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A B S T R A C T   

The emergence of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) intensive and semi-intensive 
cropping systems has created a necessity for new almond cultivars with vigor and shape adapted to these new 
circumstances. Hence, it is important to unravel which mechanisms are behind the regulation of the tree three- 
dimensional structure, or tree architecture, and what factors may play a role, like the choice of rootstock. In this 
study, we have analyzed the rootstock influence on the scion transcriptome, regarding the biological processes 
that control almond tree architecture. Three commercial almond cultivars were grafted onto three hybrid 
rootstocks known to confer different architecture to the scion, resulting in nine combinations, whose gene 
expression in shoot tips was analyzed via RNA-Seq. We report that differences in tree architecture phenotype are 
correlated with differential expression of genes involved in hormonal and molecular responses associated with 
the regulation of apical dominance, branch formation, plant growth, cell wall formation, or nitrogen assimila-
tion. These results highlight the importance of the rootstock choice in selecting a desirable scion architecture and 
in establishing almond orchards.   

1. Introduction 

Rootstocks are widely used in numerous fruit and nut orchards 
(Warschefsky et al., 2016). Their use allows to confer traits of agro-
nomical interest to the cultivars and to independently select favorable 
traits for scion and rootstock. The rootstock influences the scion 
phenotype for multiple characters, such as tree vigor, yield, flowering 
time, or fruit quality (Aloni et al., 2010; Martínez-Ballesta et al., 2010; 
Albacete et al., 2015; Foster et al., 2015; Warschefsky et al., 2016; Font i 
Forcada et al., 2020; Reig et al., 2022). Almond (Prunus amygdalus (L.) 
Batsch, syn P. dulcis (Mill.)) cultivars are graft-compatible with both 
almond and peach (P. persica (L.) Batsch) rootstocks and their inter-
specific hybrids (Felipe, 2009; Rubio-Cabetas et al., 2017) are widely 
used in almond orchards, which almost exclusively consist of these 
scion/rootstock combinations. 

Among these rootstock effects on the cultivar in various fruit tree 
species, researchers focused predominantly on scion vigor. Analysis in 

both apple (Malus × domestica) and Prunus species have determined a 
correlation between rootstock and vigor-related parameters such as 
scion height or trunk diameter (Tworkoski and Miller, 2007; Tworkoski 
and Fazio, 2015; Yahmed et al., 2016; Scalisi et al., 2018; Balducci et al., 
2019; Lordan et al., 2019; Narandžić and Ljubojević, 2022). Although 
the effect on other traits related to tree architecture like shoot produc-
tion and development has been reported in apple cultivars, the inter-
action is less clear (Tworkoski and Miller, 2007; Seleznyova et al., 2008; 
Van Hooijdonk et al., 2010). 

Apical dominance is a crucial regulator of tree architecture. It defines 
the capacity exerted by the shoot apical meristem (SAM) to repress 
lateral bud outgrowth, redistributing resources towards the elongation 
of the main axis (Hollender and Dardick, 2015; Wang et al., 2018a). 
Numerous factors are behind the regulation of apical dominance and 
bud outgrowth with auxins acting as the core regulator, which are 
predominantly transported throughout the axis by specific efflux and 
influx carriers, promoting apical dominance (Cho and Cho, 2013; 
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Adamowski and Friml, 2015). Beside, auxin facilitates graft formation, 
and elevated levels in the rootstock promote callus and vascular cell 
development, proving that upward transport also happens at least over 
short distances (Zhai et al., 2021). The exact mechanism by which 
auxins repress bud outgrowth is yet under scrutiny, but strigolactones 
(SLs) are proven to act as auxin secondary messengers, inhibiting bud 
outgrowth (Dun et al., 2012; Shinohara et al., 2013; Bennett et al., 2016; 
Dierck et al., 2016a; Waldie and Leyser, 2018). Cytokinins (CKs) have 
the opposite effect, promoting bud outgrowth and shoot branching (Dun 
et al., 2012; Dierck et al., 2016b; Waldie and Leyser, 2018). Other 
hormones like gibberellic acid (GA) or brassinosteroids (BRs) are also 
involved in shoot development, but their effects are less characterized 
(Lo et al., 2008; Sun, 2010; Wei and Li, 2016). Sugars have been also 
described as an important regulator of bud outgrowth, promoting the 
formation of branches when there is high availability (Stokes et al., 
2013; Mason et al., 2014). External stimuli such as light perception also 
control shoot development via photoreceptors phyA and phyB (Casal, 
2012; Reddy and Finlayson, 2014; Holalu and Finlayson, 2017). 

Tree vigor is mainly controlled by the hormonal response and 
nutrient availability. GA and BRs are involved in its regulation, pri-
marily promoting cell elongation, although they have been described to 
stimulate cell proliferation too (Busov et al., 2008; Yamaguchi, 2008; 
Fridman and Savaldi-Goldstein, 2013). GA activity in cell elongation 
affects numerous aspects of plant growth, like seed germination, stem 
elongation, and flower development (White and Rivin, 2000; Ogawa 
et al., 2003; Griffiths et al., 2006; Gallego-Bartolomé et al., 2011). GA 
acts by connecting external clues such as light perception with molec-
ular regulation of these processes (Alabadí et al., 2008; Filo et al., 2015). 
Furthermore, deficiencies in GA have been observed to affect tree vigor 
in several crops like poplar, apple, or peach (Hollender and Dardick, 
2015; Hollender et al., 2016). CKs and auxins control plant vigor as well, 
regulating cell proliferation and cell elongation (Busov et al., 2008; 
Depuydt and Hardtke, 2011; Ma et al., 2016). Nutrient availability is 
crucial for plant development, especially nitrogen availability. Hormone 
synthesis and transport are tightly controlled by nitrogen supply (Krouk 
et al., 2011). Hence, nitrate acts as a signaling molecule, regulating gene 
expression, and controlling several developmental processes like root 
formation, shoot development, or flowering (Wang et al., 2018b). 

In recent years, flowering has been linked with tree architecture. 
Hormones regulating tree architecture, like auxin or GA, are also part of 
flowering control, providing a possible crossroad between these devel-
opmental processes (Srikanth and Schmid, 2011). Studies in Arabidopsis 
and woody plants such as apple have proven that important flowering 
regulators like FLC or FT are involved in shoot development (Pin and 
Nilsson, 2012; Huang et al., 2013; Foster et al., 2014). 

Characterization of all these processes affecting tree architecture 
using a collection of different rootstocks could help to a better under-
standing of how they influence scion phenotype. In a previous experi-
ment (Montesinos et al., 2021), we grafted several almond cultivars onto 
various hybrid rootstocks observing that the rootstock influences pa-
rameters related to tree architecture like the number of shoots or shoot 
distribution through the trunk. Although several molecular processes 
have been linked to the regulation of tree architecture, little to none is 
known about the influence exerted by the rootstock genotype on the 
processes that are behind these changes in the scion. To unravel a 
cohesive view of the molecular mechanisms behind rootstock impact on 
the cultivar architecture, the transcriptome of nine scion/rootstock 
combinations, whose effect on scion traits was evaluated in a previous 
experiment, is here presented in a comparative analysis. 

