
Citation: Flores-Díaz, A.;

Escoto-Sandoval, C.;

Cervantes-Hernández, F.;

Ordaz-Ortiz, J.J.; Hayano-Kanashiro,

C.; Reyes-Valdés, H.; Garcés-Claver,

A.; Ochoa-Alejo, N.; Martínez, O.

Gene Functional Networks from

Time Expression Profiles: A

Constructive Approach

Demonstrated in Chili Pepper

(Capsicum annuum L.). Plants 2023, 12,

1148. https://doi.org/10.3390/

plants12051148

Academic Editor: Alexey A. Dmitriev

Received: 31 January 2023

Revised: 20 February 2023

Accepted: 27 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Gene Functional Networks from Time Expression Profiles:
A Constructive Approach Demonstrated in Chili Pepper
(Capsicum annuum L.)
Alan Flores-Díaz 1,† , Christian Escoto-Sandoval 1,† , Felipe Cervantes-Hernández 1,† , José J. Ordaz-Ortiz 1 ,
Corina Hayano-Kanashiro 2 , Humberto Reyes-Valdés 3 , Ana Garcés-Claver 4 , Neftalí Ochoa-Alejo 5

and Octavio Martínez 1,*

1 Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto
Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico

2 Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora,
Hermosillo 83000, Mexico

3 Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
4 Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón,

Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
5 Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto

Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
* Correspondence: octavio.martinez@cinvestav.mx
† These authors contributed equally to this work.

Abstract: Gene co-expression networks are powerful tools to understand functional interactions
between genes. However, large co-expression networks are difficult to interpret and do not guarantee
that the relations found will be true for different genotypes. Statistically verified time expression
profiles give information about significant changes in expressions through time, and genes with
highly correlated time expression profiles, which are annotated in the same biological process, are
likely to be functionally connected. A method to obtain robust networks of functionally related genes
will be useful to understand the complexity of the transcriptome, leading to biologically relevant
insights. We present an algorithm to construct gene functional networks for genes annotated in a
given biological process or other aspects of interest. We assume that there are genome-wide time
expression profiles for a set of representative genotypes of the species of interest. The method is
based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a
given false discovery rate, and the discard of correlation outliers. The novelty of the method consists
in that a gene expression relation must be repeatedly found in a given set of independent genotypes
to be considered valid. This automatically discards relations particular to specific genotypes, assuring
a network robustness, which can be set a priori. Additionally, we present an algorithm to find
transcription factors candidates for regulating hub genes within a network. The algorithms are
demonstrated with data from a large experiment studying gene expression during the development
of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated
in a new version of the publicly available R package “Salsa” (version 1.0).

Keywords: gene expression; RNA-Seq; time expression profile; fruit development; Capsicum

1. Introduction

Gene co-expression networks (GCN) [1] are graphs that connect genes (vertices) by
lines (edges), which represent the fact that genes were co-expressed in space (cell, tissue,
organ, etc.), time (for example, during development), or under particular environmental
conditions. In general, graph theory has been found to be useful to analyze biological
networks [2], and, in particular, GCN have been used to quantify relationships between
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co-expression, co-regulation, and gene function [3], and some functional modules have
been found to be conserved in very distant species, as in yeast and humans [4].

GCN can be estimated using different statistical approaches, such as, for example,
Pearson’s correlation, graphical Gaussian models, Bayesian approaches, or methods based
on mutual information [5]. Aside the statistical significance of the relations estimated, the
main point of GCN is to summarize information about gene modules associated with par-
ticular biological processes, providing novel insights into the system-level understanding
of cellular processes [6]. This process could lead to unraveling gene function in crops [7],
which, in turn, will allow the efficient application of molecular-aided methods of plant
breeding [8].

Nonetheless, when the number of genes and relations in a GCN are large, its plot
resembles a “hairy ball” [9], and thus could be almost useless for direct interpretation,
given the human limits for the perception of relations [10]. In Supplementary SI.1, we
present an example of a large GCN.

Beyond a GCN—which will simply show significant co-expression of genes in a single
genotype—we must look for gene functional networks (GFN), which will display robust
functional relations between genes. An ideal GFN must show causal relationships between
genes, which follow an alike time expression profile and are robust in the sense of being
independently repeated in various genotypes.

