genes,
which recently have emerged as potential regulators of
dormancy in several species such as almond (Prunus dulcis;
Prudencio et al., 2018), apple (Malus x domestica; Falavigna et al.,
2014; Wu et al., 2017), apricot (Prunus armeniaca; Balogh et al.,
2019), Chinese cherry (Prunus pseudocerasus; Zhu et al., 2015),
hybrid aspen (Populus tremula x tremuloides; Singh et al., 2018),
Japanese apricot (Prunus mume; Sasaki et al., 2011), kiwifruit
(Actinidia chinensis; Wu et al., 2019; Actinidia deliciosa; Wu
et al., 2012), leafy spurge (Euphorbia esula; Horvath et al., 2008),
pear (Pyrus pyrifolia; Saito et al., 2015), and sweet cherry (Prunus
avium; Rothkegel et al., 2017). These genes were firstly identified
in an evergrowing mutant (evg) of peach (Prunus persica) that
shows a non-dormant phenotype, maintaining apical growth and
persistent leaves in response to dormancy inducing conditions
(Bielenberg et al., 2004). This phenotype is associated with a
genomic deletion that includes four out of the six tandemly-
repeated DAM genes (Bielenberg et al., 2004; Bielenberg et al.,
2008). Subsequently, other functional studies have confirmed
their crucial role in the dormancy process. The ectopic
expression of DAM1 from leafy spurge in Arabidopsis thaliana
delays bolting and flowering concomitantly with the repression
of FLOWERING LOCUS T (FT) (Horvath et al., 2010). In fact,
DAM genes have been proposed to directly repress FT in leafy
spurge (Hao et al., 2015) and Chinese white pear (Niu et al.,
2016). PpDAM1 gene has been also described to bind and up-
regulate the expression of pear PpNCED3 gene, encoding a 9-cis-
epxycarotenoid dioxygenase implicated in the synthesis of the
dormancy-promoting hormone abscisic acid (Tuan et al., 2017).
In addition, apple plants overexpressing MdoDAMb genes show
delayed bud break but normal flower and fruit development (Wu
et al., 2017). Finally, transgenic poplar (Populus trichocarpa) and
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apple constitutively expressing PmDAM6 from Japanese apricot
show growth inhibition and early bud set (Sasaki et al., 2011;
Yamane et al., 2019). Overall, these studies suggest that DAM
genes play a crucial role in dormancy maintenance mainly by
growth and hormone regulation (Liu and Sherif, 2019; Yamane
et al., 2019).

Other studies have focused on discerning the molecular
mechanisms that regulate DAM gene expression. Some
chromatin covalent modifications and miRNA have been
reported to affect DAM expression in several species (Horvath
et al., 2010; Leida et al., 2012; Saito et al., 2015; Niu et al., 2016;
Vimont et al., 2020), suggesting the participation of epigenetic
mechanisms in DAM-dependent dormancy modulation (Rıós
et al., 2014; Conde et al., 2019). A TEOSINTE BRANCHED1/
CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP)
protein (PpTCP20) binds to a specific element and down-
regulates both PpeDAM5 and PpeDAM6 in peach (Wang et al.,
2020). Also, a feedback regulatory mechanism has been
described involving repression of PpDAM1 by an abscisic acid
response element (ABRE)-binding transcription factor
(PpAREB1) in pear (Tuan et al., 2017). More recently, pear
ABRE-BINDING FACTOR3 (PpyABF3) has been reported to
specifically bind and activate PpyDAM3 expression, whereas
PpyABF2/PpAREB1 represses PpyDAM3 by dimerising with
PpyABF3 (Yang et al., 2020). Among DAM regulatory
proteins, the most studied ones are C-Repeat Binding Factors
(CBF), which are able to bind and activate DAM promoters by
yeast one-hybrid and transient expression experiments in
Japanese apricot and pear (Saito et al., 2015; Niu et al., 2016;
Zhao et al., 2018b). Interestingly, CBF factors are also involved in
the cold-temperature response pathway (Wisniewski et al., 2011;
Wisniewski et al., 2018), revealing the close relationship between
dormancy and low temperature tolerance mechanisms.

Plants reprogram their gene expression profile in order to
cope with cold and desiccation stresses associated with the
dormancy period. Thus, the analysis of differentially expressed
genes in dormant buds has provided many candidate genes
belonging to abiotic tolerance responses. The ectopic
expression of the cold acclimation response gene CBF from
peach improves freezing tolerance in apple (Wisniewski et al.,
2011; Wisniewski et al., 2015). Several studies suggest that evg
mutant of peach has lower cold tolerance due in part to a lack of a
dehydrin accumulated in bark tissues during dormancy
progression (Arora et al., 1992; Arora and Wisniewski, 1994;
Arora et al., 1996; Artlip et al., 1997). In addition, the ectopic
expression of STRESS-ASSOCIATED PROTEIN1 (PpSAP1) gene,
highly expressed in dormant buds of peach, improves water
retention under desiccation conditions in transgenic plum
(Lloret et al., 2017a). Moreover, some genes related to sugar
metabolism pathways with altered expression along bud
development have been shown to participate in tolerance
mechanisms. In peach, PpeS6PDH gene encoding a sorbitol-6-
phosphate dehydrogenase has been postulated to synthesize the
compatible solute sorbitol in order to protect dormant buds
against cold and hydric stresses (Lloret et al., 2017b). In addition,
galactinol synthase (GolS) genes, involved in the synthesis of
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raffinose family oligosaccharides, are up-regulated in dormant
buds of chestnut and apple (Ibáñez et al., 2013; Falavigna et al.,
2018). Interestingly, the overexpression of apple MdGolS2
confers tolerance to water deficit in Arabidopsis (Falavigna
et al., 2018).

During winter dormancy, growth and development of flower
organs ceases in order to deal with the harmful environmental
conditions. In stone fruits, flower bud formation takes place in
summer in the year preceding flowering and fruiting, whereas
flower primordia stop growing and remain dormant inside the
buds. The dormancy arrest guarantees an optimal development
of gametes under more suitable conditions after dormancy
release, which associates with a sharp up-regulation of genes
involved in pollen microsporogenesis, among other flowering
processes (Rıós et al., 2013).