2. Materials and methods 

2.1. Plant materials and growth conditions 

In this study, a subset of nine scion/rootstock combinations from a 
previous trial with thirty combinations was chosen (Montesinos et al., 

2021), comprising three almond cultivars of agronomic interests which 
were grafted onto three different commercial rootstocks. The following 
combinations were selected after analyzing rootstock influence on scion 
architecture: ‘Densipac’ (Rootpac® 20), ‘Nanopac’ (Rootpac® 40), and 
Garnem® (GN15) as rootstocks, and ‘Isabelona’ (syn. ‘Belona’), ‘Diamar’ 
(syn. ‘Mardiá’) and ‘Lauranne’ as cultivars. All rootstocks are hybrids 
from different origins. Garnem® is an almond × peach (P. amygdalus (L.) 
Batsch, syn P. dulcis (Mill.). × P. persica (L.) Batsch) hybrid rootstock, 
while the others come from the commercial Rootpac® series: Rootpac® 
40 (P. amygdalus (L.) Batsch, syn P. dulcis (Mill.). × P. persica (L.) Batsch) 
and Rootpac® 20 (P. cerasifera × P. besseyi). Grafted plants were sup-
plied by the Agromillora Iberia S.L. nursery in 2018 (Barcelona, Spain). 
Trees were planted in October 2018 at the Centro de Investigación y 
Tecnologiá Agroalimentaria de Aragón (CITA) experimental orchard El 
Vedado Bajo el Horno (Zuera, Zaragoza, 41◦51′46.5″N 0◦39′09.2″ W). 
Trees were planted in an open field as a single axis and supported by a 
wooden stick. Trees were then left without pruning so that, they could 
express their natural growth habit unaltered. Conventional orchard 
practices were used for weed, pest, and disease control and drip irriga-
tion. The soil type was calcareous with a pH of around 7–8. 

2.2. Data collection 

Seven descriptors of tree architecture were measured in three trees 
per scion/rootstock combination. These parameters, previously depicted 
in Montesinos et al. (2021), belong to three different categories: (i) 
vigor, (ii) branch quantity, and (iii) branch distribution. (i) Length: 
trunk length; IN_L: mean length of trunk internodes. (ii) Nb_B: number of 
primary branches; BbyIN: proportion of branches per number of in-
ternodes; Nb_lB: number of long branches (> 200 mm); B_NbAS: number 
of secondary branches per primary branch. (iii) Dist_B; distribution of 
branches through the trunk. 

2.3. RNA-Seq analysis 

Samples from the nine combinations mentioned were collected in a 
single morning (between 10 am and 11 am) from shoot tips of two-year- 
old branches from three different individuals per combination during 
the summer of 2020. Plants were at stage 75 on the BBCH scale. RNA 
extraction was performed from these samples using the CTAB method 
described previously (Meisel et al., 2005) with some modifications 
(Chang et al., 1993; Salzman et al., 1999; Zeng and Yang, 2002). 
Stranded mRNA-Seq analysis was carried out at Centro Nacional de 
Análisis Genómico (CNAG-CRG) in Barcelona, Spain. Sequencing was 
performed by an Illumina NovaSeq 6000 System - with > 30 M PE reads 
per sample and a read length of 2 × 50 bp. FASTQ files were converted 
with FASTQ Groomer (Galaxy Version 1.1.1) (Blankenberg et al., 2010). 
Adapter sequences were removed by processing the reads sequences of 
the twenty-seven individual datasets with Trimmomatic (Galaxy Version 
0.38.0) (Bolger et al., 2014). RNA-Seq data alignment was carried out by 
HISAT2 (Galaxy Version 2.2.1), with a maximum intron length of 20, 
000 bp, (Kim et al., 2015) on the P. dulcis ‘Texas’ Genome v2.0 (Alioto 
et al., 2020). Duplicated molecules were located and mate-pairs were 
confirmed using the MarkDuplicates (Galaxy Version 2.18.2.2) and 
FixMateInformation (Galaxy Version 2.18.2.1) Picard tools respectively 
(http://broadinstitute.github.io/picard). featureCounts (Galaxy Version 
2.0.1+galaxy2) was used to measure gene expression (Liao et al., 2014) 
using the gene annotation P. dulcis ‘Texas’ Genome v2.0 containing 27, 
044 genes (https://www.rosaceae.org/analysis/295). Differential anal-
ysis of count data was performed by edgeR (Galaxy Version 3.36.0) with 
default settings (Robinson et al., 2009). Genes with a corrected p-value 
below 0.05 and a log2FC above 1 or below − 1 were considered differ-
entially expressed All procedures were carried out using the Galaxy 
platform. Recent reports have shown that RNA-Seq methods are robust 
enough and validation by qPCR would confirm its results for a vast 
majority of transcripts. Non-concordant results between both techniques 

Á. Montesinos et al.                                                                                                                                                                                                                            

http://broadinstitute.github.io/picard
https://www.rosaceae.org/analysis/295


Scientia Horticulturae 324 (2024) 112628

3

were observed in less than 2 % (Everaert et al., 2017; Coenye, 2021) 
appearing typically in short and low-expressed genes. As these data are 
related to the Fragments Per Kilobase of transcript per Million (FPKM), 
differentially expressed genes were filtered to assure that they belong to 
the 98 % transcripts with the highest FPKM. 

2.4. RNA-Seq data structural and functional analysis 

Principal component analysis (PCA) was carried out using the R stats 
package with default parameters on the gene expression values for all 
the genes in the nine combinations. Distance between genes was 
measured using its correspondent function from the R stats package. 
Hierarchical clustering and correlation networks were performed using 
the WGCNA package (Langfelder and Horvath, 2008). GO enrichment 
was carried out using the tool GOEnrichment (https://github.com/-
DanFaria/GOEnrichment) with a p-value cut-off < 0.1 and 
Benjamin-Hochberg correction. 

3. Results and discussion 

3.1. Rootstock influence on scion architecture correlates with differences 
in gene expression 

The phenotypic effect of the rootstock on the nine different scion/ 
rootstock combinations was measured using seven architecture param-
eters (Supplementary Data 1), which had been previously proven to be 
affected by the rootstock (Montesinos et al., 2021). PCA (Principal 
Component Analysis) was carried out using the phenotypic data 
collected for the nine scion/rootstock combinations (Fig. 1a). The first 
two components explained more than two-thirds of the variability, with 
the first component explaining 55.1 %, and the second 22.22 %. For two 
of the cultivars, ‘Isabelona’ and ‘Lauranne’, we observed a stronger in-
fluence of the cultivar than the rootstock since combinations involving 
these cultivars can be observed indistinctively clustering together on 
each side of Fig. 1a. ‘Isabelona’ combinations present a strong apical 
dominance phenotype while those with ‘Lauranne’ as scion display 
numerous branching and high vigor (Fig. 2; Supplementary Data 1). The 
effect of the rootstock in aerial traits in these two cultivars seems to be 
limited. However, we observed more diversity between individuals for 
the ‘Isabelona’/Rootpac® 40 combination (Fig. 1a). Contrarily to these 
two cultivars, ‘Diamar’ seemed more affected by the rootstock genotype. 
When grafted onto Rootpac® 20, which is a dwarfing rootstock, the 
plants showed high apical dominance and reduced branching similar to 
the plants carrying ‘Isabelona’ as the scion (Fig. 2; Supplementary Data 
1). On the contrary, when grafted onto the vigor-inducing rootstock 
Garnem®, ‘Diamar’ combinations clustered with the ‘Lauranne’ 

combinations. Although Rootpac® 40 is a more vigor-inducing rootstock 
compared to Rootpac® 20, it does not reduce apical dominance at the 
same level as Garnem®. Therefore, ‘Diamar’/Rootpac® 40 combina-
tions are between ‘Isabelona’ and ‘Lauranne’ combinations, but closest 
to the former (Fig. 1a). 

A second PCA was carried out, using the expression for each gene as 
variables for the nine combinations (Fig. 1b). The first two components 
explained 40 % of the variability, with 24.28 % and 10.76 % of the 
variability respectively. Data related to each cultivar grouped. As for 
phenotypic data, combinations involving both ‘Lauranne’ and ‘Isabe-
lona’ did not present marked differential distribution linked to the 
rootstock genotype (Fig. 1b). As observed for the phenotypic data, 
‘Diamar’ combinations presented a contrasted position in the PCA. In-
dividuals grafted onto Rootpac® 20 were separated from individuals 
grafted onto Garnem® and Rootpac® 40 (Fig. 1b). Therefore, the 
absence of a rootstock effect in ‘Isabelona’ and ‘Lauranne’ combinations 
seems to be linked to a lack of differential gene expression under these 
conditions. 

