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Abstract: Plant water status can be assessed through leaf spectral reflectance in the near-infrared
(NIR), the “water bands”, considering indices that include the reflectance at a band absorbed by
water over and another one as reference. We have assessed i/ the accuracy of reflectance at 1450, 1599
and 1940 nm without reference bands and ii/ the potential use of leaf water content index (LWCI)
for the estimation of plant water status in holm oak, the main host plant for black truffle cultivation.
We demonstrated that contact measurements of leaf reflectance in the “water bands” constitute an
accurate and non-invasive estimator of relative water content (RWC) in holm oak, despite the absence
of a reference wavelength, probably due to the low variation in leaf thickness under dehydration. The
use of a reference wavelength, which is needed for remote sensing, diminished the accuracy of RWC
estimation. Contrastingly, LWCI increased the accuracy of RWC estimation as well as a reference
wavelength were used. However, LWCI required the reflectance value at full turgor, diminishing its
potential for implementation at field level. In conclusion, this technique would allow the continuous
monitoring of the physiological state of holm oak and intelligent water control in truffle cultivation.

Keywords: holm oak; moisture stress index; leaf water content index; near-infrared reflectance;
relative water content; water bands

1. Introduction

Drylands, including areas under the Mediterranean-type climates, constitute one of
the most limiting habitats for plant survival due to the negative effect of water deficit
on photosynthetic activity and plant growth [1]. In this way, the quantification of water
deficit through the assessment of plant water status is of paramount importance in plant
physiological studies [2]. Plant water status can be described in terms of energy through
the water potential (Ψ), which defines the driving force in water flow along the soil–plant–
atmosphere continuum [3] and defines the biophysical limitations to this flow, including
the rupture of the water column [4,5]. Moreover, plant water status can also be described
in terms of volume by means of the relative water content (RWC), which is considered a
direct estimation of the cell or tissue water volume respect to the maximum value at full
hydration [6]. RWC is a crucial parameter for plant functioning, as it influences growth [7],
cell damage [8,9] and predisposition to whole plant death [10].
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Traditionally, the evaluation of plant water status has been carried out by means of
invasive and destructive methods that are rather time consuming and preclude repeated
measurements in the same tissue (see Sancho-Knapik et al. [11] and references therein). For
this reason, the implementation of non-destructive or non-invasive techniques has been a
matter of study during recent decades. In this regard, the assessment of plant water status
can be carried out by evaluating the response of different physiological parameters to water
stress, such as gas exchange [5,12], canopy infrared temperature [13] or changes in the
spectral reflectance around the green part of the spectrum [14,15]. Alternatively, changes in
Ψ and RWC can be also accurately estimated from the changes in the acoustic properties of
the leaf by air-coupled broadband ultrasound spectroscopy [16–18] or from the changes in
leaf reflectivity at a frequency range of microwaves (l-band at 1730 MHz) [19].

Non-destructive and real-time measurement of plant water status has been also as-
sessed through the analysis of the spectral reflectance of leaves in the near-infrared (NIR)
range. Thus, an increase in leaf reflectance in the wavelength range between 400 and
2500 nm wavelength was related with a decrease in leaf water content by Carter [20] and
Carter and McCain [21]. Since then, several authors have employed different water absorp-
tion NIR bands (the so-called water bands) considering the reflectance at a band strongly
absorbed by water (e.g., 1450 or 1940 nm), using a spectral region weakly absorbed by water
as reference, which led to several leaf water indices [22–26]. Among them, the reflectance
ratio between 1300 and 1450 nm (R1300/R1450 index) is one of the most acknowledged
indices for RWC estimation at leaf scale, although this index could be also influenced by
the existence of changes in leaf thickness when plant is subjected to water stress [19,27].