European plum is the fruit tree species with the highest number
of cultivars in Europe (Esmenjaud and Dirlewanger, 2007).
Among them, ‘Reine Claude Verte’ is the most grown cultivar
for its excellent organoleptic qualities (Gharbi et al., 2014). This
cultivar has been cultivated for more than 500 years in Europe,
from where it has expanded worldwide (Tabuenca and Iturrioz,
1991). European plum is also a genetic model for other Prunus
species by virtue of the availability of efficient procedures for
genetic transformation and regeneration (Petri et al., 2018). Based
on previous studies in peach and other species, this study aims at
identifying and characterizing the DAM and other dormancy
related genes from European plum, in order to obtain a
dynamic snapshot of molecular mechanisms and factors
Frontiers in Plant Science | www.frontiersin.org 3
affecting dormancy in flower buds of this species. This research
will open the possibility to initiate functional studies on dormancy
related genes with the use of transgenic plum plants
overexpressing or down-regulating some of these genes.
RESULTS

Chilling Requirements for Dormancy
Release in European Plum
The chilling requirements for dormancy release of flower buds
from European plum cv. ‘Reine Claude Verte’ were estimated
during two consecutive years. The annual temperature regime
was very similar in both years, showing a close pattern of chilling
accumulation (Supplementary Figure S1). Chilling fulfilment
was achieved at similar dates in both seasons, January 25 for
2018–2019 and January 27 for 2019–2020 (Figures 1A, B). The
date of chilling fulfilment allowed estimating the chilling
requirements of ‘Reine Claude Verte’ by the calculation of the
number of chilling hours (CH), chilling units (CU), and chilling
portions (CP) accumulated until then. The range of the values
obtained in the two seasons, 979–1,086 CH, 1,248–1,287 CU, and
62.8 CP (same value in both years), were considered as the
chilling requirements of this cultivar (Supplementary Table S1).

From the end of autumn and during winter, all the flower
buds were closed and covered by dark brown scales at
phenological stage A (Baggiolini, 1952) and stage BBCH 50
(Fadón et al., 2015) (Figure 1C). At this stage, two to three
A B

DC

FIGURE 1 | Estimation of breaking of dormancy and flower bud characterization in European plum cv. ‘Reine Claude Verte.’ Flower bud weight in orchard
conditions (gray squares) and after 8 days in the growth chamber (black rhombi) over two seasons: 2018–2019 (A) and 2019–2020 (B). Snowflakes mark the weight
increment of 30%, when chilling was fulfilled. (C) Shoot of European plum cv. ‘Reina Claude Verte’ during dormancy, showing flower (FB), and vegetative (VB) buds.
(D) Longitudinal section of a flower primordium at the date of dormancy breaking. Sepals (SE), petals (PE), anthers (AN), and pistil (PI); scale bar, 300 µm.
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flower primordia were present inside each flower bud with all the
whorls (sepals, petals, anthers, and pistil) differentiated (Figures
1D). In autumn, the average weight of flower buds was around
0.1 g, and it remained without significant variations throughout
dormancy in both years (Figures 1A, B). No external
phenological changes were observed until bud burst in spring
several weeks after chilling fulfilment.

Genome-Wide Identification of PdoDAM1-
6 Genes From European Plum
We used the coding sequence of PpeDAM1-6 genes from peach
(Prunus persica) for a BLASTN search in the Prunus domestica
v1.0 draft genome, recently uploaded to the Genome Database
for Rosaceae (GDR; https://www.rosaceae.org/). We found three
assembled scaffolds that exhibited high similarity to DAM locus
of peach and contained at least the putative orthologues of the six
PpeDAM genes and their flanking genes. The circle plot revealed
strong conservation along the three scaffolds with the PpeDAM
region, localized in the chromosome 1 of peach (Figure 2).
However, they also presented a weaker synteny with peach
chromosomes 6 and 8. In this region of the chromosome 6, we
found the putative ortholog in the peach genome of Arabidopsis
SHORT VEGETATIVE PHASE (SVP), systematically named
Prupe.6G199000, belonging to the SVP/StMADS11 lineage of
type II MIKCC MADS-box genes in which DAM genes are also
clustered (Jiménez et al., 2009). On the other hand, the syntenic
region in chromosome 8 was quite divergent and, in fact, did not
include any DAM-like gene.

To support the conservation of the DAM genomic region in
European plum, we analyzed in detail the organization of the
putative DAM genes and their genomic neighborhood. As shown
in Figure 3, PdoDAM genes preserved the gene order observed in
peach and other Prunus species, and the two closest downstream
Frontiers in Plant Science | www.frontiersin.org 4
and upstream flanking genes were also present in the three
scaffolds under study. On the contrary, DAM genes localization
was more fragmented in apple. Interestingly, the DAM loci
identified in the three scaffolds of European plum were
different in length, mainly caused by a variable intergenic
region between putative PdoDAM2 and PdoDAM3 genes. This
variability could be due to the fact that polyploid species such as
Prunus domestica, which has a hexaploid genome, in addition to
having six different alleles, have a much more plastic genome
structure than their progenitor diploids (Leitch and Leitch, 2008;
Fu et al., 2016). In order to identify the transcript sequence of
PdoDAM genes, RNA-seq data derived from leaves of European
plum cv. ‘Reine Claude Verte’ were used for gene prediction.
These transcriptomic data were obtained in our laboratory and
uploaded to NCBI BioProject database (ID PRJNA630876). The
mRNA coverage plot of each scaffold was merged in order to
obtain a more reliable predicted sequence. All six PdoDAMs had
similar gene structures consisting of eight exons and seven
introns flanked by the translation initiation and stop codons
(Figure 4). Transcriptomic data suggested an alternative splicing
for PdoDAM4-like and PdoDAM5-like, based on RNA-seq data
and the presence of stop codons at the 3’ end. Both transcripts
were confirmed by gene expression analyses during bud
development although PdoDAM4.1 and PdoDAM5.2 were
clearly less abundant (Supplementary Table S2). As the exons
were well conserved across the three scaffolds (Supplementary
Table S3), we selected PdoDAMs predicted coding sequences
from scaffold1404-v.1.0 and the most abundant isoform in each
case for subsequent analysis and used the names PdoDAM1-6 to
designate them (Supplementary Figure S2).

