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Abstract 

The water footprint (WF) is an established metric of resource intensity, although the 

drivers that guide this indicator over time remain under-researched. To advance this line, 

this paper assesses the impact of macroeconomic, climatic, and agronomic drivers on the 

agricultural crop WF in Africa using econometric panel data techniques and considering 

the existence of potential spatial patterns. The results reveal a highly significant spatial 

dependence in the WF across neighbouring countries. Per capita GDP is the factor with 

the highest influence on the WF, indicating that economic development facilitates a 

falling water requirement per unit of production. A negative impact of the temperature 

variation on the WF is also found, while the share of total land dedicated to agriculture 

tend to increase the crop WF in the continent. These results could help guide the design 

of adequate agricultural and water resource management policies to achieve sustainable 

and resilient food systems.  
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1. Introduction 

The growth of population, urbanization, and productive activity, together with the effects 

of climate change, are increasing the pressure on water resources, both in quantity and 

quality terms, pushing humankind beyond the planet’s biophysical limits (Gleick and 

Cooley, 2021; Steffen et al., 2015). In the agricultural sector, which is responsible of the 

70% of water withdrawals worldwide, growing population poses one of the main 

challenges for food security and associated water demands (UN Environment, 2019). 

The international community is aware of the great challenge the world is facing and has 

consequently developed strategies to tackle it. At the European level, the Green Deal 

(European Commission, 2019) aims at transforming the EU’s economy for a sustainable 

future. Among its objectives are the design of fair, healthy and environmentally-friendly 

food systems, the preservation and restoration of ecosystems and biodiversity (including 

freshwater resources), and the elimination of pollution (including the restoration of the 

natural functions of ground and surface water). At the global level, the Sustainable 

Development Goals (SDGs) fronted by the United Nations provide an internationally 

recognisable series of targets to be achieved by 2030 with a view toward coordinating 

policy initiatives across economic, social, and environmental domains. Among these 

targets, Goal 6 aims at ensuring the availability and sustainable management of water and 

sanitation for all and highlights the need of substantially increase water-use efficiency 

across all sectors (UN, 2015). In the agricultural sector, improved water-use efficiency 

may be achieved through shifts to less water intensive crops, improved agricultural 

practices, or the use of virtual water trade displacing the production of more water 

demanding crops to regions with lower water scarcity problems (UN Environment, 2019). 

These examples illustrate how water efficiency is viewed as the key to ensure sustainable 

withdrawals and supply of freshwater in a context of increasing water scarcity and human 

water demands. The water footprint (WF) has emerged as a relevant metric to measure 

efficiency in the use of water. The WF refers to the direct and indirect usage of water 

within a production process and reflects the cumulative consumption of said resource 

through the entire supply chain (Mekonnen and Hoekstra, 2011). This concept has 

contributed to a growing body of empirical academic literature. Some relevant papers 

focus on the drivers of agricultural virtual water trade (e.g., Fracasso, 2014; Duarte et al., 

2019), or on the impact of food consumption patterns (diet changes and food loss 

reduction) on water usage (e.g., Vanham et al. 2013; Mekonnen and Fulton, 2018). 
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Another strand of the literature uses an ex-ante approach to establish water use projections 

under different socio-economic pathways (e.g., Ercin and Hoekstra, 2014) or 

consumption patterns (Philippidis et al., 2021). 

A common denominator of the previous literature is the assumption that the WF remains 

constant over time (or varies at an assumed rate), whilst relatively scant attention has been 

paid to the drivers of the WF, as pointed by Gracia-de-Rentería et al. (2020). The latter 

work offers an overview at worldwide level of the economic and environmental drivers 

of the crop WF. However, they also highlighted some research lines with scope for 

improvement such as the analysis of the heterogeneity existing within each continent or 

the consideration of the spatial relationships and dependences between countries.  

Of special interest is the consideration of the spatial dependence, which may occur if one 

country strategically mimics the policies of its neighbouring countries aimed at improving 

water efficiency, thereby resulting in a ‘spillover’ effect on the WF indicator. On this 

point, one should note that interactions between countries are especially relevant when 

analysing the WF, since international trade implies also a virtual water trade that 

conditions the water usage of countries. This contrasts with the scarcity of studies on 

these spatial patterns (see Long et al, 2017 as an exception that applies a spatial 

econometric model to analyse the relationship between water scarcity and water use 

efficiency). 