However, leaf reflectance at water bands, 1450 or 1940 nm, could be unsuitable for
remote sensing of plant water status at field level, as atmospheric water vapour absorbs
most if not all the radiation at these wavelengths. To avoid this problem, the moisture stress
index (MSI = R1599/R820, where R1599 and R820 are the reflectances at 1599 and 820 nm,
respectively, being the latter used as reference) has been proposed as a useful tool to
detect changes in plant water status at canopy level [28,29]. Other leaf water index that
has been developed for remotely sensing RWC is the Leaf Water Content Index (LWCI),
which originally uses the same wavelengths as MSI [30,31]. However, to the extent of our
knowledge, the potential use of R1599 for the estimation of plant water status at leaf level to
validate MSI remotely sensed at canopy level has not been explored.

In this study we evaluated and compared the reflectance values at 1450 nm (R1450),
1599 nm (R1599) and 1940 nm (R1940) as non-destructive and non-invasive estimators of
plant water status at leaf level. Specifically, the main objectives were i/ to assess the
potential enhancement in the accuracy of RWC estimation when the use of reference
bands is avoided, as they are also influenced by changes in leaf water content, and ii/ to
evaluate the potential use of LWCI calculated with R1450 and R1940 instead of R1599 for RWC
estimation at leaf level in holm oak (Quercus ilex subsp. rotundifolia). Holm oak is considered
a paradigm of Mediterranean tree species, together with other evergreen and sclerophyllous
oaks under Mediterranean-type climate in the Northern Hemisphere [32,33]. Besides the
ecological importance of this species, due to the role in the landscape formation in the
western Mediterranean Basin [34], its use as host plant for black truffle (Tuber melanosporum)
cultivation constitutes a new and promising resource for many geographical areas affected
by severe rural depopulation [35,36].

2. Materials and Methods
2.1. Plant Material and Experimental Conditions

Measurements were carried out in 16 mature leaves from 16 holm oak (Q. ilex subsp.
rotundifolia) trees (one leaf per tree) first destined for truffle production located in an ex-
perimental field plot at CITA de Aragón (41.723◦ N, 0.809◦ W, Zaragoza, Spain) under
Mediterranean climatic conditions (mean annual temperature 15.4 ◦C, total annual pre-
cipitation 298 mm). The experimental field plot is a holm oak plantation first destined for
truffle production, where the total soil depth is ca. 60 cm. Holm oak trees from this plot
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were 25 years old and planted in 1998 using a pattern of 6 × 6 m. Trees were maintained
in good health conditions and were irrigated with sprinklers (35–40 L m−2) every week
from April to September. Twice a year (during early winter and early summer), the exper-
imental plot was cleaned mechanically, eliminating the presence of the herbaceous and
shrubby stratum. In the early morning, 16 branches were collected from the north side
of 16 trees (one branch per tree), placed in plastic bags and carried out to the laboratory.
Once there, one leaf per branch was selected, and leaf petioles were re-cut under water
to avoid embolism and kept immersed (avoiding the wetting of leaves) for 24 h at 4 ◦C
until full leaf rehydration. After 24 h, leaf weight, leaf thickness and spectral reflectance
parameters were individually measured at constant time intervals (10 measurements per
leaf x 16 leaves = 160 measurements). Leaves were weighed and measured at different
levels of relative water content (RWC), starting at full saturation (turgid weight, TW). Leaf
dry weight (DW) was estimated after keeping the plant material in a stove (24 h, 70 ◦C).
The RWC was then calculated following the expression: RWC = (FW − DW)/(TW − DW),
FW being the sample fresh weight at any moment.

2.2. Leaf Thickness

Leaf thickness (µm) was determined at different levels of RWC as described in Sancho-
Knapik et al. [19]. To avoid disturbances on leaf thickness measurements due to an excess
of pressure over the leaf, we use an ultralow force digital contact sensor GTH10L coupled
to an amplifier GT-75AP (GT Series, Keyence Corporation, Osaka, Japan). This ultra-low
force sensor (having a measuring force of 0.2 N when installed facing up) applies a clamp
pressure of 7 kPa, which is ten times lower than the one used by Zimmermann et al. [37]
for a similar purpose.