The deduced amino acid sequences of all identified
PdoDAMs contained the highly conserved DNA binding
MADS-box domain at the N-terminal end, the K-domain
FIGURE 2 | Syntenic relationships between European plum scaffolds containing the DAM locus and the peach genome. European plum scaffold1404-v.1.0,
scaffold1884-v.1.0, and scaffold 3194-v.1.0 (purple) and peach chromosomes Ppe chr1, Ppe chr6, and Ppe chr8 (yellow) are represented using ClicO FS. Scoring
regions are connected by a ribbon and colored according to a grayscale that associates black color to the maximum score for each representation. DAM region in
Ppe chr1 is marked with a black asterisk. European plum scaffolds are five-fold magnified in the representation for a proper visualization.
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participating in protein-protein interactions and finally the
variable intervening region that connects both domains
(Figure 5). These observations confirmed that PdoDAM genes
belong to the MIKCc-type of MADS-box genes, consistently
with previous studies in other species (Jiménez et al., 2009; Zhao
et al., 2018a).

The phylogenetic analysis of PdoDAM1-6 predicted protein
sequences indicated that they form part of a differentiated group
in conjunction with other Prunus sequences, which was divided
into six subgroups corresponding to the six tandemly repeated
DAM genes (Figure 6). In addition, DAM proteins from genera
Malus and Pyrus constituted another well-defined group, that
jointly with Prunus DAMs were clearly differentiated from a
cluster composed by SVP-like proteins from Arabidopsis
thaliana and kiwifruit (Actinidia deliciosa) and EeDAM1-2
from leafy spurge.

Expression Analysis of PdoDAM1-6 Genes
Since the best-known function of previously described DAM-like
genes has been related to bud dormancy regulation, we measured
PdoDAM1-6 gene expression across bud development in European
plum cv. ‘Reine Claude Verte’ during the winter of 2018/2019. The
six PdoDAM1-6 genes showed a general progressive decrease in
mRNA level until the dormancy period was completely overcome,
with specific gene particularities (Figure 7A). Despite PdoDAM1
expression did not show great changes along bud development, a
slight down-regulation was observed from the first two samples,
collected in autumn. On the contrary, PdoDAM2 was the European
plum DAM gene with strongest gene down-regulation, occurring in
early stages before dormancy release (November–December), and
maintained along the whole bud development process. PdoDAM3
and PdoDAM4 presented a similar expression pattern, with
transcripts levels increasing slightly from November to December
and then declining during bud dormancy progression. Finally,
PdoDAM5 and PdoDAM6 also showed paralleled expression
profiles. They were strongly down-regulated prior to bud
Frontiers in Plant Science | www.frontiersin.org 5
dormancy release, and subsequently they slightly peaked in
ecodormant CV7 sample, at the beginning of February.

When comparing these expression patterns with those of
PpeDAM genes in peach cv. ‘Crimson Baby’ at five different bud
dormancy samples (CB1–CB5), we found both common and
specific features (Figure 7B). Whereas PpeDAM1, PpeDAM2,
and PpeDAM3 showed a quite different expression profile from
their European plum counterparts, PpeDAM4, PpeDAM5, and
PpeDAM6 reduced their expression during bud development in a
broadly similar fashion to European plum orthologs. PpeDAM4
slightly increased its expression level in the first samples,
followed by a sharp down-regulation concomitantly with
dormancy release. As previously described, PpeDAM5 and
PpeDAM6 transcript levels decreased in precise concordance
with bud dormancy release. Interestingly, plum PdoDAM4,
PdoDAM5, and PdoDAM6 gene repression occurred similarly
but in a slightly more advanced manner than in their
peach orthologs.

Analysis of Cis-Regulatory Elements in
PdoDAM1-6 Regulatory Regions
We searched in PdoDAM genes different motifs described in
previous reports as regulatory elements of DAM genes from
other species. Since these elements were previously identified in
both, the promoter and the intronic region between the first exons
of DAM genes, we focused on those regulatory genomic regions in
PdoDAM genes. MADS-box transcription factors bind DNA
sequences known as CArG box motif with the consensus
sequence CC(A/T)6GG or the non-canonical C(A/T)8G. MADS-
box genes, as DAM genes, have been reported to interact with
these elements to regulate the expression of other genes but also to
regulate themselves (Zhu and Perry, 2005; Gregis et al., 2013). The
presence of CArG box sequences in all PdoDAM genes is thus
consistent with self-regulation mechanisms (Figure 8). On the
other hand, CBF proteins play a critical role in activation of cold
responsive genes. PmuDAM6 gene was reported to be
FIGURE 3 | Relative genomic representation of DAM loci from different species. DAM genes (orange) and the closest two upstream (US1-2) and downstream genes
(DS1-2) in Prunus (blue). Apple MdDAM1-4 and MdDAMb are also represented. The scale bar represents a 10 kbp genomic distance.
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FIGURE 4 | RNA coverage representation in DAM genes for each European plum scaffold. For each DAM gene, three coverage graphs corresponding to the
different scaffolds represent number of reads. The predicted exonic structure is depicted below (orange boxes). The coverage plot was obtained by merging bam
files from three RNA samples.
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transcriptionally regulated by the direct binding of PmuCBFs to
C-repeat/dehydration-responsive elements (CRT/DRE; Zhao
et al., 2018b). As shown in Figure 8, these elements were
identified along the whole genomic regions under study, but
were particularly abundant on the promoters of DAM6 genes
from Japanese apricot, peach, and European plum, in a position
close to active CRTs described by the literature. We also
highlighted the site II motif associated with the sequence
GCCCA. This element is recognized by TCP transcription
factors described as down-regulators of PpeDAM5 and
PpeDAM6 expression in peach (Wang et al., 2020). Site II motifs
were identified in the intronic regions of all six PdoDAM genes
and the promoters of PdoDAM3 and PdoDAM6, closely located to
the one reported by the literature.
Expression Analysis of Other Dormancy-
Related Genes
Previous genome-wide transcriptional analyses have provided
numerous genes differentially expressed in flower buds of peach,
which are related to three major coincident processes: bud
dormancy regulation, stress tolerance and flowering development
(Rıós et al., 2013; Lloret et al., 2017a, Lloret et al., 2017b). We
analyzed the bud-dependent expression of the putative orthologs in
European plum of some of these genes. Firstly, a TONOPLAST
INTRINSIC PROTEIN (TIP)-like gene increased its expression in
flower buds of European plum after dormancy release (Figure 9A),
in close agreement with the behavior of its peach ortholog and its
proposed function in tonoplast turgor and growth resumption
(Figure 9B). We also studied the expression patterns of
SORBITOL-6-PHOSPHATE DEHYDROGENASE (S6PDH)-like
and STRESS ASSOCIATED PROTEIN (SAP)-like genes, which are
postulated to participate in the stress tolerance response during bud
dormancy in peach. Interestingly, S6PDH-like increased its
Frontiers in Plant Science | www.frontiersin.org 7
expression level during dormancy progression until January 16th