Causality, our first requirement for a GFN, demands a deep knowledge of the process
involved, which is rarely found out of model organisms, as Arabidopsis for plants or mice for
animals. However, gene ontology (GO) [11] groups genes into biological process (BP), and
gene orthology permits us to infer genes with the same BP in non-model species, allowing
the prediction of GO BP from temporal gene expression patterns, even for non-annotated
genes [12]. It appears reasonable to assign causality to well annotated genes that share
identical BP in the GO, and we will assume that as a fact. However, we must take into
account that the gene to BP relation is not one to one, i.e., a gene is usually annotated in
different BPs, forming directed acyclic graphs, and this, as well as the quality of annotations,
must be taken into account to avoid mistakes [13].

Asking for time co-expression of genes, our second requirement for a GFN, limits
our definition to cases where gene expression was estimated at a grid of increasing times,
presenting significant changes in at least one pair of neighbor times. This requirement
excludes genes that, even when causally participating in a BP, do not show significant
expression changes during the whole interval observed, and, thus, these could be labeled
as “housekeeping” genes [14] for the BP of interest. On the other hand, it is axiomatic
that genes with highly similar expression profiles are likely to be regulated via the same
mechanisms [3,15], and thus this fact is integrated in our GFN definition.

Accuracy, scalability, robustness and reproducibility are important qualities of GFN [16].
GFN can vary depending on the genotype, for example, GFN including WRKY transcription
factors in rice show variation between the Indica and Japonica genotypes [17]. In our GFN
definition, robustness is evaluated by the number of times that a relation between two genes
is independently detected in different genotypes at a fixed false discovery rate (FDR) [18]
selected by the researcher. If a gene relation is found only in a single accession or genotype,
but absent in all the others, that relation cannot be part of a general GFN for the species
of interest, and it is more likely to occur by chance or by particularities of that genotype.
In contrast, gene relations that are found in all independent genotypes studied are likely
to be causal and must form part of the GFN for the species of interest. We designed here
a measure of robustness for gene relations, which allows the researcher to set a level of
confidence for the relations to be included in the network (see Section 2).

The main goal of our work was to obtain a method to estimate robust and small GFN
modules for specific biological processes, using independent time expression profiles from
different genotypes. Such modules can then be linked together into larger networks by
the genes shared between them. The novelty of this approach consists in the design and
implementation of an algorithm that uses standardized expression profiles (SEPs) [19,20]
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from independent experiments. This allows us to judge and tune the robustness of the GFN
modules, assuring that they show only relations, which are confirmed in a set of represen-
tative and independent genotypes. Later, by orderly linking together GFN modules, we
avoid the “hairy ball” effect, obtaining a network that is easier to interpret than the ones
obtained by methods that estimate a whole network from all genes at once, as is the case
with ARACNE [21] and other approaches [22].

A secondary goal of our approach was to formalize an algorithm to estimate transcrip-
tion factor (TF) candidates to be regulating genes present in a GFN. Briefly, if no TFs are
included in a GFN, the algorithm looks for TF genes, which have highly correlated time
expression profiles with the genes in the GFN, demanding also that such correlation will be
present in various independent genotypes. If found, those TFs are presented as candidates
to regulate the gene or genes of interest within the GFN. That method has successfully
applied to recover TFs that regulate the AT3 gene, involved in capsaicin’s biosynthesis in
chili pepper [23].

The methods are demonstrated in a collection of transcriptomes obtained from 12 ac-
cessions during the development of the chili pepper fruits [19], and they are implemented
in a new version of the publicly available R package “Salsa” [24].

2. Methods
2.1. Prerequisites

To apply our method to estimate GFN, the researcher must have genome-wide gene
expression profiles, resulting from a time–course experiment in different genotypes of
the species of interest. Even when such gene expression profiles could be the result of
microarray experiments—as exemplified in [25]—here we assume that the data were
obtained with the RNA-Seq technology [26,27], which in general appears to have a better
performance for GCN estimation than microarrays [22].

Given that both the genotype [28], as well as the environment [29] and their interac-
tion [30], can influence gene expression, the generality of GFN can be assured only for the
diverse genotypes and environments where it was tested. For this reason, our method
demands that the expression profiles must be obtained from a set of different genotypes in
independent experiments performed under the same environmental conditions. If those
requirements are fulfilled, then our method will give robust GFNs with the stringency that
can be fixed by the researcher.

