
Journal Pre-proof

Metabolic profiling of pea (Pisum sativum) cultivars in changing
environments: Implications for nutritional quality in animal feed

Pierluigi Reveglia, Mireia Blanco, Maria Josè Cobos, Maryke
Labuschagne, Margalida Joy, Diego Rubiales

PII: S0308-8146(24)02622-0

DOI: https://doi.org/10.1016/j.foodchem.2024.140972

Reference: FOCH 140972

To appear in: Food Chemistry

Received date: 27 February 2024

Revised date: 17 August 2024

Accepted date: 21 August 2024

Please cite this article as: P. Reveglia, M. Blanco, M.J. Cobos, et al., Metabolic profiling
of pea (Pisum sativum) cultivars in changing environments: Implications for nutritional
quality in animal feed, Food Chemistry (2024), https://doi.org/10.1016/
j.foodchem.2024.140972

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.foodchem.2024.140972
https://doi.org/10.1016/j.foodchem.2024.140972
https://doi.org/10.1016/j.foodchem.2024.140972


Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Metabolic profiling of pea (Pisum sativum) cultivars in changing environments: 

Implications for nutritional quality in animal feed 

Pierluigi Reveglia
a
, Mireia Blanco

b
, Maria Josè Cobos

a
, Maryke Labuschagne

c
, Margalida Joy

b
, 

Diego Rubiales
a*

 

a
Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain 

b
 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de 

Aragón – IA2 (CITA-Universidad de Zaragoza), Zaragoza, 50059, Spain 

c
Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa 

*
 Corresponding author. E-mail address: diego.rubiales@ias.csic.es 

ABSTRACT 

Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their 

high-quality protein and starch digestibility. However, the chemical composition of pea cultivars 

can vary across different growing locations, consequently impacting their nutrient profiles. This 

study employs untargeted metabolomics in conjunction with the quantification of fatty acids and 

amino acids to explore the influence of three different growing locations in Spain (namely 

Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. 

Significant interactions between cultivar and environment were observed, with 121 metabolites 

distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, 

carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across 

locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 

predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-

dependent, with higher levels in Asturias. These findings underscore the impact of environmental 

factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on 

specific locations and animal requirements. Enhanced collaboration between research and industry 

is crucial for optimizing pea cultivation for animal feed production. 
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Highlights 

 There was a clear cultivar × environment interaction on pea metabolic profiles. 
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 Untargeted metabolomics revealed 121 significant metabolites, shaping the clustering of 

selected cultivars in a specific location. 

 Lipids and lipid-like molecules, phenylpropanoids and polyketides (flavonoids, 

isoflavonoids), carbohydrates and amino acids are the most differential metabolites. 

 Palmitic, stearic, oleic, linoleic, and α-linolenic are the most abundant fatty acids.  

 Glutamic and aspartic acids were the most abundant amino acids. Methionine and cysteine 

demonstrated the lowest concentrations.  

 Overall, cultivars grown in Asturias exhibit the highest amino acid content. 

 

1. Introduction 

Legumes, members of the Fabaceae family, are characterized by their notable ability to fix 

atmospheric nitrogen through symbiotic interactions with nitrogen-fixing bacteria, which are 

crucial for the sustainability of agricultural practices. Moreover, they offer a rich source of high-

quality plant protein for human and animal consumption (Rubiales et al., 2021). Notably, there is a 

growing interest in dry peas as a functional ingredient in the food industry (Shanthakumar et al., 

2022; Windsor et al., 2024). 

 Indeed, they are characterized by contents of moderately high crude protein (CP; 17.9 - 

24.1%), low crude fat (CF; 1.5 to 3.7%), and neutral detergent fiber (NDF; 11-22 %) and a high 

starch content (42%), and they are highly digestible (Crépon, 2007). Like other legume grains, the 

protein is rich in lysine but deficient in sulfur-containing amino acids and tryptophan.  

The characteristics of pea oil vary between genotypes, being some of them rich in poly-

unsaturated fatty acids (Ω-3, Ω-6), that could become a dietary source contributing to animal 

health, physiological functions, and maintenance (Solis et al., 2013). Moreover, legumes, 

including peas, are rich in bioactive specialized metabolites, encompassing several classes of 

natural compounds. While beneficial for animal health, for instance, condensed tannins may 

positively impact animal health by preventing bloat, enhancing livestock protein utilization, and 

reducing the internal parasite burden in monogastric livestock.  

Metabolomics has proven effective in exploring the metabolic features of food resources 

influenced by environmental and genetic factors, enabling the assessment of food quality 

(Harrigan et al., 2007; Kim et al., 2016; Utpott et al., 2022).  

The metabolite composition of legumes and crops, in general, can be influenced both by the 

genotype and the growing conditions. There is some understanding of the influence of the 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

genotype on quality (Wang et al., 2004; Kwon et al., 2012; Hacisalihoglu et al., 2021), but less so 

on environmental effects and the genotype x environment interactions (Amarakoon et al., 2015; 

Maharjan et al., 2019; Pant et al., 2021; Wang, 2023). Recently, 107 Portuguese common bean 

accessions, cropped under contrasting environments, were analyzed by Mecha and co-authors 

using untargeted and targeted mass spectrometry approaches. The analysis revealed a clear 

genotype × environment interaction was also detected (Mecha et al., 2022). Addressing the impact 

of these factors on nutritional quality and, also, adaptation to climate change, especially in Europe 

is crucial for ensuring sustainable animal production, environmental stability, and farmers' 

economic prosperity (Solomon, 2022).  

In this framework, this study aimed to understand how the nutritional values of different 

cultivars of peas could be affected by three contrasting growing locations in Spain. Insights in the 

post-harvest nutritional assessment are essential for aligning pea production with the specific 

nutritional requirements of feed manufacturers and optimizing formulations for animal nutrition to 

meet market demands. Hence, eight different pea cultivars were selected, and their chemical 

composition initially studied by an untargeted metabolomics approach utilizing liquid 

chromatography coupled with high-resolution tandem mass spectrometry to analyse a broad 

spectrum of metabolites. Subsequently, nutritionally significant fatty acids and amino acids were 

quantified using chromatography. 