2.3. Leaf Spectral Reflectance

Leaf reflectance at different levels of RWC was measured between 200 and 1100 nm
with a visible/near-infrared spectroradiometer USB-2000 (Ocean Insight, Orlando, FL, USA)
and between 900 and 2500 nm with an infrared spectroradiometer NIRQuest (Ocean Insight,
Orlando, FL, USA). For these measurements, each spectroradiometer was connected to a
bifurcated fiber optic cable into one end and to a tungsten halogen light source LS-1-LL
(Ocean Insight, Orlando, FL, USA) into the other end. Leaf reflectance was expressed
as spectral reflectance after standardization with white standard (Spectralon, Labsphere,
North Sutton, NH, USA). From the recorded spectra, we considered reflectance values at
1450 nm (R1450), 1599 nm (R1599) and 1940 nm (R1940) as estimators of leaf water content.
Moreover, we calculated the ratio between the reflectance at these wavelengths and the
reflectance values at 820 nm (R820) as reference (R1450/R820, R1599/R820 and R1940/R820).
Finally, we also calculated the Leaf Water Content Index (LWCI) [30] as applied by Hunt
and Rock [31] for 1450 nm, 1599 nm and 1940 nm (LWCI1450, LWCI1599 and LWCI1940,
respectively):

LWCI1450 =
−ln[1 − (R820 − R1450)]

− ln
[
1 −

(
R820 − RFT

1450
)] (1)

LWCI1599 =
−ln[1 − (R820 − R1599)]

− ln
[
1 −

(
R820 − RFT

1599
)] (2)

LWCI1940 =
−ln[1 − (R820 − R1940)]

− ln
[
1 −

(
R820 − RFT

1940
)] (3)

where RFT
1450, RFT

1599 and RFT
1940 are the leaf reflectance values at full turgor for 1450 nm,

1599 nm and 1940 nm, respectively.

2.4. Statistical Analysis

RWC was plotted against the different spectral reflectance bands and the most suitable
models (sigmoidal four parameters, linear or second-degree polynomial function) were fit-
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ted to individual data from all leaves combined (see equations in Table S1 in supplementary
information). Moreover, we tested the repeatability of these associations by comparing re-
gression lines fitted for each single leaf. For this purpose, we selected RWC values along the
linear range (between 1.0 and 0.5), where indices are most sensitive. In this way, we could
assess the existence of statistically significant differences at p < 0.05 among the leaves in
the slope and intercept of the regression lines. Finally, to assess the accuracy of predictions
of RWC based on the different spectral reflectance bands, we applied a cross-validation
procedure. Multiple models were fitted using for calibration all possible combinations
of N out of 16 leaves, with N ranging from 1 to 15 leaves. The number of models fitted
ranged from 16 (for groups of 1 and 15 leaves) to 12,870 (for groups of 8 leaves). Validation
statistics—coefficient of determination (R2), root mean square error (RMSE, the standard
deviation of the residuals) and mean absolute error (MAE)—were then calculated sepa-
rately for each validation set, and the range and mean value for each index and number
of leaves was used to define the optimal number of leaves for calibration and to compare
the accuracy of model predictions based on different indices. All statistical analyses were
performed in the R software environment (version 4.2.1) [38]. Cross-validation statitistics
were calculated using the packages ‘tidyverse’ [39] and ‘caret’ [40] from R 4.2.1 [37]. RMSE
and MAE were calculated as follows:

RMSE =

√
∑(pred − obs)2

N
(4)

MAE =
pred − obs

N
(5)

3. Results

Holm oak showed a low degree of variation in leaf thickness when subjected to
dehydration, only 15% between full turgor (RWC = 1) and RWC = 0.44 (Figure 1). Within
this range of RWC, leaf reflectance was progressively increased throughout the near-
infrared (Figure 2), showing the strong influence of leaf water content on this parameter.
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Figure 1. Relationship between relative water content (RWC) and leaf thickness for the measured
holm oak leaves. Black line represents the linear regression between both variables (n = 160), *** means
a p-value < 0.001, and R2 represents the coefficient of determination.



Forests 2023, 14, 1825 5 of 14

Forests 2023, 14, x FOR PEER REVIEW 5 of 14 
 

 

Figure 1. Relationship between relative water content (RWC) and leaf thickness for the measured 

holm oak leaves. Black line represents the linear regression between both variables (n = 160), *** 

means a p-value < 0.001, and R2 represents the coefficient of determination. 