This paper focuses on the African continent as a relevant case study with a two-fold 

interest. First, the performance of the agricultural sector plays a crucial role for 

eradicating hunger and improving food security in Africa, and heavily influence 

economic growth and employment. Second, water resources availability strongly 

conditions agricultural production and crop productivity, especially in the African 

continent with a higher drought occurrence and a larger dependence on rain-fed 

agriculture than other regions in the world (OECD/FAO, 2020). 

Therefore, the assessment of the drivers of crop WF in the African continent could 

provide valuable information about how a series of macro-level variables affect African 

crop water use. This information is important for the design of adequate agricultural and 

water resource management policies with the aim of achieving sustainable and resilient 

food systems capable of adapting to population growth, climate change (and specially, to 
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its consequences in water resources) and other potential risks and future threats to human 

health, prosperity, and environmental sustainability. 

Moreover, the consideration of geographical patters may inform about the spatial 

relationships and dependences between African countries. This could provide helpful 

information to assess the impact that the African Continental Free Trade Agreement 

(AfCFTA), which is expected to increase intra-Africa trade and improve food security, 

may also have on water resources. Moreover, this global component of the WF also 

implies that the study of the African continent can also help to guide the agricultural 

policy of other regions of the world (D’Odorico et al., 2019). As an example, according 

to Eurostat (2021), the EU was the largest trade partner for Africa in 2020, with 28% of 

both exports and imports (a higher share that for intra-Africa exports and imports, which 

accounts for 23% and 13% respectively). 

With this motivation, the aim of the paper is to assess the sign and magnitude of a series 

of drivers related to the agricultural performance, as well as the socioeconomic and 

environmental conditions, on the agricultural crop water footprint (WF) in the African 

continent. Using econometric panel data techniques and accounting for spatial 

dependence across countries, the objective is to obtain elasticities that could serve as a 

guide for water and agricultural policies.  

After this Introduction, Section 2 presents the database for the African continent, Section 

3 describe the methodological approach, Section 4 present the main results and Section 5 

concludes. 

2. Data 

Data for the WF required to produce crop products comes from the database developed 

by Mekonnen and Hoekstra (2011), which was modified to be time-variant. The original 

database provides, for several specific products and countries, information about the blue, 

green and grey WF in m3 of water per ton of production averaged over the period 1996–

2005, which is defined as the ratio between evapotranspiration (in m3 per hectare) and 

crop yield (in ton per hectare). To introduce some time variability, the approach proposed 

by Tuninetti et al. (2017) was used, as in other relevant papers (Duarte et al., 2014, 2016; 

Gracia-de-Rentería et al., 2020; Soligno et al., 2019), assuming that evapotranspiration 

remains stable over time and WF changes are only driven by yield variations:  
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𝑊𝐹𝑝,𝑐,𝑡 = 𝑊𝐹𝑝,𝑐

𝑌𝑝,𝑐

𝑌𝑝,𝑐,𝑡
 (1) 

where p,c,t are the product, country and tear, respectively; 𝑊𝐹𝑝,𝑐,𝑡 is the annual crop WF; 

𝑊𝐹𝑝,𝑐 is the average WF for the period 1996-2005 from Mekonnen and Hoekstra (2011); 

𝑌𝑝,𝑐 is the average crop yield for the period 1996-2005 and 𝑌𝑝,𝑐,𝑡 is the annual crop yield. 

Information about the crop yield was extracted from the Food and Agriculture 

Organization (FAO, 2022). 

The next step in data management is to aggregate the WF of the different crop products. 

For this purpose, the average crop WF weighted by the value of production was calculated 

to obtain the WF of the whole crop production of each country. With this, we have 

information about the crop WF of 43 African countries1 for the period 2002-2016, that 

represent around 80% of the countries of the continent, 85% of the total agricultural land 

of the continent and more than 90% of agricultural production value according to FAO 

(2022) data. The period analysed is the same as in Gracia-de-Rentería et al. (2020), 

facilitating the comparability of results, and was mainly conditioned by data availability 

of the WF drivers. 