2. Material and Methods 

2.1 Plant material and growth condition  

The study included eight cultivars (cv.): Avenger, Chicana, Forana, Furious, Jarana, Karacter, 

Karpate, and Tirana. Samples of peas cultivated in three regions with highly diverse agro-climatic 

conditions were analyzed: Andalusia, Aragon and Asturias. The Andalusian samples were provided 

from field trials performed at the IAS-CSIC farm at Córdoba. During the growing period, the 

average temperature was 14.1 °C, reaching a maximum of 40.6 °C and a minimum of -1.2 °C, with 

a total rainfall of 313.0 mm. Pea samples from Aragon were collected from field trials performed at 

Lupiñén (Huesca) grown under an average temperature of 11.4 °C, a maximum of 39.7 °C, a 

minimum of -2.4 °C, and a total rainfall of 240.9 mm. The Asturian samples were provided from 

field trials performed at SERIDA experimental farm in Grado (Asturias). The average temperature 

during the growing period was 11.3 °C, with a maximum of 29.0 °C and a minimum of -1.7 °C, and 

a total rainfall of 410.5 mm. All the information about locations, crop management and yields 

obtained in the trials are available on the website of Go Inpulse project (https://goinpulse.com/wp-

content/uploads/2022/09/Informe-Provisional-Tarea-4-vdef.pdf). 
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2.2. Extraction protocol for untargeted metabolomics analysis 

Three mature, dried seeds from each selected cultivar in the different environments, taken from 

each biological replicate were collected and milled using a Ball Mill (MM 400 Retsch, Haan, 

Germany) to a particle size of 0.8 mm and stored at - 20 ◦C, until further analysis. The milled pea 

bean seeds were extracted in triplicate (technical replicates) following previously reported 

protocols, with slight modifications (Brigante et al., 2020; Mecha et al., 2022). Briefly, 2 mL of 

MeOH: water + 0.1% FA (70:30, v/v) solution was added to 400 mg of dry whole-seed flour, 

followed by a 30-second vortex and sonication for 30 min. After centrifugation at 420×g for 10 

min, the supernatant was collected in a new tube, dried, and kept at - 20 ◦C, until analysis. 

 

2.3. UHPLC- QTOF-HRMS apparatus and conditions 

Before analysis, the dried extracts were reconstituted in 1 mL MeOH: water + 0.1% FA (70:30, 

v/v) and filtered through Millex syringe filters of 0.2 µm (Merck, Darmstadt, Germany). 

Umbelliferone, the internal standard (IS), was spiked into every solution at a final concentration of 

10 µg/mL. Finally, 50 μL of each extract was taken to create three pooled quality control (QC) 

samples. 

The UPLC-QTOF-HRMS analysis was carried out by the Metabolomics Platform of Agricultural 

Sciences, Food Science and Technology and Natural Resources (CEBAS)-CSIC, Murcia, Spain. In 

details, chromatographic separation was realized using Acquity UPLC- I-class system (Waters 

Corporations, USA). In QTOF-HRMS analysis, 7 μL of the organic extract was injected using a 

Sample Manager Fixed-Loop (SM-FL) (Waters Corporations, USA). Chromatographic separation 

was performed on Poroshell 120 EC-C18 Agilent column (100 × 3 mm, 2.7 μm, (Agilent 

Technologies, Waldbronn, Germany) operating at 30 °C and a flow rate of 0.4 mL/min in an 

Acquity I-Class column oven systems (Waters Corporations, USA). Compounds were separated 

using the following gradient conditions using H2O + 0.1% FA (A) and ACN + 0.1% FA (B): 0–10 

min, 1–18 % phase-B; 10–16 min, 18–38 % phase-B; 16–22 min, 38–95 % phase-B. Finally, the 

phase Bcontent was returned to the initial conditions (1 %) for 1 min and the column re-equilibrated 

for five more min. Software Compass HyStar (version 3.2 Bruker Daltonics, Bremen, Germany) 

was used for the operation of the UHPLC systems. The pooled QCs were used for metabolomic 

analysis quality (Fig. S1). QCs, blanks and umbelliferone solution (1 µg/mL) were injected three 

times during the batch: beginning, middle and end. maXis Impact QTOF mass spectrometers 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

(Bruker Daltonics, Bremen, Germany) were utilized for QTOF-HRMS experiments. Ionization in 

the mass spectrometers was performed using an ESI source (Bruker Daltonics, Bremen, Germany), 

which were each operated under optimized conditions. The parameters for ESI source were set as 

follows: ionization was performed in the negative mode at −4.0 kV. Dry gas temperature was set to 

200 °C at a flow rate of 9.0 L/min. Nebulizer gas pressure was 2 bar. The ESI ion source was 

operated at 4.0 kV with a probe gas temperature of 450 °C at a flow rate of 4 L/min. The dry gas 

temperature was set to 300 °C at a flow rate of 9.0 L/ min. The nebulizer gas pressure was 2 bar. A 

mass range of 50−1200 m/z was covered, and the full scan and MS2 data were recorded at a spectra 

rate of 2 Hz. Data-independent acquisition in the broadband collision-induced dissociation (bbCID) 

mode was chosen for MS/MS experiments. Fragmentation took place in a collision-induced 

dissociation cell using nitrogen. Spectral acquisition was performed at collision energy (CE) of 20 

eV. In order to calibrate the mass axis, a 10 mM sodium formate cluster solution in 1:1 isopropanol-

water was introduced into the ESI source at the beginning of each UHPLC run using a divert valve 

for instrument mass calibration and for re-calibration of individual raw data files. Software 

Compass otofControl (software version 3.4, Bruker Daltonics, Bremen, Germany) was used for the 

operation of the mass spectrometer and for data acquisition. 

2.4. Analytical protocols for fatty acids and amino acids analysis 

The mature dried seeds of the viable plants were collected and milled using a Rotary Mill (ZM200 

Retsch, Germany) at 0.2 mm. All analyses of the chemical composition of pea grains were 

conducted in duplicate. Fatty acids were determined as fatty acid methyl esters using gas 

chromatography with flame ionization detection based on the method of Sukhija & Palmquist 

(1988) and Lee and coauthors (2012), after optimization of the process (Baila et al., 2023). For this 

purpose, the Bruker Scion 436-GC-FID gas chromatograph (Bruker, Billerica, USA) equipped with 

the CP-8400 autosampler (Bruker), HP-88 capillary column (100 m x 0.25 mm x 0.2 μm, Agilent, 

Santa Clara, USA), and all controlled by CompassCDS software (Bruker) were used. The FAME 

identifications were based on their retention times that were compared with those of the standard 

FAME mixtures GLC-532, GLC-401, GLC-643 and GLC-642 (Nu-Chek Prep, Elysian, MN, USA) 

and quantification was performed using C19:0 as an internal standard as described in ISO 12966-

4:2015. 