2.2. Congruent Gene Correlations

Given that our method is based on congruent gene expression profiles, which are
repeated in independent genotypes, Figure 1 presents an illustrative example of that case.

Figure 1 presents standardized expression profiles (SEPs) [19,20] for two genes (Kinesin-
4 and HMGB prot. 6) in two different chili pepper accessions, “Ancho San Luis”, a domesti-
cated accession, and the wild accession, “Piquín Quéretaro”, with keys “AS” and “QU” in
the figure legend. We can see how these two genes present a highly congruent expression
behavior within each one of the two independent genotypes (AS and QU), a fact that is
reflected in very high values of Pearson’s correlations, 0.998 for AS and 0.960 for QU. Addi-
tionally, these correlation coefficients are highly significant, having p-values < 6 × 10−4. In
contrast, the two highly correlated gene pairs show distinct and uncorrelated expression
profiles in the two different accessions (see Supplementary SI.2.1). We will see that, if
correlation between the same pair of genes is found in various independent accessions, this
strongly suggests that such a co-expressing gene pair could be indeed functionally related—
even when the genes could have different and uncorrelated time expression profiles, as
shown in Figure 1.
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Figure 1. Example of SEPs for two highly correlated genes in two independent genotypes.

2.3. Robustness of a Relation between Genes

Any method to estimate GFN must give an associated measure of robustness to
judge how strong the gene relations displayed in the network are. A now customary
method to protect against false positives when many statistical tests are performed is the
transformation of p-values into q-values, which allows the setting of a False Discovery Rate
(FDR) threshold [18].

Our method to predict the minimum robustness of a GFN couples the setting of a FDR
threshold with the fact that the relation must be found in various independent genotypes.
Assume, for example, that we have a total of a = 12 independent genotypes, representing
a fair sample of the genetic diversity existent in the species of interest, and that we set a
maximum FDR of 5%. Then, the probability of finding a fortuitous relation between two
genes in a particular genotype will be 5%. However, given that the genotypes are evaluated
in independent experiments, we can ask that the relation must be corroborated with the
same FDR in various genotypes to be taken into account in the GFN; we can ask, for
example, that the relation must be repeatedly found in x = 2, 3, · · · , a. In Supplementary
SI.2.2, we show that the probability of finding the same gene relation independently
repeated in x genotypes depends on the binomial distribution, and it rapidly decreases
when x increases, being minimal at x = a. For example, by fixing a FDR of 5%, if we ask
that a relation must be found in a minimum of x = 5 genotypes, then the probability of that
relation being by pure chance is small, approximately 0.0002 or one in 5436. If we want to
be more strict, we could ask that the relation must be repeatedly found in the whole set of
genotypes, i.e., in the x = 12 accessions. In that last case, the probability of that relation being
random is very small, ≈ 2.4× 10−16; this is less than one in many billions and, for all practical
purposes, we could be “almost sure" that the relation is real and not given by chance.

In summary, when a reasonable number of independent genotypes are available, the
researcher could obtain robust GFN values, which very likely represent true functional
relations between genes.

2.4. The “Gene2Gene” Algorithm

The objective of the Gene2Gene algorithm is to obtain a GFN. As mentioned before, the
algorithm assumes the existence of time expression profiles in a group of genotypes, and it
needs as input:

1. The genes of interest, say a set of “g” gene identifiers.
2. The genotypes (or accessions) where the estimation will be performed, i.e., a set of

“a” genotypes.
3. A threshold for the FDR, “ f ”.
4. A threshold for the minimum value of Pearson’s determination coefficient, “mr2”.
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5. A threshold to eliminate putative regression outliers, “q”.
6. The minimum number of genotypes where the gene relation must be found to be

reported in the output, “x” (x ≤ a).

Given the input, in a first step, the algorithm estimates and tests all g(g − 1)/2 pairs
of correlations between the g genes of interest in each one of the a genotypes. In a second
step, the algorithm selects a set of genes that fulfill all criteria given in the input, and then
it outputs all the relevant statistics to construct a GFN. The output could be null—when
there are no genes that fulfill the input thresholds or a set of structures that define a GFN.