 

Figure 2. Leaf reflectance between 1350 and 2000 nm for a single leaf of holm oak with different 

levels of relative water content (RWC). 

The relationships between RWC and leaf reflectance at the three wavelengths consid-

ered (R1450, R1599 and R1940) are presented in Figure 3. We fitted sigmoidal models to the data 

because it explained the variability of the measured data better than a linear model. The 

coefficient of determination (R2) obtained for R1450 (R2 = 0.96, p < 0.0001) was higher than 

those obtained for R1599 (R2 = 0.94, p < 0.0001) and R1940 (R2 = 0.91, p < 0.0001) (Figure 3, Table 

1). 

Table 1. Statistical parameters of the relationships between the relative water content (RWC) and 

the different spectral reflectance indices considered. n is the number of data points observed; F ratio 

is the ratio of the variance explained by a factor to the unexplained variance; R2 is the r-squared; S.E. 

of Est. is the standard error of the estimation. 

Reflectance Index n F Ratio p-Value R2 S.E. of Est. 

R1450 160 1112 <0.0001 0.96 0.0129 

R1599 160 766 <0.0001 0.94 0.0139 

R1940 160 557 <0.0001 0.91 0.0091 

R1450/R820 160 1200 <0.0001 0.88 0.0259 

R1599/R820 160 301 <0.0001 0.66 0.0343 

R1940/R820 160 833 <0.0001 0.84 0.0164 

LWCI1450 160 1213 <0.0001 0.96 0.0273 

LWCI1599 160 1191 <0.0001 0.94 0.0345 

LWCI1940 160 718 <0.0001 0.93 0.0194 

Wavelength (nm)

1400 1500 1600 1700 1800 1900 2000

L
e

a
f 
R

e
fl
e

c
ta

n
c
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6 RWC = 0.97

RWC = 0.89

RWC = 0.70

RWC = 0.51

Figure 2. Leaf reflectance between 1350 and 2000 nm for a single leaf of holm oak with different
levels of relative water content (RWC).

The relationships between RWC and leaf reflectance at the three wavelengths con-
sidered (R1450, R1599 and R1940) are presented in Figure 3. We fitted sigmoidal models
to the data because it explained the variability of the measured data better than a linear
model. The coefficient of determination (R2) obtained for R1450 (R2 = 0.96, p < 0.0001) was
higher than those obtained for R1599 (R2 = 0.94, p < 0.0001) and R1940 (R2 = 0.91, p < 0.0001)
(Figure 3, Table 1).

Table 1. Statistical parameters of the relationships between the relative water content (RWC) and the
different spectral reflectance indices considered. n is the number of data points observed; F ratio is
the ratio of the variance explained by a factor to the unexplained variance; R2 is the r-squared; S.E. of
Est. is the standard error of the estimation.

Reflectance Index n F Ratio p-Value R2 S.E. of Est.

R1450 160 1112 <0.0001 0.96 0.0129
R1599 160 766 <0.0001 0.94 0.0139
R1940 160 557 <0.0001 0.91 0.0091

R1450/R820 160 1200 <0.0001 0.88 0.0259
R1599/R820 160 301 <0.0001 0.66 0.0343
R1940/R820 160 833 <0.0001 0.84 0.0164

LWCI1450 160 1213 <0.0001 0.96 0.0273
LWCI1599 160 1191 <0.0001 0.94 0.0345
LWCI1940 160 718 <0.0001 0.93 0.0194
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Figure 3. Relationships between the relative water content (RWC) and R1450 (upper panel), R1599

(medium panel) and R1940 (lower panel) for holm oak leaves. Red lines represent the sigmoidal
regression models fitted between variables (n = 160). Blue lines represent the 95% confidence interval
for the regression. *** means a p-value < 0.001, and R2 represents the coefficient of determination.