The amino acid profile (except for tryptophan) was carried out by the CIB, Margarita Salas-CSIC, 

Madrid (Spain). It was determined by ion exchange liquid chromatography with absorbance 

detection. Samples underwent protein hydrolysis with hydrochloric acid, subsequent post-column 

derivatization with ninhydrin, and finally, detection by absorbance at 570 and 440 nm (proline) 

using the Biochrom 30 analyzer (Biochrom Ltd, Holliston, USA). Regarding cysteine 
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determination, this amino acid is destroyed during acid hydrolysis, then cys value corresponds to 

cystine in this analysis. The quantification of the amino acids was performed using norleucine as an 

internal standard. Tryptophan was determined by high-resolution liquid chromatography (CITA, 

Zaragoza, Spain) with absorbance detection based on a previously reported method (La Couret al. 

2019). Samples underwent protein hydrolysis with lithium hydroxide, chromatographic separation 

and detection at 289 nm. Tryptophan quantification was performed using a commercial reference 

standard (T2610000, Merck). The Waters Acquity UPLC H-Class liquid chromatograph (Waters, 

Milford, USA) equipped with an Acquity UPLC HSS PFP column (100 mm x 2.1 mm x 1.8 µm, 

Waters), a photodiode array detector (PDA eλ Detector, Waters), a fluorescence detector (2475 

Multi λ Fluorescence Detector, Waters), all controlled by Empower3 software (Waters), was used. 

 

2.5. Metabolites annotation and identification  

To fully exploit the differences in the metabolite profile obtained, three bioinformatic tools were 

integrated: 1) the raw LC-HRMS were converted in mzML files using MSConvert software 

(Proteowizard, Palo Alto, US) and then analyzed by the web-based tools MetaboAnalyst 5.0 (Pang 

et al., 2021); 2) MS-DIAL (Version 5.10)/ MS-FINDER (Version 3.5) (Tsugawa et al., 2015), the 

computational approach which helps to characterize the structure of the metabolites rapidly; 3) 

MetFreg (Ruttkies et al., 2019), freely available web software to assist the annotation of high-

precision tandem mass spectra of metabolites by in silico fragmentation.  

This approach includes three steps: Step 1: spectra processing and peak annotation with 

MetaboAnalyst 5.0. All the parameters are reported in Table S1. Features with higher 25% per cent 

of RSD in QC samples were filtered out.  Feature with more than 50% of missing values in the 

samples were removed while missing values were estimated by sample wisesample-wise k-nearest 

neighbours (KNN) algorithm. Step 2: univariate and multivariate analysis of the global metabolites 

profile with MetaboAnalyst 5.0. Full details about this step are reported in section 2.6 (Data 

Analysis and Visualization). Step 3: structural annotation of the metabolites was performed with 

MS-DIAL/MS-FINDER and MetFrag. The metabolite ions were converted into structural 

information with MS-DIAL/MS-FINDER linked to MS/MS databases. The MS-DIAL parameters 

were MS1 tolerance of 0.01 Da; MS2 tolerance of 0.05 Da; minimum peak height of 1000 

(amplitude); for alignment, a QC sample was used as a reference file, and the retention time 

tolerance was set at 0.05 min. The MS/MS public databases used for peak identification were 

MSMS-Neg-MassBankEU, MSMS-Neg-GNPS, MSMS-Neg-MassBank, 

MSMS_Public_EXP_NEG_VS17, MSMS_Public_ExpBioInsilico_NEG_VS17, MSMS-Neg-



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Vaniya-Fiehn_Natural_Products_Library, the identification score cutoff value was selected as 8. 

Significant metabolites with monoisotopic mass error within ±5 mDa with no proper match in the 

selected databases were manually screened for mass spectral peak matching. The molecular 

formulas were searched on COCONUT (Sorokina et al., 2021), LOTUS (Rutz et al., 2022) and 

HMDB (Wishart et al., 2022) database, SDF files were generated from the above-cited database and 

uploaded to MetFrag to identify the metabolites within silico fragmentation. The complete list of 

identified/annotated metabolites and confidence levels are reported in the Table S2. Careful manual 

curation of all assigned peaks was carried out, and the metabolites were annotated according to 

confidence levels A-D, as described in Table S2 (Alseekh et al., 2021; Bulut et al., 2023; Sumner et 

al., 2007). 

 

2.6. Data analysis and visualization 

Datasets from the untargeted metabolomics analysis were analysed using the statistical module of 

MetaboAnalyst 5.0 (Pang et al., 2021). Data were normalised by the internal standard 

umbelliferone, and specific transformation and scaling conditions for the data sets are reported in 

Table S3. The dataset was analyzed with principal component analysis (PCA) to explore potential 

patterns and heatmaps that could show clustering of the features and visualize the differences 

between cultivars. The top 20 (ANOVA p < 0.05) most significant features were selected for 

structural annotation. Potential differences in the dataset, using environments as a discriminant 

class, were investigated using Volcano plot using p-value corrected for FDR < 0.05 and Fold 

Change (FC) > 5 as thresholds. Moreover, PLS-DA was carried out to sharpen groups’ separation 

and reveal the global profile changes and potential application for biomarkers discovery according 

to metabolite composition. The VIP score cutoff value was 1.5. Cross-validation was carried out by 

5-fold CV; Accuracy, R2 and Q2 values are reported in Table S3.  

The contents of fatty acids and amino acids were analyzed using SAS software (v.9.3; SAS Inst. 

Inc., Cary, NC, USA). Analysis of variance with a general linear model considering the cultivar, the 

growing region and their interaction as fixed effects, was performed. Analysis of variance 

considering the cultivar as fixed effect was repeated separately for each growing region. The least-

squares means and the standard errors were obtained, and Tukey’s correction was used for pairwise 

comparisons. Differences were considered significant at p < 0.05. Heatmaps showing the clustering 

of fatty acids and amino acids and visualizing the differences between growing regions were 

generated by MetaboAnalyst 5.0. 