Even when the Gene2Gene algorithm has been implemented in R [31] within the
package Salsa [24], specifically for data from a Capsicum experiment [19], it can be adapted
to process any set of gene expression profiles. Details of the Gene2Gene algorithm are given
in Supplementary SI.2.3.

2.5. Constructing GFN: A Bottom-Up Approach

One important property of biological networks is their modular structure. In many
relevant cases, as in Arabidopsis [32], humans [33], or yeast [33], genes within functional
modules are densely connected, while, in contrast, connections between modules can be
sparse or inexistent.

It is certainly possible to construct a general gene co-expression network with data for
all genes in the genome, such as, for example, the one constructed for Arabidopsis [32], and
then one can detect and order the modularity, as reviewed in [34]. Modularity can be based
on different criteria, such as, for example, biological process, cell component, molecular
function or metabolic pathway, and modules from different criteria will in general present
highly complex and difficult to interpret relations. Additionally, co-expression networks
estimated for all genes in the genome will include not identified or not annotated genes,
which will complicate interpretation even further.

We suggest that a bottom-up approach, beginning with a careful selection of a relatively
small set of genes annotated in a process of interest, and progressing to networks of different
modules, i.e., sets of GFN or “Meta Networks” (MN), will be easier to interpret and could
lead to relevant and immediate discoveries. Additionally, with our method, the generality
(robustness) of each GFN can be statistically evaluated, and the analysis could be performed
with different stringency levels.

The same bottom-up approach could be employed with different criteria, but not
necessarily with genes that share a known annotation in a given biological process. For
example, assume that there is a set of genes that are of special interest for a research group,
without being annotated in any particular aspect. In that case, the Gene2Gene algorithm
can be run with that set of genes to determine if they form a significant gene expression
network. See supplementary SI.2.4 and SI.2.5.

3. Results
3.1. Data Analyses

As an example of the application of the Gene2Gene algorithm, we present the estimation
of GFN for three biological processes (BP). The original data were duplicated RNA-Seq
libraries from fruits of 12 genotypes (accessions) of chili pepper (Capsicum annuum L.)
sampled in each case at seven times of development. These genome-wide data were
annotated with GO categories [11], and they were processed to give standardized time
expression profiles (SEPs) [19,20]. All data and functions employed here to perform the
analyses are implemented in a new version of the publicly available R package “Salsa” [24],
and details of the computations and results are presented in supplementary SI.3.

3.1.1. GFN for Three Biological Processes (BPs)

We selected the BP “cell cycle”, “reproduction” and “response to virus”, which are ab-
breviated here as “celcy”, “rep” and “vir”, respectively. The parameters for the Gene2Gene
algorithm were set to a FDR of 10%, a minimum of r̂2 of 0.7, and a threshold to eliminate
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5% of putative regression outliers. We also asked that the output will give gene relations
that were repeated in all the 12 genotypes in the collection. Table 1 summarizes the results
obtained for the three BPs.

Table 1. Summary of results for GFN estimation.

BP In Out % Out/In Con. r̄ q̄

celcy 352 29 8 81 0.9859 0.00729
rep 228 10 4 29 0.9934 0.00257
vir 33 4 12 6 0.9936 0.00126

BP—Abbreviation for the Biological Process, In—Number of genes in the input, Out—Number of genes in the
output, Con.—Number of connections in the GFN, r̄—Average value of r̂ in all connections. q̄—Average value of
q̂ in all connections.

In Table 1, we can see that the algorithm began with 352 genes that were annotated
in the celcy BP, but, from all the (352 × (351 − 1))/2 = 61,600 pair correlations tested per
genotype, only 81 of them, involving 29 genes, passed the thresholds imposed and were
repeated consistently in the full set formed by the 12 genotypes; thus, only approximately
8% of the total set of genes is corroborated to have co-expressions. Even when the algorithm
was run with parameters of moderate stringency, i.e., a minimum r̂2 = 0.7—which implies
a positive value of r̂ ≥ 0.83, and a FDR of 10% (q̂ ≤ 0.1), the actual values of the averages
of r̂ and q̂, presented as r̄ and q̄ respectively in Table 1, are highly superior to the threshold
values set; r̄ = 0.9859 is much larger than the threshold of r̂ ≥ 0.83, while the values of
q̄ = 0.00729 is much smaller than the threshold of q̂ ≤ 0.1 asked to filter by FDR. The
same behavior on the comparisons between realized values of r̂ and q̂ can be observed in
the other two GFNs, rep and vir in Table 1, i.e., the average values are far away from the
thresholds set. This is a direct result of the fact that we are asking that the correlations must
be present in the full set of 12 different genotypes, and this highly stringent criterion is
likely to give only highly congruent and truthful relations that happen in domesticated,
wild, as well as F1 crosses of Capsicum genotypes [15,19].