Figure 4 shows the ratio between the reflectance at these wavelengths and the re-
flectance values at 820 nm (R820) as reference (R1450/R820, R1599/R820 and R1940/R820). In
this case, the associations were adjusted to linear models and all correlations were statisti-
cally significant at p < 0.0001 (Table 1). However, it should be noted that the coefficients of
determination (R2) were lower (Figure 4, Table 1) than those obtained without using the
reference band (Figure 3, Table 1).
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Figure 4. Relationships between the relative water content (RWC) and R1450/R820 (upper panel),
R1599/R820 (medium panel) and R1940/R820 (lower panel) for holm oak leaves. Red lines represent
the lineal regression between variables (n = 160). Blue lines represent the 95% confidence intervals for
the regression. *** means a p-value < 0.001, and R2 represents the coefficient of determination.

The association between RWC and the indices LWCI1450, LWCI1599 and LWCI1940
was best described using non-linear models (Figure 5), which yielded similar results to
those obtained only using the reflectance values without any reference band (Figure 3).
Thus, the relationship between RWC and LWCI1450 (R2 = 0.96, p < 0.0001) and between
RWC and LWCI1940 (R2 = 0.93, p < 0.0001) were adjusted to sigmoidal models, whereas
the relationship between RWC and LWCI1599 was adjusted to a second-degree polynomial
function (R2 = 0.94, p < 0.0001) (Figure 5, Table 1).
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Figure 5. Relationships between the relative water content (RWC) and LWCI1450 (upper panel),
LWCI1599 (medium panel) and LWCI1940 (lower panel) for holm oak leaves. Red lines represent
the sigmoidal (upper and lower panels) and second-degree polynomial (medium panel) regressions
between parameters (n = 160). Blue lines represent the 95% confidence intervals for the regression.
*** means a p-value < 0.001, and R2 represents the coefficient of determination.

Table 2 shows the statistical comparison among the linear relationships obtained be-
tween RWC (values between 1.0 and 0.5) and the different spectral reflectance indices, fitted
for each measured leaf. The results indicated that, in all cases, the slopes were not statis-
tically different at p < 0.05 among the different measured leaves (Table 2). Regarding the
intercepts, they were statistically different at p < 0.05 among the different measured leaves
when the water absorption bands (R1450, R1599 and R1940) were used without considering
a reference band or using the simple ratio with R820 as reference (R1450/R820, R1599/R820



Forests 2023, 14, 1825 9 of 14

and R1940/R820) (Table 2). By contrast, the intercepts for LWCI1450, LWCI1599 and LWCI1940
were not statistically different at p < 0.05 among the different measured leaves (Table 2).

Table 2. Statistical parameters of the comparison of intercepts and slopes for the linear relationships
between the relative water content (RWC, values between 1.0 and 0.5) and the different spectral
reflectance indices for each measured leaf. n is the number of leaves; F ratio is the ratio of the variance
explained by a factor to the unexplained variance.

Reflectance Index n F Ratio Slope p-Value
Slope

F Ratio
Intercept

p-Value
Intercept

R1450 16 0.36 0.9856 3.04 0.0004
R1599 16 0.42 0.9703 4.67 0.0000
R1940 16 0.33 0.9910 3.35 0.0001

R1450/R820 16 0.74 0.7358 4.77 0.0000
R1599/R820 16 1.26 0.2406 4.94 0.0000
R1940/R820 16 0.61 0.8643 4.87 0.0000

LWCI1450 16 0.36 0.9867 0.78 0.6938
LWCI1599 16 0.32 0.9925 0.65 0.8267
LWCI1940 16 0.54 0.9102 1.18 0.2949

In general, RMSE and MAE showed the sharpest decrease when the number of leaves
used for calibration increased from one to four, reaching a plateau from around five–six
leaves (Figure 6 and Table S2 in supplementary information). Indices based on a simple
ratio (R1450/R820, R1599/R820 and R1940/R820) showed the highest RMSE and MAE values
and were the most sensitive to the number of leaves used for calibration. Single-band
indices (R1450, R1599 and R1940) were more sensitive to the number of leaves used for
calibration than LWCI indices (LWCI1450, LWCI1599 and LWCI1940), but reached similarly
low RMSE and MAE for calibration sets including five or more leaves. Within each index
formulation (single band, simple ratio or LWCI), indices including the 1450 band showed
the best performance (e.g., RMSE= 4.0%; MAE= 3.3% for R1450; see Table 3).