In fact, obtaining data for relevant crop WF drivers for the African continent was one of 

the main challenges addressed by this study. The spatial econometric approach used in 

the present analysis requires a perfectly balanced panel, so the dataset cannot contain 

missing data for any country or any year of the sample. After revising the drivers of WF 

and water productivity used in the previous literature, three main categories of drivers 

were identified: agronomic factors, such as input yields (production quantity per input 

unit) or intensities (input quantity per hectare), agricultural area by m3 of water (e.g., 

Gracia de Rentería, 2020; Levers et al., 2016; Li et al., 2016; Tilman et al., 2011); 

socioeconomic drivers like GDP, population, agricultural population density (e.g., Gracia 

de Rentería, 2020; Neumann et al., 2010; Tilman et al., 2011); and environmental 

variables like temperature, precipitation, solar radiation or water availability (e.g., Gracia 

 
1 Countries included in the study are: Algeria, Angola, Benin, Botswana, Burkina Faso, Cabo Verde, 
Cameroon, Chad, Comoros, Congo, Côte d’Ivoire, Democratic Republic of the Congo, Egypt, Ethiopia, 
Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, 
Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Sao Tome and Principe, Senegal, 
Sierra Leone, South Africa, Togo, Tunisia, Uganda, United Republic of Tanzania, Zambia, Zimbabwe. 
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de Rentería, 2020; Levers et al., 2016; Li et al., 2016; Long et al., 2017; Neumann et al., 

2010; Tilman et al., 2011).  

For the African case study, information about input yields or intensities is especially 

incomplete (for example, FAO (2022) does not offer input use data by product and time 

coverage for some countries is very limited), so agricultural performance of countries was 

proxied by the percentage of agricultural land with respect to the total area of the country, 

so this could give an idea of the importance of agriculture and the existence of a more 

intensive or extensive agricultural system. The per capita GDP was used as a 

socioeconomic variable to measure the level of development of countries. Regarding the 

environmental conditions, the temperature variation and the water stress index were 

considered as relevant factors. However, these two variables are highly correlated, so the 

temperature variation variable was finally used to avoid the potential endogeneity 

problems that the use of a water related variable may cause in the econometric models. 

The selected variable measures the temperature variation (in º C) with respect to the 

baseline period 1951–1980 and was extracted from FAO (2022), as well as the data for 

the percentage of agricultural land. Information about the per capita GDP was from the 

World Bank (2022). 

Table 1 presents a description of the variables used in this study, as well as a descriptive 

statistic. Data reveal that during the period analysed the crop WF has been reduced by 

12.70%, while the per capita GDP, the percentage of agricultural land and the temperature 

variation increased by 26.13%, 5.11% and 55.43%, respectively. 

Table 1. Descriptive statistics of variables 

Variable Description 
Average 

2002-2016 
2002 2016 

WF 
Crop water footprint of 

production (m3/ton) 

2,141.77 

(1,294.81) 

2,309.84 

(1,375.49) 

2,016.44 

(1,255.06) 

GDPpc 
Per capita GDP (constant 

US$) 

2,171.91 

(2,479.66) 

1,861.52 

(2,223.53) 

2,348.01 

(2,520.17) 

Agriland 
Agricultural land/Total area 

(%) 

43.88 

(19.97) 

42.63 

(20.09) 

44.81 

(20.25) 

TempVar 
Temperature variation with 

respect to 1951-1980 (ºC) 

0.99 

(0.39) 

0.92 

(0.30) 

1.43 

(0.35) 

Note: average value is presented, as well as the standard deviation in parenthesis. 
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3. Methodology 

3.1. Exploratory Spatial Data Analysis 

Exploratory Spatial Data Analysis provides an insight into patterns and geographical 

associations in data to confirm whether the WF variable exhibits a spatial autocorrelation. 

Figure 1 presents the average crop WF of production for the African countries considered 

for the year 2016.2 A first visual inspection reveals the presence of similar values in 

neighbouring countries, with a cluster of countries with a higher WF in West African 

countries suggesting the existence of spatial correlations.  