RNA-Seq data were then subjected to a hierarchical clustering 
analysis (Fig. 2). Data samples were separated according to the scion 
genotype, which was expected as the samples were taken from this part 
of the plant, showing the global gene expression variation between each 
genotype. Since these clusters depend on the complete gene expression 
profile and not only on the genes that may affect tree architecture, other 
processes not linked to the phenotype might also affect these results. It is 
not the objective of this study to draw conclusions on comparing vari-
eties between each other since in these comparisons it is hard to separate 
the “cultivar effect” from the “rootstock effect”. On the other hand, there 
is very limited research on the molecular influence of the rootstock 
genotype in a single cultivar. For the comparisons intra-cultivar, com-
binations with ‘Lauranne’ and ‘Isabelona’ as cultivars were clustered in 
one group each with no effect of the rootstocks and no clear gene 
expression differences when comparing the whole transcriptomes. In 
‘Diamar’ we observed a clear separation of samples grafted onto Root-
pac® 20 from the others. Transcriptomics data do not allow to clear 
separation of Garnem® and Rootpac® 40 unlike what was observed with 
the phenotypic data where ‘Diamar’/Rootpac® 40 presented an inter-
mediate phenotype between ‘Diamar’/Rootpac® 20, which displayed 
low vigor and strong apical dominance, and ‘Diamar’/Garnem® (Fig. 2). 

Overall in the ‘Diamar’ case, the phenotypic profile of architecture 
characters is in accordance with the observed data for gene expression in 
shoot tips, which allows us to assume that the differentially expressed 
gene in this tissue might be related to differential architecture. 

Fig. 1. Principal component analysis (PCA) of the nine scion/rootstock combinations. A. PCA of the phenotypic data. B. PCA of the global expression profile data. 
DIA/GN: ‘Diamar’/Garnem®; DIA/R20: ‘Diamar’/Rootpac® 20; DIA/R40: ‘Diamar’/Rootpac® 40; ISA/GN:‘Isabelona’/Garnem®; ISA/R20: ‘Isabelona’/Rootpac® 
20; ISA/R40: ‘Isabelona’/Rootpac® 40; LAU/GN:‘Lauranne’/Garnem®; LAU/R20: ‘Lauranne’/Rootpac® 20; DIA/R40: ‘Lauranne’/Rootpac® 40. 
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3.2. Rootstock differentially affects metabolism genes in ‘Diamar’ 
combinations 

When comparing the same cultivar grafted onto different rootstocks, 
‘Lauranne’ and ‘Isabelona’ combinations did not show any DEGs in any 
comparison (Supplementary Data 2, 3). As it was previously stated, the 
reduced rootstock effect on the scion architecture correlates with this 
absence of differences in gene expression. In the same way that we 
observed the impact of the rootstock on the scion phenotype, we did 
observe DEGs in ‘Diamar’ combinations (Supplementary Data 4). In 
these comparisons, DEGs were only observed when compared to in-
dividuals grafted onto the dwarfing rootstock Rootpac® 20, while we 
did not observe DEGs between Garnem® and Rootpac® 40. Both are 
hybrid almond × peach rootstocks which are described to confer vigor to 
the scion. This similar influence on phenotype exerted by the rootstock 
genotype would explain the lack of differences in gene expression 
observed here. We observed 311 DEGs more expressed with both vigor- 
inducing rootstocks than with Rootpac® 20 and 118 more expressed in 
Rootpac® 20. A total of 667 DEGs were found more expressed specif-
ically with Rootpac® 40 than with Rootpac® 20 and 305 more with 

Rootpac® 20 than with Rootpac® 40. A total of 354 DEGs were detected 
comparing Garnem® with Rootpac® 20, with 297 DEGs more expressed 
with Garnem® and 52 with Rootpac® 20 (Fig. 3). 

To characterize the biological processes and molecular functions 
associated with these DEGs, a GOenrichment analysis was carried out 
(Fig. 4). Since the majority of DEGs appeared more expressed in com-
binations with the vigor-inducing rootstocks Garnem® and Rootpac® 
40, we focused on these genes. When analyzing molecular function 
terms (Fig. 4a), we observed an enrichment of those related to “catalytic 
activity” in Garnem® and Rootpac® 40 combinations, especially in the 
“oxidoreductase activity” category. In both combinations, ‘Diamar’ 
presented more vigor than when grafted onto Rootpac® 20, and the 
enrichment of DEGs belonging to these GO categories is probably due to 
higher metabolic activity in the shoot tips of these combinations, which 
are growing more actively. The term “transmembrane transport” was 
enriched in individuals grafted onto Garnem® (Fig. 4b). This might be 
due to the more active transport of nutrients or hormones linked to 
active growth (Park et al., 2017; Wang et al., 2018b). In individuals 
grafted onto Rootpac® 40, we observed an enrichment of DEGs 
belonging to the terms related to cell division. It is maybe linked to 

Fig. 2. Hierarchical clustering of the global transcriptome of the nine scion/rootstock combinations. The intensity of color in the heatmap below the clustering 
represents the values for each phenotypic trait. Length: trunk length; IN_L: mean length of trunk internodes; Nb_B: number of primary branches; BbyIN: proportion of 
branches per number of internodes; Nb_lB: number of long branches (> 200 mm); B_NbAS: number of secondary branches per primary branch; Dist_B; distribution of 
branches through the trunk. 

Fig. 3. Venn diagrams of differentially expressed genes (DEGs) in combinations with ‘Diamar’ as the scion. A. DEGs more expressed in combinations with Rootpac® 
20 than with Rootpac® 40 or Garnem®. B. DEGs less expressed in combinations with Rootpac® 20 than with Rootpac® 40 or Garnem®. 
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promoting cell proliferation, or to cell elongation, which could therefore 
lead to its more vigorous phenotype (Sablowski, 2016). 

For terms representing biological processes (Fig. 4b), we detected an 
enrichment of DEGs from the term “photosynthesis” in Garnem® com-
binations. The overrepresentation of these genes might be due to a 
higher photosynthetic rate and carbon assimilation that could be linked 
to the higher vigor displayed by ‘Diamar’ when grafted onto Garnem®. 
DEGs characterized by the term “carbohydrate derivative metabolic 
process” were enriched in individuals grafted onto Garnem®. While a 
more active metabolism is expected in scions grafted onto a vigor- 
conferring rootstock, like Garnem®; sugars are also an important 
regulator of branching, and the enrichments of DEGs associated with 
their pathways may be related to the low apical dominance and 
numerous branching observed in the ‘Diamar’/Garnem® combination 
(Mason et al., 2014; Barbier et al., 2015). In both the ‘Diamar’/Garnem® 
and the ‘Diamar’/Rootpac® 40 combinations, terms associated with 
“cell wall organization” were enriched (Fig. 4b). Similar terms were 
enriched in previous transcriptomic analysis characterizing rootstock 
effect in grapevine and citrus (Cochetel et al., 2017; Liu et al., 2017b). 
Regulation and reorganization of the cell wall are crucial to allow plant 
growth, which explains why DEGs related to these processes are upre-
gulated when individuals are grafted onto rootstocks that favor more 
active growth, like Rootpac® 40 and Garnem® (Cosgrove, 2016; 
Vaahtera et al., 2019). Several terms associated with cell cycle and cell 
division are enriched in the ‘Diamar’/Rootpac® 40 combination 
(Fig. 4b). This reinforces the notion that growth is upregulated in in-
dividuals grafted onto Rootpac® 40 compared to those grafted onto 
Rootpac® 20. 