Figures 2–4 present the plots for the celcy, rep, and vir GFN, respectively. In these
three figures, transcription factors (TF) are represented by squares, while other genes
are represented by circles, and the identity of each one of these genes is presented in
Supplementary SI.5.
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Figure 2. Cell Cycle (celcy) GFN. 29 genes and 81 pair connections in four disconnected sub-graphs.
TF represented by squares, while other genes are represented by circles (Supplementary SI.5 for
gene descriptions).
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In Figure 2 we can see the 29 genes form four disconnected sub-graphs. This indicates
that there are four contrasting time expression profiles in the 29 genes annotated in celcy;
the first groups four genes in the upper left hand side corner of the figure and follows that
corner in clock-wise direction, a second group includes two genes, a third one includes
10 genes, and a fourth one includes 13 genes in the down left hand side corner.

In Figure 3, we see that the 10 genes of the rep GFN are organized into two disconnected
sub-graphs. The largest, at the lower left hand side corner, contains eight interconnected
genes linked by 28 connections, and the second, at the upper right side corner, is formed by
only two genes with one connection.

9

10

30

31

14

15

32

33

23

25

Figure 3. Reproduction (rep) GFN. 10 genes and 29 pair connections in two disconnected sub-graphs.
TF represented by squares, while other genes are represented by circles (Supplementary SI.5 for
gene descriptions).

In Figure 4 we see that the four genes of the vir GFN are organized into one fully
connected graph, with all the six possible connections between those four genes.

34

35

22

25

Figure 4. Response to virus (vir) GFN. Four genes and six connections in a fully connected graph.
TF is represented by squares, while other genes are represented by circles (Supplementary SI.5 for
gene descriptions).
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3.1.2. A Meta-Network

Having estimated GFN for three processes, celcy, rep, and vir, we can now note that
those three networks share some common genes, and thus they can be linked to form a
meta-network (MN). Figure 5 shows a schematic representation of the MN, where each
GFN is represented by a single circle, and the number of genes shared by pairs of GFN is
given at the links between GFN.

6 genes

2 genes

1 gene

C

R

V

Figure 5. Schematic representation of the MN formed by the GFN celcy, rep and vir, represented as
the circles labeled as C, R and V, respectively. Sizes of circles are proportional to the number of genes
at each GFN and links are annotated with the number of genes shared between pairs of GFN.

In Figure 5, we can appreciate the differences in size of the three GFN that form
the MN, which include 29, 10, and four genes for the celcy (C), rep (R), and vir (V) GFN,
respectively. We can also see that the three GFNs are inter-connected by sharing some genes
between the GFN; six between celcy and rep, two between celcy and vir, and one between
rep and vir. This last fact indicates that cell cycle (celcy), reproduction (rep), and response to
virus (vir) in chili pepper are inter-dependent biological processes (BP).

Figures 2–4 presented the graphs of the three GFNs, coloring genes in orange for the
celcy, in golden yellow for the rep, and in blue for the vir GFN. Figure 6 presents the MN
formed by the three GFNs, following that color scheme, but changing to white the color of
genes shared by two or more of the GFN.

Before, in Figures 2 and 3, we have seen that the GFN for celcy and rep included
disconnected sub-networks; four for celcy and two for rep, while the GFN for vir presented
a single fully connected graph (Figure 4). Disconnected sub-graph within a single GFN
indicates that there are heterogeneous gene expression profiles, each one of them including
a subset of the genes in the corresponding GFN.