 

Figure 1. Average crop water footprint (m3/ton) in 2016 

To confirm whether the general behaviour of the WF variable exhibits global spatial 

autocorrelation, the Moran’s I test (Moran, 1950) was applied to test the null hypothesis 

that data exhibit no spatial association. Table 2 presents the results of the test for the 

endogenous variable for each year of the sample, confirming the rejection of the null. 

This result indicates that WF shows positive autocorrelation with spatial clusters around 

similar values, so neighbour countries tend to exhibit similar WF values. This positive 

spatial autocorrelation is also presented in Figure 2, where the Moran’s scatterplot 

 
2 Results for other years of the sample exhibit a very similar pattern.  
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(Anselin, 1988) for 2016 illustrates a measure of local spatial autocorrelation3. In 

particular, the figure illustrates a positive relationship between the WF of each country 

(horizontal axis) and the WF of nearby countries (vertical axis). Therefore, countries 

located in the upper-right quadrant are those with WF values above the mean and that the 

average of its neighbour countries is also above the mean. On the contrary, countries in 

the lower-left quadrant have WF values below the mean and the average of its neighbour 

countries is also below the mean. 

Table 2. Moran's I test 

Year Moran’s I test 

2002 0.09 (0.00) 

2003 0.04 (0.03) 

2004 0.04 (0.03) 

2005 0.07 (0.00) 

2006 0.05 (0.01) 

2007 0.07 (0.00) 

2008 0.04 (0.04) 

2009 0.03 (0.09) 

2010 0.06 (0.00) 

2011 0.08 (0.00) 

2012 0.08 (0.00) 

2013 0.09 (0.00) 

2014 0.08 (0.00) 

2015 0.11 (0.00) 

2016 0.18 (0.00) 

Note: p-value is 

shown in parenthesis. 

 

 
3 Similar results are obtained for the other years of the sample. 
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Figure 2. Moran's scatterplot for 2016 

3.2. Econometric model 

The exploratory analysis of Section 3.1. confirmed the presence of spatial dependence in 

WF. Therefore, the econometric model has to take into account this spatial pattern to 

avoid biased results, as highlighted in Section 4 below. In this sense, the popularity of 

spatial econometric models in the recent literature contrast with the scarcity of studies 

considering the existence of spatial patterns in the WF metric (see Long et al, 2017 as an 

exception that applies a spatial econometric model to analyse the relationship between 

water scarcity and water use efficiency). 

In this paper, a spatial econometric model is used to consider the dependence among 

observations across space by means of the so-called spatial weight matrix W that 

describes the relationship of the spatial units of the sample. Among the alternative 

specifications of the W matrix, in this study we based it on the inverse distance: 

 

𝑤𝑖𝑗 = {

1

𝑑𝑖𝑗
𝑖𝑓𝑖 ≠ 𝑗

0 𝑖𝑓 𝑖 = 𝑗

 (2) 

where 𝑑𝑖𝑗 is the geographical distance between the centroids of countries. Note that this 

matrix is assumed to be constant over time and has been normalised to allow the 

comparison between spatial parameters of the models. 
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To select the most adequate spatial model among the existing alternatives, we start from 

the General Nesting Spatial Model (GNS) that includes all possible types of interaction 

effects: 

 ln(𝑊𝐹𝑖𝑡) =  𝛼0 + 𝜌𝑊 ln(𝑊𝐹𝑖𝑡) + 𝑋𝑖𝑡𝛽 + 𝑊𝑋𝑖𝑡𝜃 + 𝑢𝑖𝑡 

𝑢𝑖𝑡 = 𝜆𝑊𝑢𝑖𝑡 + 𝜀𝑖𝑡 
(3) 

where 𝛼0 is the constant term; 𝜌 is the spatial autoregressive coefficient associated with 

the nonnegative 𝑁 ×  𝑁 weights matrix 𝑊, providing information about the intensity of 

spatial dependence in the dependent variable. 𝑋 represents the 𝑇𝑁 ×  𝐾 matrix of 

explanatory variables that are described in Table 1;  𝛽 is the 𝐾 ×  1 vector of coefficients; 

𝜃 is an array of dimension Kx1 associated with the 𝑁 ×  𝑁 weights matrix 𝑊 that 

contains the parameters that determine the marginal effect of the explanatory variables 

from neighbouring observations on the WF; and 𝑢𝑖𝑡 includes the spatial autocorrelation 

coefficient (𝜆) associated with the interaction effects among the disturbance term of the 

different units (𝑊𝑢), as well as the error term (ε). Country fixed effects are also included 

to capture additional country heterogeneity. 