In general, we observed an enrichment of terms linked to molecular 
functions and biological processes in vigor-inducing rootstocks that 
characterize a more active metabolism, likely due to a more active cell 
division. Since differences in gene expression are only detected when 
comparing combinations with vigorous rootstocks to the ‘Diamar’/ 
Rootpac® 20 and not between them, it seems that we are looking at a 

regulation of these processes that explained the low vigor conferred by 
Rootpac® 20 to the scion. 

3.3. DEGs associated with promoting apical dominance were upregulated 
in ‘Diamar’/Rootpac® 20 

Multiple genes likely associated with establishing apical dominance 
and inhibiting bud outgrowth were upregulated in ‘Diamar’ individuals 
grafted onto Rootpac® 20. Auxin is the main regulator of these pro-
cesses, being synthesized in apical leaves and transported through the 
axis (Barbier et al., 2019). NF-YA10 (Prudul26A005445), which nega-
tively regulates lateral root density and is likely involved in the regu-
lation of the auxin-signaling regulatory pathway (Sorin et al., 2014; 
Zhang et al., 2017), was highly expressed in the ‘Diamar’/Rootpac® 20 
combination (Table 1). In Arabidopsis, NF-YA10 is highly expressed in 
mature leaves in the expression atlas (Klepikova et al., 2016), while in 
grapevine (Vitis vinifera), its orthologue is over-expressed in woody 
stems and swelling buds (Fasoli et al., 2012). When grafted onto Root-
pac® 20, scions present a phenotype with reduced branching and longer 
branches. Hence, NF-YA10 expression in these shoot tips may be part of 
a regulation process in the formation of branches promoting cell growth 
or might be a marker of more mature tissues with reduced replication, 
but its involvement in the auxin pathway is uncertain. CKX7 (Pru-
dul26A024231) was upregulated in ‘Diamar’/Rootpac® 20 (Table 1). 
Cytokinin oxidase/dehydrogenase enzymes negatively regulate CKs by 
inactivating them (Köllmer et al., 2014). Silencing of family members in 
rice leads to increase branching (Yeh et al., 2015), thus its highly 
expression, when grafted onto Rootpac® 20, may be related to its 
reduced branching phenotype. Another regulator of CKs, PAN (Pru-
dul26A007859), which is associated with shoot control (Maier et al., 
2011), was also highly expressed in this combination (Table 1). Ortho-
logues of MYB93 (Prudul26A029785) and DRMH3 (Prudul26A007496), 
which participate in regulating root formation but are also expressed in 
aerial tissues in Arabidopsis and grapevine (Fasoli et al., 2012; Gibbs 

Fig. 4. GOenrichment of differentially expressed genes (DEGs) in combinations with ‘Diamar’ as the scion. A. Molecular function terms for ‘Diamar’ combinations in 
which DEGs were less expressed in combinations with Rootpac® 20 than with Rootpac® 40 or Garnem®. B. Biological process terms for ‘Diamar’ combinations in 
which DEGs were less expressed in combinations with Rootpac® 20 than with Rootpac® 40 or Garnem®. 
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et al., 2014; An et al., 2020), were upregulated in ‘Diamar’/Rootpac® 20 
(Table 1). 

Auxin is synthesized in the apex, but to carry out its function it needs 
to be transported through specific carriers (Titapiwatanakun and Mur-
phy, 2009; Cho and Cho, 2013; Adamowski and Friml, 2015). Two genes 
involved in promoting auxin transport, VAB (Prudul26A002767) and 
ABCB15 (Prudul26A001569) (Kaneda et al., 2011; Naramoto and Kyo-
zuka, 2018), and therefore apical dominance, were upregulated in the 
‘Diamar’/Rootpac® 20 combination (Table 1). 

Rootpac® 20 effect in ‘Diamar’ architecture is characterized by a 
reduced number of branches and high apical dominance. Here, we saw 
upregulation of genes related to auxin transport, which might promote 
apical dominance, and genes likely linked to the inactivation of CK, 
which promotes branch formation. 

3.4. DEGs associated with shoot formation were downregulated in 
‘Diamar’/Rootpac® 20 

CKs act in opposition to auxins, favoring bud outgrowth and shoot 
formation (Dun et al., 2012). The GH3 family is a large group of genes 
involved in auxin homeostasis, but also in the synthesis of other hor-
mones, such as jasmonic acid (JA) and salicylic acid (SA) (Zhang et al., 
2007; Fu et al., 2011). A member of this family, GH3.6 (Pru-
dul26A017626), was downregulated in the ‘Diamar’/Rootpac® 20 
combination (Table 1). GH3.6 has been described to be CK-dependent 
and to promote meristem development in roots, being also overex-
pressed in shoot apex in Arabidopsis (Pierdonati et al., 2019; Tian et al., 
2019). Similar expression behaviors were observed for ESR2 (Pru-
dul26A010631), RALFL34 (Prudul26A005193), and GSO1 (Pru-
dul26A022681) (Table 1). As for GH3.6, RALFL34 and GSO1 have been 
described participating in root development while being overexpressed 
in the shoot apex and inflorescences (Schmid et al., 2005; Racolta et al., 
2014; Murphy et al., 2016). Therefore, its expression in the shoot apex 
could be linked to the presence of fewer branches in scions grafted onto 
Rootpac® 20. ESR2 is a promoter of shoot formation and cell division in 
response to CKs (Ikeda et al., 2006). 

Auxin carriers not only maintain the auxin flux to favor apical 
dominance but also can shape plant architecture by redistributing the 
auxin transport (Sauer et al., 2013). Two transporters expectedly 
engaged in this mechanism, like PIN6 (Prudul26A009595) and LAX3 
(Prudul26A031522) (Revalska et al., 2015; Simon et al., 2016) were less 
expressed in the ‘Diamar’/Rootpac® 20 combination (Table 1), likely 
provoking an inhibition of branch formation in this combination. PIN6 
localization and expression are mediated through phosphorylation in 
the plasma membrane and the endoplasmic reticulum influencing auxin 

homeostasis and stem elongation (Ditengou et al., 2017). Beside, over-
expressing PIN6 mutants display reduced apical dominance and 
improved root and shoot development (Cazzonelli et al., 2013). 

Apart from its transport, auxin activity is controlled by numerous 
auxin response proteins, some of which are downregulated in the scions 
grafted onto Rootpac® 20 (Table 1). AUX/IAA proteins repress the 
expression of auxin response genes in absence of auxin. IAA16 (Pru-
dul26A032023) has been described as limiting auxin responses and its 
KO mutants show a reduction in the number of lateral roots in Arabi-
dopsis (Rinaldi et al., 2012). Although its effect on bud outgrowth 
regulation is unclear, IAA4 (Prudul26A030184) acts oppositely to auxin 
in Populus (Zhang et al., 2020). SPL9 (Prudul26A015967) has been 
observed to act as regulating shoot branching in Arabidopsis, as both 
repressor and promoter (Jiao et al., 2010; Miura et al., 2010; Lu et al., 
2013). 

Sugars have been characterized to be a part of bud outgrowth posi-
tive regulation (Mason et al., 2014). SWEET17 (Prudul26A024821) was 
less expressed in ‘Diamar’/Rootpac® 20 (Table 1). SWEET17 putatively 
acts by mobilizing fructose and glucose content (Chardon et al., 2013; 
Guo et al., 2014). Light availability also affects branching control (Fin-
layson et al., 2010; Casal, 2012). In Arabidopsis, PAR1 and PAR2 play a 
negative role in the shade avoidance syndrome, acting downstream of 
COP1 and being repressed by phyA (Bou-Torrent et al., 2008; Zhou et al., 
2014). PAR2 (Prudul26A000568) was downregulated in the ‘Dia-
mar’/Rootpac® 20 combination (Table 1), matching with its repression 
by phyA, which arrests bud outgrowth (Finlayson et al., 2010; Rau-
senberger et al., 2011). 

While auxin activity inhibits branch formation, other processes like 
CK activity, sugar content, or light perception may favor shoot forma-
tion. We observed a downregulation in ‘Diamar’/Rootpac® 20 of genes 
involved in auxin homeostasis, as with the rest of the mechanisms that 
promote branch formation. 