3. Results 
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3.1. Metabolic diversity of dry seeds of different pea cultivars by untargeted metabolomics 

analysis 

After processing the spectra, peak annotation and filtering of the LC-MS/MS data, both univariate 

and multivariate statistical analyses were carried out to identify the metabolites that exhibited 

significant alterations among the cultivars grown in specific regions and the metabolites that were 

significantly affected by the location factor. 

3.1.1 Metabolic diversity of cultivars grown in Andalusia 

The dataset was explored using PCA. The score plot, highlighting cultivar clustering is 

presented in Fig. 1A, while the box plots showing the metabolites that predominantly contribute to 

the clustering of cultivars, are presented in Fig. S2. The PCA analysis accounted for a total 

explained variation of 48.1%, (Fig. 1A). Along PC2, cv. Tirana and, to a lesser extent, cv. Jarana 

were separated from the other cultivars, indicating distinct metabolic profiles. The metabolites 

whose coefficients along PC2 primarily contribute to the differentiation of these cultivars include 

isopropyl citrate, a putative phenolic glycoside, a putative tetrahydroisoquinoline, naringenin, a 

putative isoflavone, and a putative pentose phosphate compound (Fig. S2). Higher levels of the 

first three metabolites were detected in cvs. Tirana and Jarana, while the latter three were 

downregulated in these cvs. Differences in metabolite content determined through analysis of 

variance of the top 20 metabolites contributing to the variations among cultivars are visualized in 

Fig. 1B using a heatmap. The heatmap also reveals distinct clustering patterns among the 

cultivars: Tirana and Jarana did not cluster with the other cultivars, while cvs. Avenger and 

Karpete were grouped. Cvs. Karacter, Chicana, Forana, and Furius constituted another cluster, 

with cv. Karacter positioned on the periphery of this group. Most differential metabolites belong 

to the carbohydrates and carbohydrate conjugate class. Putative hexosamines were found to have 

higher levels in cvs. Karacter, Chicana, Forana, and Furius. Cv. Tirana exhibited significantly 

higher concentrations of 3,4,5-trihydroxy-6-[(5-methoxy-1H-indol-6-yl)oxy]oxane-2-carboxylic 

acid and two phenolic glycosides. This cultivar also displayed the highest concentrations of the 

most significant metabolites across various metabolite classes including flavonoids, isoflavonoids, 

and coumarins. Lastly, cvs Avenger and Karpate exhibited higher relative concentrations of 

Chebulic Acid, UDP-L-threo-4-pentosulose, Epigallocatechin, and a putative coumarin, 

distinguishing them from the other cultivars. 

 

 

3.1.2. Metabolic diversity of cultivars grown in Aragon 
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The PCA score plot, depicted in Fig. 2A, revealed that the total explained variation was 

48.7%. Notably, along PC2, cv. Jarana exhibited a distinct separation from the other cultivars, 

suggesting unique whole metabolic profiles. Box plots reporting metabolites whose coefficients 

along PC2 are responsible for distinguishing cv. Jarana grown in Aragon are also reported in Fig. 

S3 Among these metabolites, three remained unidentified, while the relative concentrations of two 

metabolites belonging to the class of amino acid, peptides, and derivatives specifically, 2-[(3,4-

dihydroxy phenyl)formamide]pentanedioic acid and a putative oligopeptide were higher in cv. 

Jarana. Conversely, a metabolite belonging to the class of isoflavones displayed a lower level in 

this cultivar. The heatmap of the top 20 metabolites contributing to the variations among cultivars 

(Fig. 2B) also revealed that cv. Jarana did not cluster with the other cultivars; cvs. Avenger and 

Karpate were grouped; cvs. Tirana, Forana and Karacter clustered together, while cvs. Chicana 

and Furius showed similar metabolic profiles. Unfortunately, most of the metabolites remain 

unknown. However, the other differential metabolites belong to two main superclasses: 

phenylpropanoids and polyketides, which include cinnamic acids and derivatives and flavonoids, 

and lipids and lipid-like molecules, which include prenol lipids. 

 

3.1.3. Metabolic diversity of cultivars grown in Asturias 

The PCA score plot, depicted in Fig. 3A, revealed that the total explained variation was 

45%. Consistent with the previous environments, cv. Jarana exhibited a different behaviour from 

the other cultivars. However, cvs. Avenger and Karpate notably separated from the other cultivars, 

suggesting unique whole metabolic profiles. Among the metabolites whose coefficients along PC2 

are responsible for distinguishing the cultivars reported in the box plots in Fig. S4, two remained 

unknown, two metabolites belonging to the superclass of phenylpropanoids and polyketides: 

epigallocatechin and a putative coumarin were upregulated, while a putative hexosamine and a 

pyranochromene were downregulated. The heatmap revealed distinct clustering patterns among 

the cultivars: Tirana and Karacter did not cluster with the other cultivars, while Avenger and 

Karpate, consistent with the previous environments, were grouped. Chicana and Forana formed 

another cluster, and Jarana and Furius grouped together Fig. 3B. Apart from the unknown 

metabolites, most differential metabolites belong to the superclass of phenylpropanoids and 

polyketides, followed by benzenoids, and lipids and lipid-like molecules. Four metabolites were 

present at higher concentrations, exclusively in cvs. Avenger and Karpate. These include two 

flavonoids, (-)-Epigallocatechin and a putative furanoflavone, chebulic acid, a derivative of gallic 

acid, and a putative hydantoin.  
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3.1.4. Effect of environments on pea dry grains’ metabolomics diversity 

 

A pairwise comparison of location effects on the cultivars was done using a volcano plot. Fig. 

4A showcases the differences between the cultivars grown in Andalusia and those in Aragon. The 

volcano plot highlights a total of 133 metabolites that were detected at lower concentrations in 

Andalusia, while only eight metabolites were upregulated. Table S4 presents the top 10 

downregulated metabolites and the eight upregulated metabolites, which were dereplicated and 

annotated. Four of them remained unknown. These metabolites represent five superclasses: lipids 

and lipid-like molecules, benzenoids, organic acids and derivatives, organic oxygen compounds, 

phenylpropanoids and polyketides. 