Table 3. Summary validation statistics for the predictive linear models built for each of the indices
tested. For each statistic, mean and range (between brackets) of the 8008 models fitted using all
possible combinations of six leaves for calibration, leaving the rest of leaves for validation. N cal
and N val, number of observations included in the calibration and validation sets, respectively; R2,
RMSE and MAE, coefficient of determination, root mean square error and mean absolute error for
the validation set.

Index N cal N val R2 RMSE MAE

R1450 60 100 0.94 [0.93 0.96] 4.0 [3.4 4.9] 3.3 [2.8 3.8]
R1599 60 100 0.92 [0.90 0.94] 4.8 [3.9 6.1] 3.8 [3.1 4.9]
R1940 60 100 0.89 [0.87 0.91] 5.6 [4.7 6.6] 4.6 [4.0 5.4]

R1450/R820 60 100 0.89 [0.86 0.91] 5.7 [4.8 7.2] 4.6 [4.0 6.2]
R1599/R820 60 100 0.67 [0.60 0.75] 9.7 [8.3 13.5] 7.8 [6.5 11.0]
R1940/R820 60 100 0.84 [0.81 0.89] 6.7 [5.5 8.2] 5.4 [4.4 7.0]

LWCI1450 60 100 0.94 [0.93 0.96] 4.0 [3.3 4.5] 3.2 [2.8 3.5]
LWCI1599 60 100 0.92 [0.91 0.94] 4.6 [3.9 5.2] 3.7 [3.2 4.1]
LWCI1940 60 100 0.90 [0.87 0.93] 5.4 [4.4 6.2] 4.2 [3.7 4.7]
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Figure 6. Minimum, maximum and mean of Root Mean Square Error (RMSE, (A)) and Mean
Absolute Error (MAE, (B)) for the set of independent samples used for validation, as a function of the
number of leaves used for calibration (1–15). Values calculated across models fitted using all possible
combinations of N leaves. For ease of comparison, spectral indices are grouped according to their
formulation (single band, simple ratio or LWCI).

4. Discussion

In this study we have shown that leaf reflectance in the “water bands” can constitute
an accurate, non-destructive and non-invasive estimator of plant water status in holm
oak. Specifically, the leaf reflectance at the three wavelengths considered (1450, 1599 and
1940 nm) displayed a strong association with RWC despite the absence of a reference wave-
length (Figure 3, Table 1). This fact reflected the high accuracy of this technique to detect
changes in RWC above different physiological thresholds for holm oak (e.g., the turgor loss
point or the catastrophic hydraulic failure due to drought-induced xylem embolism) [34].
Our results contrast with those obtained by Sancho-Knapik et al. [19], who found an ab-
sence of changes in R1300/R1450 index at high leaf RWC values for Populus × euramericana
leaves. These authors stated that this fact could be explained by the marked changed
in leaf thickness displayed by this species at high RWC values, as leaf reflectance in the
“water bands” is also influenced by the total amount of water within the leaves, which is
strongly influenced by leaf thickness [27]. Thus, changes in leaf thickness may offset the
changes in near-infrared reflectance values due to leaf water losses, preventing its use for
the estimation of plant water status at high RWC values [19]. However, we have evidenced
that the percentage of variation in leaf thickness was very low for holm oak when subjected
to water stress, i.e., only 15% throughout all the range of RWC analyzed (Figure 1), which
implied that changes in leaf water content were the main factor explaining the changes in
leaf reflectance in the “water bands” (Figure 2). Thus, this experimental procedure may be
suitable for contact measurements of plant water status in this species, even when the use
of a reference band is avoided.