3.5. DEGs involved in plant growth were affected by rootstock in ‘Diamar’ 
combinations 

GA has been largely known as the growth hormone. Its synthesis and 
activity are related to active growth and high vigor (Hedden and 
Thomas, 2012; Binenbaum et al., 2018). Downregulation of genes 
involved in GA regulation was observed in dwarfing rootstocks in citrus 
(Liu et al., 2017b). We found various genes associated with GA regula-
tion downregulated in the low vigor ‘Diamar’/Rootpac® 20 combina-
tion (Table 2). YAB1 (Prudul26A023379) is a GA-responsive gene, 
which is part of regulatory feedback that controls GA levels, being 
overexpressed when GA levels are high and, thus, repressing its 

Table 1 
Differentially expressed genes (DEGs) associated with apical dominance and shoot formation.  

log2FC Rootpac® 20 - ’Garnem’ log2FC Rootpac® 20 - Rootpac® 40 P. dulcis ID Gene GO term Biological process 

1.269 0.679 Prudul26A001569 ABCB15 GO:0055085 transmembrane transport 
1.255 1.350 Prudul26A024231 CKX7 GO:0009823 cytokinin catabolic process 
2.126 2.071 Prudul26A031352 CLAVATA3 GO:0048507 meristem development 
1.706 2.310 Prudul26A007496 DRMH3 GO:0009733 response to auxin 
− 4.372 − 5.185 Prudul26A010631 ESR2 GO:0009733 response to auxin 
− 2.043 − 2.023 Prudul26A017626 GH3.6 GO:0009733 response to auxin 
− 0.666 − 2.747 Prudul26A022681 GSO1 GO:2000280 regulation of root development 
− 1.909 − 2.059 Prudul26A032023 IAA16 GO:0009733 response to auxin 
− 2.915 − 2.680 Prudul26A030184 IAA4 GO:0009733 response to auxin 
− 0.628 − 1.204 Prudul26A031522 LAX3 GO:0060919 auxin influx 
2.947 3.244 Prudul26A029785 MYB93 GO:1901332 negative regulation of lateral root development 
3.565 3.185 Prudul26A005445 NF-YA10 GO:0006355 regulation of transcription, DNA-dependent 
1.258 1.329 Prudul26A007859 PAN GO:0006355 regulation of transcription, DNA-dependent 
− 2.262 − 2.696 Prudul26A000568 PAR2 GO:0009641 shade avoidance 
− 1.442 − 2.116 Prudul26A009595 PIN6 GO:0055085 transmembrane transport 
− 2.252 − 2.287 Prudul26A005193 RALFL34 GO:0019722 calcium-mediated signaling 
− 1.645 − 1.424 Prudul26A015967 SPL9 GO:0006355 regulation of transcription, DNA-dependent 
− 1.672 − 2.060 Prudul26A024821 SWEET17 GO:0008643 carbohydrate transport 

†log2FC values in cursive represent genes that were not differentially expressed. 
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biosynthesis (Dai et al., 2007). Another member of the same family, 
YAB5 (Prudul26A020640), presented a similar expression profile. 
GASA6 (Prudul26A023277) is thought to be a positive regulator of 
GA-dependent processes, which affect growth positively. It is also 
up-regulated by numerous growth hormones (Qu et al., 2016). ACL5 
(Prudul26A020015) is a crucial part of internode elongation and shoot 
growth, probably acting downstream of GA responses (Hanzawa et al., 
1997). GASA1 (Prudul26A015013), GASA9 (Prudul26A011751), or 
GAST1 (Prudul26A010439) have been described as inhibiting GA 
response in Arabidopsis (Zhang and Wang, 2008). Therefore, they could 
be acting here in a feedback regulatory way, being less expressed in 
combinations with the dwarfing rootstock Rootpac® 20, and expectedly, 
with lower levels of GA (Table 2). 

On the other hand, two genes expected to affect GA biosynthesis 
were more expressed in the ‘Diamar’/Rootpac® 20 combination 
(Table 2). In Arabidopsis, GA2OX8 (Prudul26A017080) participates in 
the GA biosynthetic pathway deactivating bioactive GA, while DAG1 
inhibits GA biosynthesis genes (Gabriele et al., 2010; Zhou et al., 2012; 
Liu et al., 2021). A homolog of this gene in citrus, GA2OX1, was also 
upregulated when grafted onto dwarfing rootstocks (Liu et al., 2017b). 
Therefore, the low vigor observed in combinations with Rootpac® 20 as 
rootstock compared to those with Rootpac® 40 or Garnem® may be in 
part due to reduced GA activity. 

Genes related to other hormonal responses were downregulated 
when grafted onto the dwarfing Rootpac® 20 rootstock (Table 2). 
NCED5 (Prudul26A009189) participates in maintaining basal abscisic 
acid (ABA) levels in Arabidopsis, which are necessary to promote plant 
growth (Frey et al., 2012). CAX3 (Prudul26A005365) participates in 
Ca2+ transport and interacts with auxin response, promoting growth and 
development in Arabidopsis (Cheng et al., 2005; Cho et al., 2012). The 
EXORDIUM family is a group of genes that are involved in BR-mediated 
responses (Coll-Garcia et al., 2004; Schröder et al., 2011). A member of 
this family, EXL5 (Prudul26A006427), was less expressed in the ‘Dia-
mar’/Rootpac® 20 combination, which might indicate lower BR activity 
in scions grafted onto dwarfing rootstocks (Table 2). 

Light response is an important regulator of plant growth (Molas and 
Kiss, 2009; Casal, 2012; Yadav et al., 2020). Several homologs to the 
auxin-induced gene SAUR50 (Prudul26A025556, Prudul26A030325, 
Prudul26A003964) were downregulated when grafted onto the dwarf-
ing rootstock Rootpac® 20 (Table 2). SAUR50 promotes cell expansion 
and is positively regulated by light (Wang et al., 2020a). A similar 

expression profile was presented by other genes associated with light 
responses (Table 2). NPH3 (Prudul26A025913) and RPT2 (Pru-
dul26A012618), which in Arabidopsis act by linking phototropism and 
auxin response, modifying polar auxin transport, and promoting growth 
(Wan et al., 2012; Christie et al., 2018). Oppositely, SAUR36 (Pru-
dul26A006348) and ARF16 (Prudul26A009326), which in Arabidopsis 
have been described to inhibit cell elongation in response to light or 
auxin (Hou et al., 2013; Dai et al., 2021), were found being upregulated 
in ‘Diamar’/Rootpac® 20. 

At the tissue level, cell proliferation and cell elongation define plant 
growth. Some effectors of cell proliferation were less expressed in the 
least vigorous ‘Diamar’/Rootpac® 20 combination (Table 2). FBL17 
(Prudul26A005909) is a crucial regulator of the cell cycle in Arabi-
dopsis, targeting a negative regulator and hence, promoting cell division 
(Gusti et al., 2009). Loss-of-function mutants display reduced growth 
due to decreased cell proliferation, being necessary to keep meristem 
activity (Noir et al., 2015). ELP (Prudul26A027852) and EXT2 (Pru-
dul26A015374) are homologs of EXT1, whose expression is correlated to 
tip growth in the roots of Tomato, maybe with a function also in shoot 
tips (Bucher et al., 2002). 

Here, we observed a general downregulation of diverse processes 
promoting growth in the Diamar’/Rootpac® 20 combination. Specially, 
we have seen that GA regulation is affected by the rootstock. 