(CV4) and from that point it became steady and started to decrease.
On the other hand, SAP-like expression was quite stable along
dormancy progression and decreased after dormancy release
(Figure 9A). Finally, RUPTURED POLLEN GRAIN1 (RPG1)-like
and peroxidase-like genes, associated with microsporogenesis and
pollen development in anthers, were up-regulated after the
dormancy period, coincidently with the last phases of flower
development usually activated at this stage. The expression profile
of these genes was in concordance with peach bud expression
patterns (Figure 9B).
DISCUSSION

The susceptibility of phenological transitions to changing climatic
scenarios is a major challenge for temperate fruit crops, with a high
potential impact on flowering and fruit production, as was already
reported for European plum (Woznicki et al., 2019). Among these
phenological transitions, bud dormancy modulates consecutively
growth cessation and resumption in response to seasonal
environmental conditions, and directly affects flowering timing
and efficiency, which makes the understanding of this process
essential for improving adaptation strategies to global temperature
changes. The estimation of chilling requirements for bud dormancy
release, based on bud-break forcing assays in combination with
chilling quantification using one or more mathematical models, has
become a key tool for the estimation of adaptability of a species or
cultivar. In particular, chilling requirement of European plum cv.
‘Reine Claude Verte’ calculated in this study (979–1,086 CH) is in
close agreement with previous estimations (976–1,275 CH;
Tabuenca, 1967), and similar to those reported in other European
plum cultivars (Fadón et al., 2020).
FIGURE 5 | Alignment of predicted PdoDAM1-6 protein sequences. MADS-box and K-box domains are highlighted. Alignment was performed using MUSCLE
algorithm. Colored positions represent homology between sequences.
August 2020 | Volume 11 | Article 1288

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Quesada-Traver et al. Characterization of Plum DAM Genes
Bud dormancy is regulated by DAM transcription factor
genes, mainly in Prunus species (Bielenberg et al., 2008; Sasaki
et al., 2011; Balogh et al., 2019). The availability of the draft
genome of European plum, recently uploaded to the GDR
database, has allowed the identification and genomic
characterization of six plum DAM genes in this study,
designated PdoDAM1-6. Domain alignments and phylogenetic
analysis indicated that they are closely related to the
corresponding Prunus DAM sequences. PdoDAM genomic
regions showed high synteny with three different regions of the
peach genome. The strongest synteny corresponds to the end of
Frontiers in Plant Science | www.frontiersin.org 8
chromosome 1 where PpeDAM are located. However, the second
syntenic block is situated within chromosome 6, containing the
putative ortholog of SVP in peach (PpeMADS57), as stated in a
systematic analysis of the MADS-box family in peach (Wells
et al., 2015). This observation showed the relationship between
PdoDAM genes and SVP genes, as has been already reported in
peach (Jiménez et al., 2009). On the other hand, the expansion of
DAM genes has been proposed to be originated by serial tandem
duplications before the diversification of the Prunus genus
(Jiménez et al., 2009; Zhang et al., 2012), consistently also with
this study. Expansion of DAM genes occurred independently in
FIGURE 6 | Phylogenetic tree of PdoDAM1-6 and other DAM-like proteins. DAM sequences from Prunus domestica (European plum, “Pdo”), Prunus mume
(Japanese apricot, “Pmu”), Prunus armeniaca (apricot, “Par”), Prunus persica (peach, “Ppe”), and Malus domestica (apple, “Mdo”) along with related protein
sequences from Pyrus pyrifolia (pear, “Ppy”), Arabidopsis thaliana (“At”), Actinidia deliciosa (kiwifruit, “Ade”), and Euphorbia esula (leafy spurge, “Ees”). The Maximum
Likelihood method was used to construct the tree and it was bootstrapped 1,000 times. The branch length corresponding to the number of substitutions per amino
acid is represented in the scale bar.
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the Maleae tribe including apple and pear, as supported by the
identification of several DAM-like genes with a common
genomic organization, essentially different from Prunus species
(Wu et al., 2017). The independent origin of these duplication
events and the observation of a strong purifying selection in all
six PpeDAM genes, in spite of their sequence similarity, suggest
the specialization of these genes for unique roles (Jiménez
et al., 2009).