From this GNS model, a set of derived models can be obtained by imposing restrictions 

on one or more parameters. Therefore, the next step is to test these restrictions to select 

the most suitable spatial model to be estimated. First, the LM test is used to test the null 

that 𝜃 = 0 and results indicate that the null cannot be rejected (𝜒2(3) = 5.38; 𝑝 −

𝑣𝑎𝑙𝑢𝑒 = 0.15), so the Spatial Autoregressive Combined Model (SAC) is more adequate. 

Second, when the SAC model is estimated, the parameters 𝜌 and 𝜆 are statistically 

significant (see Table 3), confirming the suitability of the SAC model in comparison with 

the spatial lag model (SAR) or the non-spatial OLS model. 

Therefore, the final specification of the estimated SAC model is the following: 

 ln(𝑊𝐹𝑖𝑡) =  𝛼0 + 𝜌𝑊 ln(𝑊𝐹𝑖𝑡) + 𝑋𝑖𝑡𝛽 + 𝑢𝑖𝑡 

𝑢𝑖𝑡 = 𝜆𝑊𝑢𝑖𝑡 + 𝜀𝑖𝑡 
(4) 
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4. Results 

Table 3 presents the results of estimation of the SAC model specified in equation (4), in 

comparison with the non-spatial OLS panel model. The result 𝜌 = 0.38, which is a highly 

significant spillover effect (as also found in Long et al., 2017), implies that WF in a certain 

country will increase, on average, around 3.8% in that country if there is an increase of 

10% in the WF of its neighbouring countries. Moreover, the coefficient 𝜆 is also 

statistically significant at 10%, so the SAC model is preferred in comparison with the 

SAR or the non-spatial model, which is also supported by the AIC criterion of both 

models.  

Table 3. Results of estimation 

Variables SAC 
OLS panel  

estimation 

ln(GDPpc) 
-0.349 

(0.000) 

-0.417 

(0.000) 

Agriland 
0.011 

(0.001) 

0.003 

(0.005) 

TempVar 
-0.029 

(0.045) 

-0.043 

(0.011) 

ρ 
0.382 

(0.045) 
- 

λ 
-0.481 

(0.070) 
- 

Wald test  

of spatial terms 

9.3 

(0.010) 
- 

AIC -786.997 -785.0435 

Observations 645 645 

Note: p-values are shown in parenthesis. 

Another notable result is that in the case of the non-spatial OLS model the coefficients in 

Table 3 can be interpreted as marginal effects. On the contrary, in the spatial model, some 

transformation is required (Elhorst, 2014) to obtain the marginal effects presented in 

Table 4. The direct effect measures the impact of a change in the exogenous variables in 

a given country on the WF in the country itself, whereas the indirect (or spillover) effect 

measures the impact of a change in the exogenous variables in a given country on the WF 

of the neighbouring countries. Note that the differences between the direct effects and the 

coefficients of the non-spatial model indicate that lack of consideration of the spatial 

component may lead to biased results. Moreover, the direct effects obtained in Table 4 

are different from the estimated main coefficients in Table 3 due to the so-called feedback 

effect that is transmitted to neighbouring countries and back to the country itself again. 
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This feedback effect, which is also shown in Table 4, is obtained as the difference between 

the direct effect and the main coefficient estimated, showing very limited feedback effects 

that represents around 1.43% of the indirect effect and 0.86% of the direct effect.  

Table 4. Direct and indirect marginal effects 
 

Direct 

effect 

Indirect 

effect 

Feedback  

effect 

lGDPpc -0.352 

(0.000) 

-0.213 

(0.028) 

-0.0030 

Agriland 0.011 

(0.001) 

0.007 

(0.132) 

0.001 

TempVar -0.029 

(0.044) 

-0.018 

(0.092) 

-0.003 

Note: p-values are shown in parenthesis. 