3.6. DEGs associated with cell wall formation and reorganization were 
downregulated in combinations with dwarfing rootstock Rootpac® 20 

The cell wall defines the ultimate shape of the plant cell, restricting 
its capacity to elongate or divide (Cosgrove, 2016). Hence, for plants to 
grow and develop, cells must carry out remodeling of the cell wall. There 
were multiple genes associated with cell wall reorganization that were 
downregulated in the ‘Diamar’/Rootpac® 20 combination (Table 3). It is 
indeed plausible that these plants, being less vigorous and thus under-
going fewer cell division and cell elongation cycles, will present reduced 
cell wall remodeling processes. EXP1 (Prudul26A014459), EXP3 (Pru-
dul26A015151), EXP8 (Prudul26A032368, Prudul26A002026), EXP15 
(Prudul26A028987), and EXPB3 (Prudul26A000148) are all members of 
the expansin family, which acts mediating cell wall loosening, allowing 
then cell expansion (Cosgrove, 2015; Ramakrishna et al., 2019; Otu-
lak-Kozieł et al., 2020). LRR-extensin proteins like LRX4 (Pru-
dul26A018014) are part of the cell wall formation and deficiencies in 

Table 2 
Differentially expressed genes (DEGs) associated with plant growth and vigor.  

log2FC Rootpac® 20 - ’Garnem’ log2FC Rootpac® 20 - Rootpac® 40 P. dulcis ID Gene GO term Biological process 

− 1.989 − 2.382 Prudul26A020015 ACL5 GO:0006596 polyamine biosynthetic process 
0.842 1.263 Prudul26A009326 ARF16 GO:0009733 response to auxin 
− 1.303 − 1.591 Prudul26A012411 CAX3 GO:0006816 calcium ion transport 
1.544 1.341 Prudul26A022494 DAG1 GO:0006355 regulation of transcription, DNA-dependent 
− 2.597 − 2.970 Prudul26A027852 ELP GO:0009664 plant-type cell wall organization 
− 0.578 − 1.446 Prudul26A006427 EXL5 GO:0009741 response to brassinosteroid 
4.663 5.974 Prudul26A026745 EXLB1 GO:0019953 sexual reproduction 
− 1.033 − 1.860 Prudul26A015374 EXT2 GO:0009664 plant-type cell wall organization 
− 1.746 − 2.019 Prudul26A005909 FBL17 GO:0051302 regulation of cell division 
3.769 3.085 Prudul26A017080 GA2OX8 GO:0009686 gibberellin biosynthetic process 
− 3.055 − 3.876 Prudul26A015013 GASA1 GO:0009739 response to gibberellin 
− 2.475 − 2.565 Prudul26A023277 GASA6 GO:0009740 gibberellic acid mediated signaling pathway 
− 1.374 − 1.960 Prudul26A011751 GASA9 GO:0009739 response to gibberellin 
− 3.275 − 3.699 Prudul26A010439 GAST1 GO:0009739 response to gibberellin 
− 0.914 − 1.776 Prudul26A009189 NCED5 GO:0009688 abscisic acid biosynthetic process 
− 0.626 − 1.189 Prudul26A025913 NPH3 GO:0009638 phototropism 
− 1.258 − 1.575 Prudul26A012618 RPT2 GO:0009638 phototropism 
0.820 1.614 Prudul26A006348 SAUR36 GO:0009733 response to auxin 
− 0.991 − 1.919 Prudul26A025556 SAUR50 GO:0009733 response to auxin 
− 2.035 − 2.794 Prudul26A030325 SAUR50 GO:0009733 response to auxin 
− 2.986 − 3.692 Prudul26A003964 SAUR50 GO:0009733 response to auxin 
− 1.303 − 1.401 Prudul26A023379 YAB1 GO:1902183 regulation of shoot apical meristem development 
− 1.625 − 1.960 Prudul26A020640 YAB5 GO:1902183 regulation of shoot apical meristem development 

†log2FC values in cursive represent genes that were not differentially expressed. 
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this gene family lead to reduced plant growth (Draeger et al., 2015). 
The plant cell wall is formed by numerous components, whose 

regulation affects cell wall formation and reorganization (Cosgrove, 
2016; Meents et al., 2018; Voiniciuc et al., 2018). Various DEGs puta-
tively related to the positive regulation of these processes displayed less 
expression when ‘Diamar’ was grafted onto Rootpac® 20 (Table 3). 
More vigor entails tissue growth and a more active cell wall metabolism 
and reorganization. Lignification is a crucial aspect of the secondary cell 
wall formation, with laccases like LAC11 (Prudul26A000315, Pru-
dul26A0016089, and LAC17 (Prudul26A010009, Prudul26A019505) 
playing an important role in assuring proper cell structure, controlling 
lignin deposition (Ranocha et al., 2002; Berthet et al., 2011; Zhao et al., 
2013; Liu et al., 2018a). 4CLL9 (Prudul26A016569) is a regulator of 
lignin biosynthesis in rice, both promoting and repressing it (Liu et al., 
2017a). Cell wall hemicellulose is formed by several molecules, 
including xyloglucans, which in case of cell wall reorganization are 
hydrolyzed or remodeled (Park and Cosgrove, 2015). XTH5 (Pru-
dul26A009872), XTH6 (Prudul26A002835), and XTH8 (Pru-
dul26A000404) are involved in loosening the cell wall, allowing cell 
elongation in Arabidopsis (Liu et al., 2007; Muñoz and Calderini, 2015; 
Takahashi et al., 2021). CSLC5 (Prudul26A026490, Prudul26A005669) 
is part of the xyloglucan biosynthetic pathway, while TBL19 (Pru-
dul26A012896, Prudul26A009187, Prudul26A011091) controls xylan 
acetylation (Gao et al., 2017; Kim et al., 2020). 

Cellulose and pectins are major cell wall components and their 
synthesis and organization are crucial aspects of cell wall formation 
(Meents et al., 2018; Saffer, 2018). FLA proteins, like FLA9 (Pru-
dul26A015935), are associated with wood formation, affecting sec-
ondary cell wall formation and structure (Wang et al., 2015; He et al., 
2019). They participate in the organization of cell wall polysaccharides 
like cellulose and pectins, with mutants presenting reduced cellulose 
content (Liu et al., 2020). CSLD3 (Prudul26A019715) plays a role in the 
cellulose biosynthetic pathway (Park et al., 2011; Yang et al., 2020). 
Although its specific role is yet to be characterized, CSLB4 (Pru-
dul26A026119) seems to be also required for cellulose biosynthesis 
(Youngs et al., 2007). GRF4 (Prudul26A000195) is expected to 

positively regulate cellulose biosynthesis and biomass accumulation, 
controlling MYB61 transcription. A member of its family in citrus has 
been characterized as being more expressed in vigor-inducing rootstocks 
(Liu et al., 2017b; Gao et al., 2020). PMR5 (Prudul26A018663) is a 
member of the TBL family, likely participating in pectin acetylation 
(Chiniquy et al., 2019). Pectin methylesterases like PME3 (Pru-
dul26A021520) and PM34 (Prudul26A004552, Prudul26A029274) 
affect cell wall composition and cell expansion in Arabidopsis (Kohorn 
et al., 2014). 

When grafted onto Rootpac® 20, ‘Diamar’ displayed a broad 
downregulation of mechanisms involved in cell wall formation and 
reorganization compared to vigor-conferring rootstock combinations. 
Lower expression in this combination may be associated with a less 
active metabolism, likely due to a less active cell division, which 
translates into a less cell wall modifications. 