This proposed neo-functionalization of DAM genes is
coherent with their different expression timing during
dormancy progression. In this respect, our gene expression
data in European plum matched previous studies in other
related species. Our results showed an increase in PdoDAM4
expression levels from November to December, followed by gene
Frontiers in Plant Science | www.frontiersin.org 9
down regulation prolonged after dormancy release, as similarly
reported in other Prunus species (Leida et al., 2010; Yu et al.,
2020). On the other hand, peach PpeDAM5 and PpeDAM6
expression were inversely correlated with dormancy release,
and thus were considered good predictors of the dormancy
stage of buds (Li et al., 2009; Jiménez et al., 2010; Leida et al.,
2010; Leida et al., 2012). European plum PdoDAM5 and
PdoDAM6 showed a similar transcript level decrease, although
it occurred earlier than in peach, using the estimated date of
dormancy release as reference. Once dormancy was released,
both PdoDAM5 and PdoDAM6 profiles reached a secondary
minor peak, which was similarly reported in apricot ParDAM5
and ParDAM6 genes (Balogh et al., 2019). In spite of their
transcriptional particularities, PdoDAM genes were in general
A B

FIGURE 7 | Relative expression of DAM genes in flower buds. PdoDAM1-6 gene expression in European plum cv. ‘Reine Claude Verte’ (CV) is represented in panel
(A), and PpeDAM1-6 gene expression in peach cv. ‘Crimson Baby’ (CB) in panel (B). Timepoint codes are found in Material and Methods. The dashed bar indicates
dormancy release. For each graph, an expression of one is assigned to the highest value. Each point represents data of three biological replicates accompanied by
error bars representing its standard deviation. Significant differences among samples are represented by different letters (a–e), with a confidence level of 95%.
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down-regulated along bud dormancy and development,
according to previous studies (Sasaki et al., 2011; Zhao et al.,
2018a; Yu et al., 2020).

Gene expression diversification and neo-functionalization of
duplicated DAM genes could be at least partially originated in
the variation of regulatory elements responding to different, but
closely related environmental signals (Haake et al., 2002;
Lawton-Rauh, 2003) both in promoters and in first kilobases
of intronic regions (Rose, 2019). The identification of chromatin
modifications related to gene activity and silencing in the large
intron of DAM genes in peach (Leida et al., 2012; de la Fuente
et al., 2015) recommends the search of intronic sequences in
addition to promoters. The direct binding of CBF proteins to
CRT/DRE elements in promoter regions has been proposed to
mediate the effect of low temperature on DAM gene expression
in leafy spurge (Horvath et al., 2010), Japanese pear (Saito et al.,
2015; Niu et al., 2016), apple (Mimida et al., 2015; Wisniewski
et al., 2015), and Japanese apricot (Zhao et al., 2018a). The
distinct number and position of these CRT/DRE elements on
the specific PdoDAM1-6 promoters are expected to affect their
particular environmental response. Other transcription factors
involved in regulation of DAM genes in other species have also
cis-regulatory elements in the promoter and large intron of
PdoDAMs. Among them, site II motifs are able to bind TCP
factors similar to PpeTCP20, which is involved in PpeDAM5
and PpeDAM6 down-regulation when dormancy is released in
peach (Wang et al., 2020). On the other hand, MADS-box
factors binding to CArG box sequences are in certain cases self-
regulating their own expression (Zhu and Perry, 2005; Gregis
et al., 2013), and thus we cannot discard the cross-regulation of
DAM genes in complex with other DAM or MADS-box
proteins, as was indirectly suggested by the down-regulation
of the whole DAM array of genes when four of them were
Frontiers in Plant Science | www.frontiersin.org 10
deleted in the evg mutant of peach (Bielenberg et al., 2008). In
addition to conventional transcription factors, also chromatin
modification complexes are affecting DAM genes (Horvath
et al., 2010; Leida et al., 2012; Saito et al., 2015; Vimont et al.,
2020). Conserved GA repeat sequences have been found
associated with regions enriched in the H3K27me3 histone
modification in introns of PpeDAM genes (de la Fuente et al.,
2015), other peach dormancy-regulated genes (Lloret et al.,
2017b), and Arabidopsis genes (Deng et al., 2013). These GA
repeats were found in a similar position and structure in
PdoDAM genes, which suggests the conservation of
chromatin-dependent mechanisms involved in DAM silencing
responding to seasonal chilling accumulation (Rıós et al., 2014).
In addition to DAMs, other genes have been postulated to
participate in dormancy regulation and other concurrent
processes which are precisely orchestrated within flower buds,
that is cold and hydric stress tolerance and flowering pathways
(Lloret et al., 2018).

We identified putative orthologs of some of these genes in
European plum. One of them encoded a TIP aquaporin involved
in water permeability and transport of small molecules across the
tonoplast membrane. TIP-like genes have been related to cell
turgor and cell enlargement (Ludevid et al., 1992; Maurel et al.,
2015). TIP-like gene was induced once dormancy was released in
both peach and European plum, supporting a role in growth
resumption and bud-break in ecodormant buds (Lloret et al.,
2017a). Interestingly, the transport of metabolites and regulatory
molecules across cell membranes has been found related to cell-
to-cell communication and bud dormancy regulation in previous
articles (Rinne et al., 2001; Rinne et al., 2011; Tylewicz et al.,
2018). Meristem cells are isolated by plasmodesmata callose
plugging during dormancy, and exposure to chilling
temperatures causes the degradation of the callose and the
FIGURE 8 | Cis-regulatory elements in the promoter and first intron of DAM genes. Promoters and introns of European plum PdoDAM1-6, peach PpeDAM6, and
Japanese apricot PmuDAM6 are represented by black lines interrupted by exonic sequences (orange rectangles). The potential cis-regulatory elements GA repeat
(purple boxes), CArG box consensus (dark blue triangles) and variant (light blue triangles), CRT/DRE element (green triangles), and site II motif (orange rhombi) are
labeled. Regulatory elements confirmed in previous experimental studies are marked with a black asterisk.
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subsequent restoration of cell-to-cell communication. This
mechanism is based on the action of 1-3-ß-D-glucanases
(Rinne et al., 2001) and abscisic acid (ABA) (Tylewicz et al.,
2018). Three groups of genes, members of the GLUCAN
HYDROLASE 17 (GH17) family, are upregulated by the
chilling temperatures and biosynthesis of gibberellins. Short-
term photoperiodic exposure transiently regulates the group 1
GH17 genes to maintain the symplasmic paths to facilitate bud
formation. Gibberellin GA3 and long-term chilling exposure up-
regulate the groups 2 and 3GH17 genes, allowing callose removal
and reopening the signaling. After the required chilling
accumulation, mild temperatures up-regulate growth-related
genes, mediated by GA4, leading to bud burst (Rinne et al.,
2011). The tonoplast localization of TIP protein precludes its
participation in these cell-to-cell communication processes,
however it supports the key role of membrane permeability in
dormancy release events.