Based on these marginal effects of the SAC model, one can observe that the level of 

development of a given African country has a negative and significant impact on the WF 

of this country. Specifically, an increase of a 1% in the per capita GDP variable leads to 

a reduction of a 0.35% in the WF of the same country. This result is in line with the 

previous literature (Cai et al., 2011; Gracia-de-Rentería et al., 2020; Long and Pijanowski, 

2017), suggesting that economic development facilitates a falling water requirement per 

unit of production due to technological improvements, a better infrastructural capacity, 

or more stable economic and political conditions. The indirect effect is also negative and 

statistically significant, indicating that the WF is reduced by 0.213% given a 1% increase 

of the per capita GDP of neighbouring countries.  

For the percentage of agricultural land, a positive and significant direct effect is obtained, 

so an increase of a 1% in the percentage of agricultural land of a given country leads to 

an increase of a 0.01% in the WF of this country. This result, although much more limited 

than that obtained for the per capita GDP, suggest that a greater presence of the 

agricultural sector or a more extensive agricultural sector increases the water needs per 

unit of production. However, the indirect effect, although positive, seems to not be 

statistically significant. The higher WF of more extensive agricultural systems is due to 

the lower yields associated to these extensive systems that, according to the literature, 

could lead to a lower efficiency in the use of water resources (e.g., Gracia-de-Rentería et 

al., 2020; Levers et al., 2016; Li et al., 2016; Neumann et al., 2010; Tilman et al., 2011). 

Finally, a reduction in the WF of African countries is observed given an increase of the 

temperature variation of the given country (-0.029) or the nearby countries (-0.018). 
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Although the previous evidence regarding the influence of climatic conditions on the WF 

is diverse, with some studies obtaining a positive relationship (Levers et al., 2016) and 

others a negative one (Gracia-de-Rentería et al., 2020; Li et al., 2016), in general it is 

argued that higher average temperatures lead to a greater aridity that incentive to make a 

more efficient use of water resources. In any case, as pointed out by Gracia-de-Rentería 

et al. (2020), the effect of climatic conditions is usually weaker than the impact of the 

socioeconomic and agronomic factors. 

5. Conclusions 

This paper assesses the sign and magnitude of a set of drivers on the agricultural crop WF 

in the African continent and its spatial pattern. In this sense, the application of spatial 

econometrics to this field of study is novel and the resulting coefficients of this estimation 

allow to measure the relation between the WF and the considered drivers over time after 

controlling for spatial dependence.  

The results indicate that economic, environmental and agronomic factors influence the 

crop WF of African countries. In particular, a positive relationship between the 

percentage of agricultural land the WF is found, while the WF is negatively influenced 

by an increase of the temperature variation or the per capita GDP, having the latter the 

factor a greater effect on the WF. Moreover, the results of this study also reveals a strong 

spatial dependence on the crop WF in the African continent, highlighting the need for 

coordinated policies oriented to a more efficient use of water at the same time that an 

sustainable economic development is promoted.  

The study provides valuable information for the design of adequate agricultural and water 

resource management policies with the aim of achieving sustainable and resilient food 

systems capable of adapting to future population growth and climate change. In this 

regard, the elasticities obtained in this study could be very helpful for the estimation of 

future WF under diverse scenarios by means of an ex-ante analysis, by introducing some 

degree of time variability to the WF metric. This type of studies could help elucidate the 

undetermined future direction of the crop WF and crop water demand given the opposing 

effects on WF of per capita GDP and the temperature variation on one hand, and the 

expected an increase in the percentage of agricultural land in the African continent on the 

other. Even if the undetermined effect would point to a reduction in WF, the question is 

if that reduction will be enough to feed a growing population in the context of scarce 
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water resources. Another venue for future research is the consideration of different 

regions and crop products, or the differentiation between rainfed and irrigated crop 

production. For this purpose, more data about agronomic factors of specific products is 

needed, as well as a more complete data availability for the African continent. 
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