However, contact measurements as employed in the present study do not allow the
continuous monitoring and real-time tracking of water status of the whole plant. To
do this, it is necessary to implement the remote sensing of plant water status at canopy
or field level and, consequently, several issues should be considered. First, it is well
known that canopy reflectance depends on the absolute amount of incident light, so it is
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necessary the use of a reference wavelength weakly absorbed by water to standardize and
compare the measurements (e.g., 820 nm). In this study, we have assessed if the use of this
reference wavelength may enhance the accuracy of “water bands” (R1450/R820, R1599/R820
and R1940/R820) when compared with R1450, R1599 and R1940 at leaf level. However, contrary
to expectations, the accuracy was strongly diminished when the ratio of reflectances was
considered, especially for R1599/R820 (Figures 3 and 4, Table 1). This fact could be explained
by the existence of a certain degree of absorption by water at 820 nm. A second problem
arises when considering the measurement of 1450 or 1940 nm at canopy level, as the
atmospheric water vapor shows high absorptance at these bands. For these reasons,
satellites and drones cannot acquire measurements at these wavelengths, despite these
wavelengths yielding much higher correlation coefficients than 1599 nm when using R820
as reference (Figure 4, Table 1), and detection of changes in plant water status at canopy
level has been carried out by means of the moisture stress index (MSI = R1599/R820).

Alternatively, we propose the application of LWCI as a way for improving the accuracy
of the estimation of plant water status in holm oak, and a reference wavelength can be also
used. In this sense, we have shown that the coefficients of determination obtained with
LWCI were very similar to those obtained using the reflectance values without reference
band (Figures 3 and 5, Table 1). Thus, it must be highlighted the enhancement in the
accuracy of RWC estimation of LWCI1599 when compared with R1599/R820. Moreover, when
considering RWC values above 0.5, the slopes and the intercepts of the lineal relationships
were not statistically different at p < 0.05 for LWCI among the different measured leaves
(Table 2), which reinforces the robustness and repeatability of these indices for predicting
changes in RWC of holm oak. Hence, LWCI1599 could be considered a promising tool for
detection of changes in plant water status at canopy level. However, it must be noted that
the application of LWCI requires the reflectance value at full turgor, which could constitute
a disadvantage for its implementation in satellites or drones.

Our results confirm that leaf reflectance in the “water bands” is an accurate tool to
monitor changes in water status of holm oak. As stated in the Introduction, this species
is the main host plant for black truffle producing systems, which are mainly located in
areas with low rainfall and degraded soils, so irrigation is a basic management practice to
ensure continuous and homogeneous truffle harvest [41,42]. Therefore, the validation of
leaf reflectance in the “water bands” for the evaluation of water status of holm in truffle
orchards would allow the development of non-destructive, accurate and easy to interpret
decision-making tools that enable the acquisition of real-time and accurate information
about when irrigation is needed, minimizing subsequent intervention in plantations.

5. Conclusions

This study demonstrated that leaf reflectance in the “water bands” is an accurate tool
to monitor changes in water status of holm oak, even when the use of a reference band is
avoided. According to our results, for measurements at the leaf level, predictive models
based on single bands, and particularly on the 1450 nm band, allow robust predictions when
a sufficient number of leaves (5–6) are used for calibration. However, the use of a reference
wavelength for remote sensing measurements (such as in MSI) diminished the accuracy
of the detection of changes in RWC in holm oak. Alternatively, the application of LWCI
improved the accuracy of the estimation of plant water status in holm oak, and a reference
wavelength can be also used, reaching accuracies comparable to single-band models.
However, this index required the reflectance value at full turgor, which could constitute a
disadvantage for its implementation in satellites or drones. In conclusion, this technique
would allow the continuous monitoring and real-time tracking of the physiological state of
holm oak and intelligent water control in truffle cultivation. For this purpose, the use of
remote sensing data obtained by satellite or UAV from natural holm oak stands or truffle
plantations under different degree of water deficit would be very useful for the validation
of this technique at the field level, including leaves of different age, morphology and
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composition. Moreover, this technique may be also suitable for other plant species with a
low variation in leaf thickness when subjected to dehydration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14091825/s1, Table S1: Models and equations used for fitting
the individual data for each of the indices tested; Table S2: Summary validation statistics for the
predictive linear models built for each of the indices tested.
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