In Figure 6, we can appreciate that the MN is formed by four disconnected sub-graphs,
annotated with labels [P = 1] to [P = 4]. These four disconnected sub-graphs include highly
correlated genes, which present characteristic gene expression profiles. Figure 7 presents
the plots of the average standardized expression profiles (SEPs) on time for gene patterns
[P = 1] to [P = 4], in panels (a) to (d), respectively. In these four panels, grey lines represent
the average in the 12 accessions—which include two F1 crosses between a D and a W
genotypes [19], while red and blue lines represent the average in the six domesticated (D)
and four wild (W) accessions, respectively. Thin vertical lines at each time point give the
95% confidence interval (CI) for the mean of standardized expression at each time and for
each one of the groups.
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Figure 6. Graph of the MN formed by the 3 GFN. Genes found exclusively in BP celcy are colored in
orange, the ones exclusively in rep are colored in golden yellow, and the ones exclusively in vir are
colored in blue, while genes shared by two or more BP are in white. Disconnected sub-networks are
annotated with labels [P = 1] to [P = 4] (Supplementary SI.5 for gene descriptions).

Figure 7a,b show that there are differences between SEP from the domesticated (D,
in red) and wild (W, in blue) accessions—the 95% CI are not overlapped in some fruit
developing times, while Figure 7c,d do not show such differences between the D and
W groups.

In summary, we found that the three GFN are inter-connected forming a MN (Figure 6),
which consist of four disconnected sub-graphs, each one with a typical time expression
profile (Figure 7). This implies that neither gene annotation per BP, nor expression profile
in isolation, can fully explain the complexity of the phenomenon observed; for a deep
understanding, we need to consider, in concurrence, both the BP annotation, as well as
the particularities of typical time expression profiles. Supplementary SI.3 presents the
interpretation and biological implications for the development of chili pepper fruit of the
four disconnected sub-networks that form the MN.

3.2. Finding Transcription Factors for Hub Genes

Transcription Factors (TF), in particular pioneer TF, are key regulators that initiate
network changes [35]. In our GFN algorithm, only TF that are already among the genes
initially input could be selected to form part of the output network. Nevertheless, using a
similar approach to the one employed by the GFN algorithm, it is possible to obtain strong
TF candidates to be regulating one or more of the genes that are already in a GFN. This is
specially important for highly interconnected genes, i.e., “hub genes”, given that such TF
could be playing a central role in the GFN regulation.
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Figure 7. Average Standardized Expression Profiles (SEPs) patterns for genes included in the Meta-
Network in Figure 6. (a) Pattern [P = 1]. (b) Pattern [P = 2]. (c) Pattern [P = 3]. (d) Pattern [P = 4].

The algorithm “Gene2TF” to perform the selection of TF candidates is an adaptation
of the Gene2Gene function, which calculates pairwise correlations between a target gene
and all TFs in all genotypes available, using thresholds as the ones previously described to
assure both, a significant co-expression, as well as robustness. Robustness is guaranteed by
asking that the co-expression must be present in different genotypes. Details of the Gene2TF
algorithm are presented and exemplified in Supplementary SI.3.5.

In the example presented with our Capsicum data, the only sub-network within the
MN that does not include TF is the one with expression pattern [P = 2] within the celcy
GFN (pattern [P = 2] in Figure 6). That sub-network includes 10 genes, which have a
maximum expression at 10 DAA (Figure 7b); however, none of those genes is a TF. To find
TF candidates to be controlling this sub-network, we ran the Gene2TF for every gene with
expression pattern [P = 2], with the same thresholds than the ones used to obtain the GFN,
and then we asked that the TF candidates must be present in the 12 genotypes available.
This procedure selected 10 TF candidates for the genes with pattern [P = 2]. Furthermore, a
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new run of the GFN algorithm, including both the 10 genes with [P = 2], as well as the 10 TF
candidates found, produced a highly connected and robust network, which is presented in
Supplementary SI.3.5. However, experimental evidence will be needed to corroborate or
discard the control role of those TF candidates on the genes with pattern [P = 2] within the
celcy GFN; see, for example, [36–38].

3.3. Sensitivity Analyses

To evaluate the acuity of the Gene2Gene algorithm to input parameters, we designed
a fully balanced grid on the combinations of the algorithm’s input thresholds, excepting
the number of genotypes where the relations must be found, which was always set to the
maximum level of stringency: 12 genotypes.