3.7. Nitrogen metabolism was less active in the ‘Diamar’/Rootpac® 20 
combination 

Nitrogen assimilation is vital for plant growth and development as it 
is an indispensable nutrient for the mechanisms involved in tree vigor 
(Krouk et al., 2011). The rootstock effect in nitrogen assimilation has 
been described in grapevine, where changes in nitrogen availability 
affect the expression profile of genes in dwarfing rootstocks (Cochetel 
et al., 2017). NIR1 (Prudul26A012711) and NIA1 (Prudul26A000078) 
perform two crucial successive steps in nitrate assimilation, converting 
NO into assimilable molecules for plant metabolism (Solomonson and 
Barber, 1990; Tanaka et al., 1994). Deficiencies in these genes lead to 
severely impaired growth in Arabidopsis (Costa-Broseta et al., 2020). In 
Arabidopsis, TIP2;3 (Prudul26A020819) mediates NH3 transport and is 
upregulated under conditions of high nitrogen availability (Loqué et al., 
2005). These three genes were downregulated in the ‘Dia-
mar’/Rootpac® 20 combination, evidencing that nitrogen metabolism is 
less active in scions grafted onto dwarfing rootstocks (Table 4). Various 
homologs to the NRT1.1 (Prudul26A015004, Prudul26A008539, and 
Prudul26A010496) transporter were also less expressed when grafted 

Table 3 
Differentially expressed genes (DEGs) associated with cell wall formation and cell wall reorganization.  

log2FC Rootpac® 20 - ’Garnem’ log2FC Rootpac® 20 - Rootpac® 40 P. dulcis ID Gene GO term Biological process 

− 1.346 − 2.772 Prudul26A016569 4CLL9 GO:0009809 lignin biosynthetic process 
− 1.795 − 1.876 Prudul26A026119 CSLB4 GO:0030244 cellulose biosynthetic process 
− 1.147 − 1.209 Prudul26A023496 CSLC5 GO:0071555 cell wall organization 
− 1.481 − 1.777 Prudul26A005669 CSLC5 GO:0071555 cell wall organization 
− 2.225 − 2.391 Prudul26A026490 CSLC5 GO:0071555 cell wall organization 
− 1.510 − 1.954 Prudul26A019715 CSLD3 GO:0030244 cellulose biosynthetic process 
− 2.628 − 3.405 Prudul26A014459 EXP1 GO:0009664 plant-type cell wall organization 
− 3.417 − 4.109 Prudul26A028987 EXP15 GO:0009664 plant-type cell wall organization 
− 1.174 − 1.528 Prudul26A015151 EXP3 GO:0009664 plant-type cell wall organization 
− 4.341 − 5.406 Prudul26A032368 EXP8 GO:0009664 plant-type cell wall organization 
− 2.370 − 2.994 Prudul26A002026 EXP8 GO:0009664 plant-type cell wall organization 
− 2.202 − 2.566 Prudul26A000148 EXPB3 GO:0009828 plant-type cell wall loosening 
− 2.638 − 3.705 Prudul26A015935 FLA9 GO:0009834 plant-type secondary cell wall biogenesis 
− 1.534 − 1.898 Prudul26A000195 GRF4 GO:0006355 regulation of transcription, DNA-dependent 
− 1.963 − 2.516 Prudul26A000315 LAC11 GO:0009809 lignin biosynthetic process 
− 3.545 − 3.917 Prudul26A001608 LAC11 GO:0009809 lignin biosynthetic process 
− 1.718 − 2.205 Prudul26A010009 LAC17 GO:0009809 lignin biosynthetic process 
− 1.858 − 2.763 Prudul26A019505 LAC17 GO:0009809 lignin biosynthetic process 
− 0.818 − 1.191 Prudul26A018014 LRX4 GO:0009664 plant-type cell wall organization 
− 1.248 − 1.602 Prudul26A021520 PME3 GO:0042545 cell wall modification 
− 0.738 − 1.412 Prudul26A004552 PME34 GO:0042545 cell wall modification 
− 1.406 − 1.778 Prudul26A029274 PME54 GO:0042545 cell wall modification 
− 1.629 − 2.260 Prudul26A018663 PMR5 GO:0042545 cell wall modification 
− 2.460 − 2.728 Prudul26A012896 TBL19 GO:1990937 xylan acetylation 
− 2.204 − 2.828 Prudul26A009187 TBL19 GO:1990937 xylan acetylation 
− 2.513 − 1.785 Prudul26A011091 TBL19 GO:1990937 xylan acetylation 
− 2.599 − 2.896 Prudul26A009872 XTH5 GO:0010411 xyloglucan metabolic process 
− 2.889 − 2.911 Prudul26A002835 XTH6 GO:0010411 xyloglucan metabolic process 
− 2.358 − 2.763 Prudul26A000404 XTH8 GO:0010411 xyloglucan metabolic process 

†log2FC values in cursive represent genes that were not differentially expressed. 
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onto Rootpac® 20 (Table 4). NRT1.1 carriers participate in the regula-
tion of architecture processes like root branching, slowing down their 
development in response to auxin, which they seem able to transport 
(Krouk et al., 2010; Wang et al., 2020b). This function would not match 
the observed phenotype, since individuals grafted onto Rootpac® 40 or 
Garnem® displayed reduced apical dominance and numerous branches 
in comparison to those grafted onto Rootpac® 20, a different regulatory 
function in the nitrogen metabolism cannot be excluded for these 
homologs. 

Nitrogen availability is crucial for tree growth and development. 
Here we detected a downregulation of genes involved in nitrogen 
assimilation and transport in the reduced vigor ‘Diamar’/Rootpac® 20 
combination. 

3.8. Characterization of DEGs associated with meristem differentiation in 
‘Diamar’ combinations 

Flowering has been previously linked to the regulation of tree ar-
chitecture, though the relation between them is not fully characterized 
(Seleznyova et al., 2008; Foster et al., 2014). We observed mixed results, 
with genes promoting and repressing flowering being more expressed in 
both combinations with the dwarfing rootstock Rootpac® 20 and the 
vigor-inducing rootstocks Rootpac® 40 and Garnem®. Various flower-
ing inductors were less expressed when grafted onto Rootpac® 20 
(Table 4). CIB1 (Prudul26A005648) activates FT transcription in Ara-
bidopsis, thus regulating flowering positively (Liu et al., 2018b). 
Nevertheless, the flowering repressor TFL1 (Prudul26A021958) was 
downregulated in ‘Diamar’/Rootpac® 20 (Table 4). TFL1 acts antago-
nistically to FT, repressing flowering and increasing vegetative growth 
(Moraes et al., 2019). The effect of TFL1 in growth promotion may 
concur with the reduced vigor observed in the ‘Diamar’/Rootpac® 20 
combination compared with ‘Diamar’/Rootpac® 40. A gene encoding a 
homolog of DAM5 (Prudul26A019427) was upregulated in the ‘Dia-
mar’/Rootpac® 20 combination (Biswajit et al., 2011Table 4). DAM5 
and DAM6 participate in flowering by negatively regulating bud 
dormancy release in Prunus (Biswajit et al., 2011). Several flowering 
inductors were also upregulated in the ‘Diamar’/Rootpac® 20 combi-
nation (Table 4). FD (Prudul26A006108) performs a pivotal step in 
flowering development, being required for FT activity, which regulates 
directly forming a complex (Wigge et al., 2005; Collani et al., 2019). 
Upstream of this step, NF-YA3 (Prudul26A024273) interacts with the 
flowering regulator CO, positively affecting floral organ development in 
Arabidopsis (Fornari et al., 2013; Su et al., 2018). Lastly, SIP1 (Pru-
dul26A030680) has been described in rice to promote early flowering in 
response to light signaling (Kim et al., 2013; Kang et al., 2015; Jiang 
et al., 2018). 

Given these results, it is unclear how genes associated with flowering 
interact with the regulatory pathways involved in the tree architecture. 
Instead of an overall interaction between these two biological processes, 
individual genes may carry out specific functions that affect both 

pathways. 