Fig. 4B reports the differences between the cultivars grown in Andalusia and those in 

Asturias. The volcano plot highlights a total of 105 metabolites that were detected at lower 

concentrations in Andalusia than in Asturias, while only ten metabolites were upregulated. Table 

S5 showcases the top ten downregulated and upregulated metabolites, which have been 

successfully dereplicated and annotated, four remained unknown. These metabolites span six 

superclasses, including benzenoids, lipids and lipid-like molecules, organic acids and derivatives, 

organic oxygen compounds, organoheterocyclic compounds, phenylpropanoids and polyketides. 

Notably, the most prevalent superclass in this case was organic oxygen compounds, comprising 

five metabolites. Among them, all five belonged to the carbohydrates and carbohydrate conjugate 

class, with four metabolites exhibiting upregulation. 

Fig. 4C illustrates the differences between the cultivars grown in Aragon and those in 

Asturias. The volcano plot highlights only three altered metabolites, one downregulated and two 

upregulated. Showing low metabolic differences among the cultivars cropped in the two regions. 

Table S6 presents the altered metabolites, which were dereplicated and annotated, one remained 

unknown, and the other two belonged to the lipids and lipid-like molecule superclass. 

PLS-DA was carried out to sharpen groups’ separation and reveal the global profile changes 

and potential application for biomarker discovery according to metabolite composition in the 

different environments. The score plot and the heatmap reporting the 60 metabolites showing VIP 

scores higher than 1.5, the value selected as threshold, are shown in Fig. 5. The total explained 

variation considering three components was 55.6 %. Accuracy, Q2 and R
2
 values of the model in 

cross-validation are reported in Table S3. Along PC1 cultivars grown in Andalusia are clearly 

separated on the left of the quadrant from those cropped in Aragon and Asturias. The latter two 

were only slightly separated and almost overlapped along PC 1. However, exploring the 3D score 

plot, 5.1 % of the variance was due to differences between Aragon and Asturias (Fig. S5). 

Nevertheless, the almost overlapping of these two groups was due to cv. Jarana, highlighting 
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similar behaviour, and thus a similar metabolic profile, of this cultivar in the two environments. 

Regarding the identified metabolites, most of the differential compounds, excluding the unknown 

metabolites, belong to the superclass of lipids and lipid-like molecules. They are followed by 

carbohydrates and carbohydrate conjugates and amino acids peptides and derivatives. Regarding 

the group clustering, most of the contributing metabolites were detected at lower concentrations in 

Andalusia, except nine which exhibited higher levels in this region (Fig.5B). Specifically, the 

metabolites benzoyl malic acid, N-acetyl phenylalanine, a flavonoid identified as Methyl 3,4,5-

trihydroxy-6-[(5-hydroxy-6-methoxy-4-oxo-2-phenyl-3,4-dihydro-2H-1-benzopyran-7-

yl)oxy]oxane-2-carboxylate were found to be higher in Andalusia. Additionally, a putative N-

acyl-alpha amino acid and a putative glycoside compound demonstrated elevated levels in this 

region. Unfortunately, four metabolites could not be identified. Furthermore, three metabolites 

displayed higher concentrations in Asturias than in Andalusia and Aragon. These include 3-methyl 

hexane dioic acid, a putative fatty alcohol with the molecular formula C18H32O6 belonging to the 

class of fatty acids and derivatives, and malic acid from the class of carboxylic acids and 

derivatives.  

 

3.2. Fatty acid and amino acid composition 

Thirteen fatty acids were identified however, only those with content greater than 1 mg/g on 

dry matter (DM) base, are presented in Table 1. The most abundant fatty acids were C18:2 n-6, 

C16:0 and C18:1 9c while C18:0 and C18:3 n-3 had lower concentrations. Among the studied 

cultivars, in Andalusia, cv. Chicana exhibited the highest contents of C16:0, C18:0, C18:2 n6 and 

C18:3 n3 whereas cv. Tirana showed the highest content of C18:1 9c. Cv. Karacter had the lowest 

contents of the five fatty acids. In Aragon, cv. Avenger had higher C16:0 and C18:2 n6 than the 

other cultivars (p<0.05) which had similar contents (p>0.05); higher C18:0 content than cvs. 

Tirana and Karpate (p<0.05), which had the lowest content; and had the highest C18:1 9c content 

(p<0.05) whereas cv. Jarana had the lowest content. Regarding C18:3 n3 content, cv. Chicana had 

the highest content and Tirana the lowest. In Asturias, cv. Tirana had the highest C16:0 and C18:1 

9c contents, intermediate C18:2 n6 and C18:3 n3 contents whereas cv. Karacter had the lowest 

contents of the four fatty acids (p<0.05). 

Regarding the effect of location, the impact on these five fatty acids revealed distinctive 

trends (Table 1, Fig. S6A). Cultivars grown in Aragon showed higher C16:0 and C18:0 

concentrations, Asturias intermediate contents and Andalusia the lowest (p<0.001). Similarly, cvs. 

grown in Aragon had the highest C18:1 9c contents (p<0.001), being similar in Asturias and 

Andalusia (p>0.05). Regarding C18:2 n6 contents, cvs. grown in Asturias and Aragon had higher 
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contents than in Andalusia (p<0.001). In contrast, cvs. grown in Andalusia had the greatest C18:3 

n3 contents (p<0.01). 

The interplay between location and cultivar markedly influenced the contents of 18 amino 

acids, presented separately for the three locations in Table 2. As a recurring pattern, glutamic and 

aspartic acids were the most abundant amino acids. Meanwhile, sulfur-containing amino acids, 

methionine and cysteine, demonstrated the lowest concentrations regardless of cultivars and 

growing locations. In Andalucía, cvs. Jarana and Tirana had the highest contents of most amino 

acids, while cvs. Chicana and Furious had the lowest. In Aragón, differences between cultivars 

were observed only for glutamic acid, isoleucine, phenylalanine, and tryptophan. Cv. Forana 

presented higher glutamic acid and phenylalanine than cv. Karacter (p<0.05), cv. Tirana greater 

Isoleucine than Karacter (p<0.05) and Karacter greater tryptophan than Furious and Tirana 

(p<0.01). In Asturias, most amino acids showed differences between cultivars (p<0.05). In most 

amino acids, cv. Karacter had the highest contents, followed by cv. Karpate, while Furious had the 

lowest contents. 