We ran the algorithm with the set of the celcy genes using the balanced grid of parame-
ters, and we measured as output variables the number of genes and relations reported in the
output. We found that the number of genes and relations reported by the algorithm have a
strong linear correlation (r̂ ≈ 0.99; p < 2 × 10−16), and the more important parameter to
determine the number of genes and relations reported was the FDR threshold, followed by
the minimum r̂2. The less important parameter that determines the numbers of genes and
relations reported by the algorithm was the threshold to avoid regression outliers.

In summary, we conclude that the Gene2Gene algorithm allows the recovery of GFN,
with consistency and flexibility for an ample set of reasonable combinations of stringency
thresholds defined by the user. Details of the results of the sensitivity analyses are presented
in Supplementary SI.3.2.

4. Discussion

Even when GCNs are powerful tools to disentangle the high complexity of the tran-
scriptome, genome wide networks always result in graphs that are too large and complex
for direct interpretation, as also happens with genome-scale metabolic networks [39]. In
such large networks, it is possible to zoom in particular regions of interest, perhaps centered
in a given gene, but, in that case, much of the information obtained will be wasted or not
adequately noticed.

In contrast with the whole genome GCN, we advocate here for a bottom-up construc-
tive approach, which begins with a small set of genes of interest and produces small and
easy to interpret GFN. Furthermore, given that we ask that the relations must be repeatedly
found in many genotypes, which ideally represent the diversity of the specie, the resulting
GFN will have an evaluable level of robustness. We also argue that highly robust GFN are
likely to present causal relations between genes because the majority of the not-causal rela-
tions, which could be either random or particular to a given genotype, are filtered out by the
algorithm. Even when there are other statistical means to approach causality of GFN [40],
we reason that repeatedly finding the same gene relation on independent experiments
and genotypes gives the strongest rationale for causality. This common sense argument is
analogous to the decision that could be taken about the fairness of a coin that repeatedly
shows the same result when flipped; even when the coin could be fair, the likelihood of
fairness compared with the likelihood of un-fairness rapidly decreases when we observe
only one of the two possible results in many assays. In Supplementary SI.2.2 and SI.3, we
further discuss the implication of our rule to infer causality for a gene relation.

To the best of our knowledge, our approach is the only one that explicitly takes into
account repeatability in different genotypes to assure robustness of the inferred networks.
For example, computational tools, such as WGCNA [41], DICER [42], CoXpress [43],
or DiffCoEx [44], estimate networks, but without asking for repeatability in different
genotypes so as to consider as valid each one of the relations found.

In the examples presented, we have seen that a single GFN could contain disconnected
sub-graphs. The presence of such independent modules directly indicates that there are
two or more dissimilar time expression profiles that share the same annotation, and that
fact improves the understanding of the different processes within a single GFN.
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On the other hand, we have also seen in the examples that two or more GFNs could
be joined when they share genes, forming what, here, we call a “Meta-Network" (MN). Such
joining process could proceed with as many GFNs as the researcher considers reasonable
for a hierarchical ordering of BP. In the examples, we showed how the GFN obtained from
the cell cycle (celcy), reproduction (rep), and response to virus (vir) BP could be joined in a
single MN, whose biological relevance is discussed in Supplementary SI.3.3 and SI.3.4.

Furthermore, the Gene2Gene algorithm could be applied not only to a specific BP to
obtain a GFN, but to any set of genes of particular interest of the researcher, for example, to
genes annotated in an specific metabolic pathway, or to a set of lncRNA as done in [45], etc.

Besides, the Gene2TF algorithm allows the selection of TF candidates to be regulating
any gene of interest (see Supplementary SI.3.5). Even when the correlation in time of
expression of a target gene with a TF candidate in various genotypes could suggest the
possibility of co-regulation [46,47], other bioinformatic or experimental means are needed
to corroborate such a role [36–38].

One point worth discussing is the information given by genes that are excluded from
a GFN when asking congruent correlation in a set of genotypes. For example, the first row
in Table 1 shows that only approximately 8% (29/352) of the genes annotated in the celcy
(cell cycle) BP are finally included in the GFN. This implies the existence of heterogeneity
in the time expression patterns of the 352 − 29 = 323 excluded genes, which even when
functionally annotated as related to cell cycle, present a diverse time expression profile
among genotypes. Mining such specific time expression profiles could lead to a better
understanding of the differences that exist among the set of tested genotypes—in this case
with reference to cell cycle, but in general to any estimated GFN.