On the other hand, two genes described as stress tolerance
factors during peach dormancy, S6PDH-like and SAP1-like were
Frontiers in Plant Science | www.frontiersin.org 11
also differentially regulated during bud dormancy in European
plum. PpeS6PDH codifies a sorbitol-6-phosphate dehydrogenase
involved in sorbitol synthesis, a major translocatable photosynthate
in Rosaceae species that has been hypothesized to act as a
compatible solute protecting dormant buds against cold and
hydric stresses (Lloret et al., 2017b). Furthermore, the ectopic
expression of PpeSAP1 altered leaf morphology and reduced
water loss in transgenic plums (Lloret et al., 2017a). The
expression profile of S6PDH-like and SAP1-like genes suggests the
conservation of their respective protective roles against the harmful
environmental conditions in dormant buds of different Prunus
species. Finally, we also identified genes related to flowering
pathways previously reported to be differentially expressed in
peach (Rıós et al., 2013). A peroxidase-like and RPG1-like genes
are involved in sporopollenin synthesis, a component of the outer
cell wall of the pollen grain (exine) essential for pollen maturation
and viability (Guan et al., 2008; Jacobowitz et al., 2019). These genes
were up-regulated after flower bud dormancy release in peach and
European plum in this work, as expected for genes participating in
A B

FIGURE 9 | Relative expression of dormancy-related genes in flower buds. Bud samples from European plum cv. ‘Reine Claude Verte’ (CV) and peach cv. ‘Crimson
Baby’ (CB) are respectively represented in panels (A, B). Timepoint codes are found in Material and Methods. The dashed bar indicates dormancy release. For each
graph, an expression of one is assigned to the highest value. Each point represents data of three biological replicates accompanied by error bars representing its
standard deviation. Significant differences among samples are represented by different letters (a–e), with a confidence level of 95%.
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pollen development in the tapetum layer of anthers, since this
process is finely coordinated with the dormancy period (Julian
et al., 2011).

This work provides putative key elements of a molecular
framework of bud dormancy regulation and other concurrent
processes lying in flower buds of European plum. This species
has efficient procedures for genetic transformation (Petri et al.,
2018), as opposed to most woody fruit species, which are
recalcitrant for genetic transformation and regeneration (Petri
and Burgos, 2005). Thus, genes identified in this work are
potential candidate genes for studying dormancy regulation
and other related processes by RNA interference and other
functional genetics procedures.
MATERIAL AND METHODS

Plant Material and Sample Collection
Six trees of European plum (Prunus domestica L.) cv. ‘Reine
Claude Verte’ were selected for the experiment from a collection
held at the Centro de Investigación y Tecnologıá Agroalimentaria,
CITA, Zaragoza, Spain, at 41°44´30” N, 0°47´00” W, and 220 m
above sea level. For flower bud development expression analysis,
buds were collected during autumn–winter 2018–2019 on
November 28 (CV1), December 5 (CV2), December 18 (CV3),
January 16 (CV4), January 23 (CV5), January 30 (CV6), February
6 (CV7), and February 13 (CV8).

Peach trees (Prunus persica L. Batsch cv. ‘Crimson Baby’)
required in this study were grown at the Instituto Valenciano de
Investigaciones Agrarias located in Moncada, Spain, at 39°35’20”
N, 0°23’43”W, and 75 m above sea level. For expression analysis,
flower buds were collected during autumn–winter 2015–2016 on
November 30 (CB1), December 14 (CB2), December 21 (CB3),
January 4 (CB4), and January 19 (CB5).

Determination of Breaking of Dormancy
Dormancy was experimentally determined for ‘Reine Claude Verte’
over two consecutive winters (2018–2019 and 2019–2020). To
determine the date of dormancy release, five shoots (20–30 cm in
length and 4–8 mm in diameter, with at least 10 flower buds) were
randomly sampled every week, starting in late November until the
onset of budbreak at the mid February. The shoots were placed on
water-soaked florist foam andmaintained in a growth chamber with
a photosynthetic photon flux density (PPFD) of 70 µmol m-2 s-1

provided by cool daylight (6500 K) tubes (Osram L58W/865) under
a 12-h light photoperiod at 22 ± 1°C for 8 days (Fadón et al., 2018).
To determine differences in bud growth, 10 flower buds were
randomly picked and weighed on the first and last day in the
growth chamber. The date of dormancy release was established
when the weight of the flower buds increased by at least 30% after 8
days in the chamber (Fadón and Rodrigo, 2019).

In peach, the date of dormancy release was measured as Leida
et al. (2012). Briefly, 10 budsticks from three different trees were
placed in a chamber with a PPFD of 27 µmol m-2 s-1 provided by
a cool daylight (6500 K) tubes (Osram L58W/765 and set at 24°C
12 h:12 h light:dark cycle. Dormancy release was considered
Frontiers in Plant Science | www.frontiersin.org 12
when more than 50% of buds showed at least the green tip of the
sepals after 14 days.

Estimation of Chilling Requirements
Temperatures were recorded hourly at a meteorological
station located in the experimental orchard over the two
seasons. Chilling was quantified according to the three most
commonly used temperature models to quantify chilling in fruit
trees (Fadón et al., 2020). The Chilling Hours model defined
“chilling hour” (CH) as 1 h at or below 7.2°C (Weinberger, 1950).
The Utahmodel weights different ranges of temperatures based on
their effect on dormancy fulfilment, proposing the use of “chilling-
units” (CU) (Richardson et al., 1974). Finally, the Dynamic Model
considered the effects of high and mild temperatures during
winter on dormancy release and proposed the use of “chilling
portions” (CP) (Fishman et al., 1987). In each model, the chilling
requirements were considered as the range of values estimated in
the 2 years studied.