The interaction between the cultivar and the location was significant for all the amino acids 

(AA). In these cases, we present the interaction not the overall main effects. In some cultivars 

there was no effect of location on AA content. Asturias vs Aragon: 47% of the AA levels were 

higher in Asturias than in Aragon. Cv. Avenger showed no differences whereas 17 AA out of 18 

differed in cvs. Karacter and Karpate. Asturias vs Andalusia: only 22% of AA differed. AA in cvs. 

Avenger and Jarana were not affected by location whereas those of cv. Karpate were. Andalusia vs 

Aragon: 25% of AA were affected by location. AA of Avenger, Forana and Furious were similar 

whereas 55% AA of Jarana and Karpate were higher in Andalusia than in Aragon. Overall, the 

contents of AA were higher in Andalucía than in Aragón, except for cysteine (Fig. S6B). 

 

4. Discussion 

Our study aimed to explore the post-harvest nutritional assessment of pea cultivars grown in 

varying climate locations in Spain. We selected eight pea cultivars and employed an untargeted 

metabolomics approach to analyse a broad spectrum of metabolites comprehensively. We then 

quantified nutritionally relevant fatty acids and AA for animal feeding.  

The untargeted metabolomics analysis, followed by univariate and multivariate statistical 

analysis, identified 121 significantly altered metabolites that cause the clustering of the selected 

cultivars based on their metabolic profiles in a specific location. These metabolites were classified 

into seven different super-classes: benzenoids, lignans, neolignans and related compounds, lipids 
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and lipid-like molecules, nucleosides, nucleotides and analogues, organic acids and derivatives, 

organic oxygen compounds, organoheterocyclic compounds and phenylpropanoids and polyketides, 

and some remain unknown. Previous studies highlighted that multiple loci across the genome 

collectively influence pea metabolites' abundance and structural varieties. Untangling this network 

of interactions illustrates how individual loci may impact more than one compound and vice versa, 

which might help with the selection of specific cultivars for defined quality traits and commercially 

valuable compounds (Ellis et al., 2018; Pandey et al., 2021). Our results showed that the cvs. 

Avenger and Karpate consistently clustered together while cv. Jarana formed a distinct and 

independent group in the PCA, irrespective of the environmental conditions. This fact suggests that 

genetic factors and inherent biochemical differences in these cultivars may contribute to the 

observed similarities in metabolite composition. Cv. Tirana, cropped in Andalusia, also exhibited an 

independent group in the PCA score plot, suggesting that environmental conditions in this region 

distinctly affect its metabolic profile. This highlights the adaptability and responsiveness of cv. 

Tirana to the specific environmental factors present in Andalusia. Similarly, environmental 

conditions in Asturias likely contribute to the observed differences in metabolite composition of 

cvs. Avenger and Karpate that form a separate cluster in the PCA score plot. 

From the metabolic point of view, most of the metabolites that allow for cultivar differentiation 

in the study belong to the superclass of phenylpropanoids and polyketides, which includes 

flavonoids and isoflavonoids class. Phenylpropanoids and polyketides, crucial plant secondary 

metabolites, are pivotal in bolstering plant defence against abiotic stressors like drought, salinity, 

and heavy metal toxicity (Dewick, 2002; Ziani et al., 2023). Phenylpropanoids scavenge reactive 

oxygen species (ROS), fostering antimicrobial activity, inducing defence genes, and providing UV 

protection (Deng & Lu, 2017). Polyketides, constituting a vast superclass of compounds and 

representing 20% of the biosphere's total carbon, showcase antimicrobial, antioxidant, hormone, 

and anti-herbivore activities (Dewick, 2002; Ziani et al., 2023). Enhancing the production of 

phenylpropanoids and polyketides in cultivated crops is a focal point of breeding programs, aiming 

to fortify plant stress tolerance and increase crop yields under abiotic stress, especially amidst the 

challenges of climate change (Schulz, 2020; Verpoorte & Memelink, 2002). A notable subset within 

this superclass is flavonoids, including isoflavonoids, which significantly contribute to crop stress 

tolerance. These compounds play a crucial role in establishing symbiotic relationships between 

plants and microorganisms, acting as vital agents in plant survival by repelling insects and 

herbivores, underscoring the multifaceted significance of flavonoids and isoflavonoids in fortifying 

plants against environmental stressors.  
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Nevertheless, among the other significant metabolites that allowed for cultivar clustering, 

regardless of the environment, there were hexosamines; they are involved in synthesising cell wall 

components, glycoproteins, and glycolipids, which are crucial for plant structure, function, and 

defence (Hartweck et al., 2002; Love & Hanover, 2005). Additionally, hexosamines are precursors 

for the biosynthesis of essential biomolecules like vitamins, hormones, and signalling molecules 

(Hartweck et al., 2002; Love & Hanover, 2005). Environmental factors can significantly influence 

hexosamine metabolism in plants. Abiotic stresses such as drought, salinity, and heavy metal 

toxicity can alter the expression of genes involved in hexosamine biosynthesis and degradation 

(Jennings, 1978; Pusztai, 1964). Further studies understanding the regulation of hexosamine 

metabolism in response to environmental are essential for developing strategies to enhance pea 

cultivar stress tolerance and improve yields under challenging conditions. 

Current knowledge regarding the influence of environmental factors and cultivation areas on the 

nutritional composition of field peas remains limited. Evidence suggests a strong association 

between pea composition and growing location, prevailing climatic conditions, and soil 

characteristics. (Nikolopoulou et al, 2007; Wang et al., 2010). In our study, the environmental 

conditions impacted the metabolic profiles of the studied pea cultivars according to the Volcano 

plots and PLS-DA analysis. The top 98 metabolites were attempted to be dereplicated. 

Nevertheless, they exhibited consistently lower concentrations in peas cultivated in Andalusia, 

irrespective of their metabolic superclass or class. This outcome may be attributed to the 

pronounced heat stress experienced by the pea cultivars in Andalusia. The growth period, marked 

by an average temperature of 14.1 °C, is 2.7 °C higher than the average temperature recorded in 

Aragon and Asturias. Additionally, the maximum temperature in Andalusia, reaching 40.6 °C, is 0.9 

°C higher than that recorded in Aragon and 11.6 °C higher than the maximum temperature in 

Asturias. This warm climate likely affected the pea seeds. Previous research indicates that elevated 

temperatures during pea growth, especially in the seed developmental stage, decrease seed weight. 