While in three out of four of the estimated sub-networks there is at least one TF
that could be regulating expression (patterns [P = 1], [P = 3] and [P = 4] in Figure 6), in
the fourth one (pattern [P = 2] in Figure 6), there is none. The inclusion of regulatory
elements (TF) is of paramount importance to understand gene network changes [35], and
thus all GFNs must include such elements—even when their functional role could be only
putative. In this regard, the Gene2TF algorithm showed high efficiency by providing a
set of 10 TF candidates that form a highly connected network with the genes previously
found in the cell reproduction (celcy) GFN (Figure S12 in SI.3.5). These results give a solid
working hypothesis to investigate the regulation of cell reproduction, a biological process
of foremost practical, as well as theoretical importance, given its role in fruit size [48]—one
of the key traits in fruit production.

As the final result of our method—applying the Gene2Gene and Gene2TF algorithms to
the Capsicum data—we obtained a robust gene functional meta network (MN), linking three
important biological processes and including 45 genes (Tables S6 and S7 in SI.5), of which
29 (64%) are TFs. This MN is easier to interpret than genome-wide networks because the
researcher can focus on relations between specific processes of interest, with the additional
advantage that sub-networks show particular time expression profiles (Figure 7). This
approach can be directly applied using the Salsa software to other sets of Capsicum genes
during fruit development, grouped by different criteria, or can also be implemented for
other organisms or development processes by following the guidelines given in [20].

About the design of future experiments using our methodology, the Gene2Gene and
Gene2TF algorithms are only applicable to development processes for which time expression
profiles exist in a set of different genotypes. The first question is how many time points
need to be fixed to estimate time expression profiles—which can always be transformed
to SEPs [20]. In this regard, any case with less than five time points will be too flimsy to
obtain useful correlation coefficients, and of course, more time points will give a more
precise discrete description of the continuos changes of gene expression through time. It is
important to take into account that each time point within each genotype will demand the
construction and sequencing of a minimum of two RNA-Seq libraries.

The second issue in this regard concerns the nature and number of the genotypes
to be used. In any real case, it will be impossible to include all the relevant genetic
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diversity present in a crop or in a model organism. However, usefulness of the method
will be maximized by selecting the largest number of almost independent and contrasting
genotypes. In our case, we selected six D chili pepper accessions with contrasting fruit
characteristics, four W accessions presenting also diversity in fruit as well as in geographic
origin, and two crosses between a D and a W accessions to include F1 hybrids.

The function “pred.error.g2g()" in the Salsa package calculates the predicted or real-
ized error in finding a correlation between two genes significant at a fixed false discovery
rate (FDR). By exploring a grid of values for the total number of accessions available, the
number of genotypes where the relation must be found to be considered in the GFN and
the maximum FDR that could be tolerated, the researcher can reach a reasonable decision
on the number of genotypes to be employed (see Supplementary SI.2.2).

5. Conclusions

The Gene2Gene and Gene2TF algorithms, now implemented and demonstrated in the
R package Salsa (version 1.0), provide powerful tools to study gene co-expression of gene
sets in a hierarchical way. When there are gene expression profiles from a representative
set of genotypes, these tools allow the estimation of robust and easy to interpret GFNs (see
also Supplementary SI.4).

We expect that the research community interested in fruit development (or other
development processes) will adopt our methodology. We also anticipate that the results
and functions already present in the Salsa R package can lead to further biologically
relevant findings.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/plants12051148/s1. Supporting information includes details of the algorithms
presented as well as of the analyses of the Capsicum data [49–71]. Specific sections are referred as
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BP Biological Process
celcy Cell cycle (BP)
D Domesticated accession (genotype)
DAA Days After Anthesis
FDR False Discovery Rate
GCN Gene Coexpression Network
GFN Gene Functional Network
MN Meta Network
rep Reproduction (BP)
SEP Standardized Expression Profile
TF Transcription Factor
W Wild accession (genotype)
vir Response to virus (BP)
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