Microscope Preparations
Ten flower buds from European plum sampled were fixed in
ethanol 95% acetic acid 3:1 (v/v), and then transferred 24 h later
to ethanol 75% at 4°C for conservation. For histochemical
examination, flower buds were dehydrated in a tertiary butyl
alcohol series (70, 85, 95, and 100% v/v), embedded in paraffin
wax, sectioned at 10 mm in a Jung 2045 rotatory microtome
(Leica Microsystems), and placed onto glass slides previously
coated with Haupt’s adhesive. Prior to staining, the sections were
rehydrated (three washes of 5 min in Histoclear II [CellPath],
one in Histoclar II:ethanol [1:1, v/v] for 5 min, and one in an
ethanol series [100, 70, and 40% v/v] for 2 min) (Fadón and
Rodrigo, 2019). The samples were then stained using the
potassium iodide-iodine reaction (I2KI) for 5 min (Fadón
et al., 2018). Preparations were observed under a bright field
Leica DM250 microscope (Leica Microsystems). Micrographs
were taken with an IDS UI-1490SE digital camera with the
IDS Software Suite 4.93.0. (IDS Imaging Development
Systems GmbH).

Identification of DAM Genes in European
Plum Genome
Peach genomic PpeDAM1-6 sequences and two adjacent genes at
each side were selected to perform a BLASTN (Zhang et al., 2000)
analysis, with default values, against the Prunus domestica Draft
Genome Assembly v1.0 (Zhebentyayeva et al., 2019) available at the
Genome Database for Rosaceae (GDR; Jung et al., 2019). Only those
scaffolds in which the E-value was zero for all the queries were
subjected to a synteny analysis utilizing GDR integrated tool Tripal
Synteny Viewer, that used MCScanX (Wang et al., 2012) with
default settings and blast files resulting from BLASTP with an E-
value cutoff of 1·10-10, a maximum alignment of 5 and maximum
scores of 5. Results were reproduced using ClicO FS, a web-based
service to generate circular plots (Cheong et al., 2015). The coding
sequences (CDS) of PdoDAM1-6 were predicted using the web-
server tool Prot2gene (http://genomics.brocku.ca/Prot2gene/), using
protein sequences from PpeDAM1-6 as a guide. RNA-seq data were
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used to manually curate CDS regions for PdoDAM1-6 previously
predicted. Single reads were downloaded from the National Center
for Biotechnology Information (NCBI) BioProject database
(accession PRJNA630876), and aligned with the Prunus domestica
Draft Genome Assembly v1.0 using STAR. Representations of both
RNA-seq coverage and CDS was performed by means of the R
package: Gviz (Hahne and Ivanek, 2016).

Gene Structural Analysis of PdoDAM1-6
Genes
Structural distribution of the previously studied genes was
compared with other genomes. For every CDS obtained
previously BLASTN with default values was performed against
each of the different genomes used for comparison. The best hit
for the first and last nucleotide position was taken as the genomic
coordinates to draw the diagram. Diagram was generated using the
“Gviz” R package for genomic representations mentioned above.

Phylogenetic Analysis of Plum DAM Genes
DAMs and DAM-related protein sequences from other species
were downloaded from GeneBank TAIR and PlantTFDB.
Their accession numbers and their references are shown in
Supplementary Table S4. These sequences along the predicted
protein sequences of PdoDAM1-6 constituted the input for
performing a multiple alignment with Clustal Omega (Sievers
et al., 2011). Blocks of highly homologous regions were selected
from the multiple alignment file for further analysis using Gblocks
(Talavera and Castresana, 2007). Phylogenetic tree was performed
using MEGA 7 (Kumar et al., 2016) with Maximum Likelihood
method based on Jones-Taylor-Thorton (JTT) matrix-based model
(Jones et al., 1992) and allowing for invariable sites (+I) and using a
discrete gammamodel (+G) (Yang, 1994). The tree was tested using
a bootstrap of 1,000 replicates, removing the nodes with less than
70% bootstrap confidence.

Analysis of Cis-Elements in PdoDAM1-6
Regulatory Regions
The cis-elements were predicted using the genomic sequences of
PdoDAM1-6 genes from the promoter until the start of the second
exon, by means of PlantCARE (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/) (Lescot et al., 2002) and PLACE
databases (http://www.dna.affrc.go.jp/PLACE/) (Higo et al., 1999).