This reduction could be attributed to forced maturation, leading to a hastened rate of seed 

development and a shortened seed-filling period (Lamichaney et al., 2021). Consequently, such 

environmental stressors may adversely impact the overall nutrient quality of pea flour. The 

multivariate analysis using the growing locations as class, indicated that the most altered 

metabolites belong to the superclass of lipids and lipid-like molecules, followed by the class of 

carbohydrates and carbohydrates conjugates and amino acids peptides and derivatives. A total of 18 

compounds were identified among the modified lipids and lipid-like metabolites. Within this 

superclass, prenol lipids, including triterpene saponins and triterpenoid compounds, were the most 

diverse classes, with a total of 8 putatively identified compounds. Prenol lipids, essential 
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components of cellular membranes, play critical roles in various physiological processes, including 

photosynthesis, signalling, and stress tolerance. Among them, triterpenes are ubiquitous compounds 

in the plant kingdom. These structurally diverse molecules play broad roles in plant biology, 

ranging from signalling to defence against pathogens (Dewick, 2002). Various environmental 

factors, including light and heat stress, influence the metabolic routes involved in triterpene 

biosynthesis. These stressors can alter the availability of carbon precursors, leading to competition 

between lipid and phenylpropanoid biosynthesis. Understanding this intricate regulation is crucial 

for uncovering the complex interplay between plants' triterpene biosynthesis and other metabolic 

processes (Surmacz et al., 2016; Surmacz & Swiezewska, 2011; Tholl, 2015). Further investigations 

are needed to elucidate these regulatory mechanisms to understand how these metabolites contribute 

to plant growth, development, and stress adaptation. Furthermore, two lipids and lipid-like 

metabolites displayed higher concentrations in Asturias than in Andalusia and Aragon. One of these 

compounds is 3-methyl hexane dioic acid, classified as a dicarboxylic acid. These metabolites and 

phosphoglycerolipids are crucial in regulating plant development and responding to biotic and 

abiotic stress conditions. They may also be involved in the biosynthesis of cutin and suberin, 

contributing to the formation of complex hydrophobic barriers. While the cutin compounds are 

located in the epidermis cell walls across all aerial tissues, the suberin is present in the cell walls of 

various internal and external tissue layers, such as the root endodermis, periderm, and seed coat. 

While their functions within plant cells are well-documented, their role in long-distance signalling 

requires further investigation (Barbaglia & Hoffmann-Benning, 2016). The other metabolite more 

upregulated in Asturias is malic acid from the class of carboxylic acids and derivative. Various 

studies indicated that malic enzymes play a crucial role in responding to environmental factors and 

facilitating the reversible oxidative decarboxylation of this metabolite. Moreover, they enhance 

water use efficiency, boost plant photosynthesis, and provide reduced power, among other functions 

(Sun et al., 2019). Additionally, a prior study observed that cold-sensitive chickpea plants and their 

mutants exhibited different seed set patterns at lower temperatures, with the mutants showing higher 

seed set based on the increase in malic acid concentration (Maqbool et al. 2010; Savithri et al., 

1980). 

Carbohydrates and carbohydrates conjugate are vital components of plants, cellular accumulation 

of soluble sugars during drought stress influences sugar transporter expression, facilitating sugar 

distribution from source to sink and aiding drought stress adaptation (Salvi et al., 2022). Recent 

metabolite profiling studies reignite interest in components within the 'temperature-stress 

metabolome' associated with induced stress tolerance, emphasizing their importance in plant 

resilience (Guy et al., 2008).  
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Amino acids and peptides play a fundamental role in plant biology. Their intricate regulation, 

governed by feedback inhibition loops, ensures a delicate balance between synthesis and 

degradation. However, in some crops, this balance can be disrupted by several factors, limiting the 

availability of critical amino acids and potentially hindering enzyme activity and metabolic 

pathways (Galili et al., 2016). Among them, N-acetyl-l-phenylalanine was found to be upregulated 

in the cultivars grown in Andalusia. Previous studies reported that this metabolite could be 

accumulated in plants under stress conditions to increase osmotic regulation and antioxidant activity 

to ensure the stability of cell structure and function (Han et al., 2023). Nevertheless, further studies 

are needed to investigate factors other than climate conditions, including soil composition and 

cultivar management.  

At this stage, addressing a bottleneck in untargeted metabolomics using LC-MS/MS is crucial. 

Challenges in untargeted metabolomics using mass spectrometry include selecting ionization 

modes, encompassing polarity switching, and optimizing extraction methods. These issues lead to 

signal variability and data complexity. Due to the lack of standardized protocols, scientists must 

extensively describe their methods and highlight potential limitations (Alseekh et al., 2021; Bulut et 

al., 2023; Sumner et al., 2007). Moreover, our results should be validated through targeted 

metabolomics approaches by developing quantitative methods using proper internal standards for 

quantifying specific metabolite classes. By quantifying key metabolites, researchers gain molecular 

insights into desired traits like stress tolerance, nutritional value, and crop quality, facilitating crop 

development. Targeted metabolomics also proves beneficial in systems biology, aiding the creation 

of detailed models that capture specific crop biological systems and overcoming limitations 

associated with model organisms (Allwood et al., 2021; Anzano et al., 2021; Guy et al., 2008). 

Analytical chemists have made significant efforts to merge untargeted and targeted metabolomics 

methods using mass spectrometry (Caija & Fiehn, 2016). Finally, the extensive chemical diversity 

and complexity often hinder unbiased structure assignment for metabolites of interest. Despite 

significant progress in expanding metabolite databases, many signals in metabolomics experiments 

cannot be directly linked to specific metabolites due to missing spectra in databases (Bittremieux et 

al., 2022). Establishing specialized databases could enhance metabolomics-assisted crop breeding 

and enable metabolite-based genome-wide association studies in legume species (Bulut et al., 

2023). Various dereplication strategies, including in silico fragmentation, and molecular 

networking, have been developed to tackle this issue (Allard et al., 2016; Gauglitz et al., 2022; Guo 

et al., 2022). However, a challenge remains in distinguishing potential stereo and regioisomers 

using standard spectral library matching or in silico fragmentation. This results in a level C 

annotation or unknown classification based on similar fragmentation profiles across multiple 
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classes. To address this, orthogonal analytical methods like NMR are indispensable for metabolite 

validation, achieving level A identification, and dereplicating unknown or novel metabolites 

(Garcia-Perez et al., 2020). 