4. Conclusions 

Tree architecture is dependent on numerous processes such as light 
perception, gravity sensing, sugar availability, or nutrient supply that 
take part in the tree’s physiological and hormonal regulation. Rootstock 
interaction with the scion may transform how cultivars respond to the 
same environmental cues. Previous studies had described how the 
rootstock effect can alter scion architecture traits like the number of 
branches or axis height in tree species, including Almond. After carrying 
out a transcriptome analysis in nine cultivar/rootstock combinations, 
we report our results and considerations of the biological processes that 
are affected by scion/rootstock interaction possibly affecting tree ar-
chitecture. As a prospect, the evaluation of these hormones and me-
tabolites concentrations would help to support our hypothesis based on 
phenotypic and molecular observations of the rootstock effect on tree 
architecture. Our results show that while the expression profile of cul-
tivars with strong scion phenotypes is not significatively altered by the 
rootstock, that of cultivars whose phenotype is affected by the rootstock 
presents a strong modification. Regulation of genes associated with 
hormones involved in apical dominance and branch formation, like 
auxin and CKs, are in this case influenced by the rootstock. Moreover, 
mechanisms associated with vigor control, such as GA response or ni-
trogen assimilation, were shown to also be affected by the rootstock, 
being limited when grafted onto dwarfing rootstocks. Rootstock inter-
action can also modify the expression of genes involved in cell wall 
formation and reorganization, being less active in combinations with 
dwarfing rootstocks. In conclusion, described effects on scion architec-
ture correlate with significatively differences in the transcriptome of 
those combinations, affecting several hormonal responses and molecular 
mechanisms. 
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log2FC Rootpac® 20 - ’Garnem’ log2FC Rootpac® 20 - Rootpac® 40 P. dulcis ID Gene GO term Biological process 
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1.615 2.472 Prudul26A024273 NF-YA3 GO:0006355 regulation of transcription, DNA-dependent 
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− 5.937 − 9.422 Prudul26A020819 TIP2;3 GO:0055085 transmembrane transport 

†log2FC values in cursive represent genes that were not differentially expressed. 
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Schröder, F., Lisso, J., Müssig, C., 2011. Exordium-like1 promotes growth during low 
carbon availability in arabidopsis. Plant Physiol. 156, 1620–1630. https://doi.org/ 
10.1104/pp.111.177204. 

Seleznyova, A.N., Tustin, D.S., Thorp, T.G., 2008. Apple dwarfing rootstocks and 
interstocks affect the type of growth units produced during the annual growth cycle: 
precocious transition to flowering affects the composition and vigour of annual 
shoots. Ann. Bot. 101, 679–687. https://doi.org/10.1093/aob/mcn007. 

Shinohara, N., Taylor, C., Leyser, O., 2013. Strigolactone can promote or inhibit shoot 
branching by triggering rapid depletion of the auxin efflux protein PIN1 from the 
plasma membrane. PLoS Biol. 11 https://doi.org/10.1371/journal.pbio.1001474. 

Simon, S., Skůpa, P., Viaene, T., et al., 2016. PIN6 auxin transporter at endoplasmic 
reticulum and plasma membrane mediates auxin homeostasis and organogenesis in 
Arabidopsis. New Phytol. 211, 65–74. https://doi.org/10.1111/nph.14019. 

Solomonson, L.P., Barber, M.J., 1990. Assimilatory nitrate reductase: functional 
properties and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 225–253. 
https://doi.org/10.1146/annurev.pp.41.060190.001301. 

Sorin, C., Declerck, M., Christ, A., et al., 2014. A miR169 isoform regulates specific NF- 
YA targets and root architecture in Arabidopsis. New Phytol. 202, 1197–1211. 
https://doi.org/10.1111/nph.12735. 

Srikanth, A., Schmid, M., 2011. Regulation of flowering time: all roads lead to Rome. 
Cell. Mol. Life Sci. 68, 2013–2037. https://doi.org/10.1007/s00018-011-0673-y. 

Stokes, M.E., Chattopadhyay, A., Wilkins, O., et al., 2013. Interplay between sucrose and 
folate modulates auxin signaling in arabidopsis. Plant Physiol. 162, 1552–1565. 
https://doi.org/10.1104/pp.113.215095. 

Su, H., Cao, Y., Ku, L., et al., 2018. Dual functions of ZmNF-YA3 in photoperiod- 
dependent flowering and abiotic stress responses in maize. J. Exp. Bot. 69, 
5177–5189. https://doi.org/10.1093/jxb/ery299. 

Sun, T., 2010. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth 
and development. Plant Physiol. 154, 567–570. https://doi.org/10.1104/ 
pp.110.161554. 

Takahashi, D., Johnson, K.L., Hao, P., et al., 2021. Cell wall modification by the 
xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance 
after cold and sub-zero acclimation. Plant Cell Environ. 44, 915–930. https://doi. 
org/10.1111/pce.13953. 

Tanaka, S., Ida, S., Irifune, K., Oeda, K., Morikawa, H., 1994. Nucleotide sequence of a 
gene for nitrite reductase from arabidopsis thaliana. Mitochondrial DNA 5, 57–61. 
https://doi.org/10.3109/10425179409039705. 

Tian, C., Wang, Y., Yu, H., et al., 2019. A gene expression map of shoot domains reveals 
regulatory mechanisms. Nat. Commun. 10, 1–12. https://doi.org/10.1038/s41467- 
018-08083-z. 

Titapiwatanakun, B., Murphy, A.S., 2009. Post-transcriptional regulation of auxin 
transport proteins: cellular trafficking, protein phosphorylation, protein maturation, 
ubiquitination, and membrane composition. J. Exp. Bot. 60, 1093–1107. https://doi. 
org/10.1093/jxb/ern240. 

Tworkoski, T., Fazio, G., 2015. Effects of size-controlling apple rootstocks on growth, 
abscisic acid, and hydraulic conductivity of scion of different vigor. Int. J. Fruit Sci. 
15, 369–381. https://doi.org/10.1080/15538362.2015.1009973. 

Tworkoski, T., Miller, S., 2007. Rootstock effect on growth of apple scions with different 
growth habits. Sci. Hortic. 111, 335–343. https://doi.org/10.1016/j. 
scienta.2006.10.034 (Amsterdam).  

Vaahtera, L., Schulz, J., Hamann, T., 2019. Cell wall integrity maintenance during plant 
development and interaction with the environment. Nat. Plants 5, 924–932. https:// 
doi.org/10.1038/s41477-019-0502-0. 

Van Hooijdonk, B.M., Woolley, D.J., Warrington, I.J., Tustin, D.S., 2010. Initial alteration 
of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot 
signalling by auxin, gibberellin, and cytokinin. J. Hortic. Sci. Biotechnol. 85, 59–65. 
https://doi.org/10.1080/14620316.2010.11512631. 

Voiniciuc, C., Pauly, M., Usadel, B., 2018. Monitoring polysaccharide dynamics in the 
plant cell wall. Plant Physiol. 176, 2590–2600. https://doi.org/10.1104/ 
pp.17.01776. 

Waldie, T., Leyser, O., 2018. Cytokinin targets auxin transport to promote shoot 
branching. Plant Physiol. 177, 803–818. https://doi.org/10.1104/pp.17.01691. 

Wan, Y., Jasik, J., Wang, L., et al., 2012. The signal transducer NPH3 integrates the 
phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root 
phototropism. Plant Cell 24, 551–565. https://doi.org/10.1105/tpc.111.094284. 

Wang, B., Smith, S.M., Li, J., 2018a. Genetic regulation of shoot architecture. Annu. Rev. 
Plant Biol. 69, 437–468. https://doi.org/10.1146/annurev-arplant-042817-040422. 

Wang, H., Jiang, C., Wang, C., et al., 2015. Antisense expression of the fasciclin-like 
arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous 
genes and alters stem biomechanics and cell wall composition in transgenic trees. 
J. Exp. Bot. 66, 1291–1302. https://doi.org/10.1093/jxb/eru479. 

Wang, J., Sun, N., Zhang, F., et al., 2020a. SAUR17 and SAUR50 differentially regulate 
PP2C-D1 during apical hook development and cotyledon opening in arabidopsis. 
Plant Cell 32, 3792–3811. https://doi.org/10.1105/tpc.20.00283. 
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