Expression Analysis by Real-Time
Quantitative PCR (RT-qPCR)
Total RNA was isolated from bud samples using Plant/Fungi Total
RNA Purification Kit (Norgen, Thorold). Lysis buffer was
supplemented with Polyvinylpyrrolidone (PVP-40) 1% (w/v) right
before usage. Potential genomic DNAwas removed with the RNAse-
free DNAse I kit (Norgen Thorold). After assessing RNA integrity by
gel electrophoresis, 500 ng of each sample were retrotranscribed
using PrimeScript RT reagent kit (Takara Bio) in a total volume of
10 ml. Twenty-fold diluted samples were used to perform RT-qPCR;
2 ml in a total volume of 20 ml was analyzed in each well. RT-qPCR
was conducted on a StepOnePlus Real-Time PCR System (Life
Technologies) using SYBR premix Ex Taq (Tli RNseH plus)
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(Takara Bio). Steps used for the chain reaction were: an initial
incubation of 10 min at 95°C, followed by 40 recurred cycles of 15 s
at 95°C and 1 min at 60°C each. Amplification specificity was
assessed both by finding a unique peak in the melting curve and by
amplicon size estimation using gel electrophoresis. Actin-like and
AGL26-like genes were used as reference genes since they were
previously described as suitable for plum expression experiments by
Lloret et al. (2017a). The stability of the selected housekeeping genes
was analyzed with two different software: BestKeeper (Pfaffl et al.,
2004) and geNorm (Vandesompele et al., 2002). BestKeeper
recommended that reference gene should have a SD value <1.0 to
be considered suitable for normalization and herein both genes had
an SD value of 0,40. On the other hand, according to geNorm
program, genes with an M-value below the threshold of 1.5 were
considered stably expressed and the obtained value was M = 0,424.
The geometric mean of Ct values obtained for the reference genes
was used to normalize the Ct values obtained for each gene analysis
in a sample dependent manner. For every amplification experiment,
three independent biological samples with two technical replicates
each were analyzed. In addition, a relative standard curve was built in
order to obtain relative expression values that were averaged to
obtain the final results. In the cases where two possible isoforms were
noticed (PdoDAM4 and PdoDAM5), differential primers were
designed to determine which form was more abundant during
bud development. For each timepoint, RT-qPCR using the two
possible combination of primers was performed in parallel, as
described above, at the same PCR instrument. Efficiency (E) of
each primer pair was determined using a relative standard curve and
was used to correct Ct values and allow comparison between them.
In every case the abundant isoform was taken as a reference and the
minoritarian was calculated as a percentage of it. The primers used to
amplify each gene are presented in Supplementary Table S5.

Statistical Analysis
Experimental values were processed using Statgraphics XVI.I
package 324 (Statpoint Technologies) to evaluated the statistics
significance. Klustal-Wallis test with a confidence level of 95%
was used for comparison of multiple samples. Different letters
mean significantly different samples.
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Tecnologıá of México (CONACYT, 471839). AL was funded by a
fellowship of Ministerio de Ciencia, Innovación y Universidades
of Spanish Government.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2020.01288/
full#supplementary-material
REFERENCES

Arora, R., and Wisniewski, M. E. (1994). Cold acclimation in genetically related
(sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch): II. A 60-
kilodalton bark protein in cold-acclimated tissues of peach is heat stable and
related to the dehydrin family of proteins. Plant Physiol. 105, 95–101.
doi: 10.1104/pp.105.1.95

Arora, R., Wisniewski, M. E., and Scorza, R. (1992). Cold acclimation in genetically
related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch): I.
Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues.
Plant Physiol. 99, 1562–1568. doi: 10.1104/pp.99.4.1562

Arora, R.,Wisniewski, M., and Rowland, L. J. (1996). Cold acclimation and alterations in
dehydrin-like and bark storage proteins in the leaves of sibling deciduous and
evergreen peach. J. Am. Soc Hortic. Sci. 121, 915–919. doi: 10.21273/JASHS.121.5.915

Artlip, T. S., Callahan, A. M., Bassett, C. L., andWisniewski, M. E. (1997). Seasonal
expression of a dehydrin gene in sibling deciduous and evergreen genotypes of
peach (Prunus persica [L.] Batsch). Plant Mol. Biol. 33, 61–70. doi: 10.1023/
a:1005787909506

Baggiolini, M. (1952). Les stades repérés des arbres fruitiers à noyau. Rev.
Romande Agric. Vitic. Arboric. 8, 3–4.

Balogh, E., Halász, J., Soltész, A., Erös-Honti, Z., Gutermuth, Á., Szalay, L., et al.
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Lloret, A., Martıńez-Fuentes, A., Agustı,́ M., Badenes, M. L., and Rıós, G. (2017b).
Chromatin-associated regulation of sorbitol synthesis in flower buds of peach.
Plant Mol. Biol. 95, 507–517. doi: 10.1007/s11103-017-0669-6

Lloret, A., Badenes, M. L., and Rıós, G. (2018). Modulation of dormancy and
growth responses in reproductive buds of temperate trees. Front. Plant Sci. 9
(1368), 1–12. doi: 10.3389/fpls.2018.01368

Ludevid, D., Höfte, H., Himelblau, E., and Chrispeels, M. J. (1992). The expression
pattern of the tonoplast intrinsic protein gamma-TIP in Arabidopsis thaliana is
correlated with cell enlargement. Plant Physiol. 100, 1633–1639. doi: 10.1104/
pp.100.4.1633

Luedeling, E., Girvetz, E. H., Semenov, M. A., and Brown, P. H. (2011). Climate
change affects winter chill for temperate fruit and nut trees. PloS One 6, e20155.
doi: 10.1371/journal.pone.0020155

Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z., and Verdoucq, L.
(2015). Aquaporins in plants. Physiol. Rev. 95, 1321–1358. doi: 10.1152/
physrev.00008.2015

Mimida, N., Saito, T., Moriguchi, T., Suzuki, A., Komori, S., and Wada, M. (2015).
Expression of DORMANCY-ASSOCIATED MADS-BOX (DAM)-like genes in
apple. Biol. Plant 59, 237–244. doi: 10.1007/s10535-015-0503-4

Niu, Q., Li, J., Cai, D., Qian, M., Jia, H., Bai, S., et al. (2016). Dormancy-associated
MADS-box genes and microRNAs jointly control dormancy transition in pear
(Pyrus pyrifolia white pear group) flower bud. J. Exp. Bot. 67, 239–257.
doi: 10.1093/jxb/erv454

Petri, C., and Burgos, L. (2005). Transformation of fruit trees. Useful breeding tool
or continued future prospect? Transgenic Res. 14, 15–26. doi: 10.1007/s11248-
004-2770-2

Petri, C., Alburquerque, N., Faize, M., Scorza, R., and Dardick, C. (2018).
Current achievements and future directions in genetic engineering of
European plum (Prunus domestica L.). Transgenic Res. 27, 225–240.
doi: 10.1007/s11248-018-0072-3

Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination of
stable housekeeping genes, differentially regulated target genes and sample integrity:
bestKeeper-excel-based tool using pair-wise correlations. Biotechnol. Lett. 26 (6),
509–515. doi: 10.1023/b:bile.0000019559.84305.47
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