Our study highlights the complex interplay between location and cultivar, also significantly 

impacting the contents of fatty acids and amino acids, in the same line of that observed in metabolic 

profiles. Significant variations in fatty acid composition were observed among cultivars in all 

locations, and the individual cultivars had different behaviour according to the location. The study 

of the amino acids revealed recurring patterns. Glutamic and aspartic acids consistently being the 

most abundant. Glutamate, glutamine and aspartate are major metabolic fuels for the small intestine 

to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for 

animals must contain all of these to optimize their survival, growth, development, reproduction, and 

health (Deng et al., 2023). Amino acid contents were generally higher in Asturias than in Aragon 

and Andalusia, except for some specific amino acids. Furthermore, the contents of amino acids 

were higher in Andalusia than in Aragon, except for cysteine. Our findings agree with Witten et al. 

(2015) and Zhou et al. (2023), who found differences between the pea cultivars in yields of amino 

acids per hectare, affecting the cultivation site. This might be due to site-specific characteristics of 

the soil, plus soil fertility management, tillage, time of seeding and harvesting, row spacing, seed 

rate, pest and disease infestations, and further factors combined with weather conditions.  

5. Conclusion 

Our findings show that metabolic profiles and fatty acid and amino acid levels vary across 

different regions, providing valuable insights into the environmental influences on the selected 

cultivars. Moreover, the insights from these studies have practical implications for industrial 

applications, emphasizing the necessity for enhanced collaboration between research and industry. 

For instance, in animal feed production, the knowledge acquired is crucial due to variations in 

nutritional requirements based on the specific animal or its life stage. Our results could help 

producers choose the optimal pea cultivar for the given environmental conditions, ensuring the 

desired nutritional value in pea cultivation for feed production. Finally, beyond their role in animal 

feed production, dry peas have been recognized as crucial components of human food. Indeed, their 

usage aligns with the increasing demand for sustainable and nutrient-rich food sources, enhancing 

the economic value of this crop and contributing to farmers' efforts to improve their social 

conditions. 
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Figures and Tables 

 

 

Fig. 1. (A) Score plot obtained by principal component analysis (PCA), showing the eight pea cultivars cropped 

in Andalusia. (B) Heatmap reporting the top 20 metabolites contributing to the variations among pea cultivars 

cropped in Andalusia, organized by natural product superclass or class. 
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Fig. 2. (A) Score plot obtained by principal component analysis (PCA), showing the eight pea cultivars cropped 

in Aragon. (B) Heatmap reporting the top 20 metabolites and their contributing to the variations among pea 

cultivars cropped in Aragon, by natural product superclass or class. For Unknown metabolites where the 

molecular formula is not available, the m/z_Rt, available in Table S2, is added. 
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Fig. 3. (A) Score plot obtained by principal component analysis (PCA), showing the eight pea cultivars cropped 

in Asturias. (B) Heatmap reporting the top 20 metabolites and their contributing to the variations among pea 

cultivars cropped in Asturias, by natural product superclass or class. For Unknown metabolites where the 

molecular formula is not available, the m/z_Rt, available in Table S2, is added 
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Fig. 4. Volcano plots reporting metabolic profiles differences of pea cultivars: (A)  cropped in Andalusia versus 

the same cropped in Aragon; (B) cropped in Andalusia versus the same cropped in Asturias; (C) cropped in 

Aragon versus the same cropped in Asturias. Fold-change threshold (x) 5 and t-test threshold (y) of 0.05 FDR 

corrected. The blue (downregulated) and the red (upregulated) circles represent features above the threshold. 

Note that fold changes log2 (FC) and p values log10 (p) were log transformed. On the (x) axis, the further the 

position from (0,0), the more significant the feature, top significant features have numbers. and their identities 

reported in Tables S4-S6.  
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Fig. 5. (A) Score plot of pea cultivars, obtained by partial least square – discriminant analysis (PLS-DA), 

grouped into different clusters, according to environments: Andalusia (red), Aragon (green), Asturias (blue). 

The explained variance (%) attributed to the first and second component, are shown in the figure. (B) Heatmap 

showing 60 metabolites having VIP Score > 1.5, contributing to the cultivars grouping according to 

environments. For Unknown metabolites where the molecular formula is not available, the m/z_Rt, available in 

Table S2, is added 

 

 

Table 1. Predominant Fatty Acids (FA, mg/g dry matter) in pea cultivars cropped across Andalusia, Aragon, 

and Asturias regions. 
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FA Avenger Chicana Forana Furious Jarana Karacter Karpate Tirana SEM p-value 

Andalusia           

C16:0  5.34
b
 5.91

a
 4.94

bcd
 5.17

bc
 4.93

bcd
 4.64

d
 4.87

cd
 5.33

b
 0.03 <0.001 

C18:0 3.09
a
 3.19

a
 3.05

ab
 3.04

abc
 2.86

c
 2.86

c
 2.90

bc
 3.08

ab
 0.01 <0.001 

C18:1 9c  5.51
b
 5.5

b
 4.6

cd
 5.1

bc
 4.18

ef
 3.61

f
 4.2

ef
 6.65

a
 0.05 <0.001 

C18:2 n6 9.55
bcd

 12.44
a
 9.92

bc
 9.13

cd
 10.21

b
 8.93

d
 9.98

bc
 9.55

bcd
 0.07 <0.001 

C18:3 n-3 1.59
bc

 1.95
a
 2.04

a
 1.89

a
 1.51

c
 1.46

c
 1.68

b
 1.68

b
 0.01 <0.001 

Aragon           

C16:0  7.93
a
 6.87

b
 6.23

b
 6.36

b
 6.25

b
 6.15

b
 6.28

b
 6.4

b
 0.08 <0.001 

C18:0 4.08
a
 3.86

abc
 3.91

ab
 3.83

abc
 3.74

abc
 3.85

abc
 3.41

c
 3.41

bc
 0.04 <0.001 

C18:1 9c  8.74
a
 6.76

bc
 5.79

bcd
 5.43

cd
 5.03

d
 5.42

cd
 6.52

bcd
 7.12

b
 0.11 <0.001 

C18:2 n6 13.1
a
 11.03

b
 10.39

b
 11.28

b
 10.79

b
 11.01

b
 11.0

b
 11.16

b
 0.09 <0.001 

C18:3 n-3 1.75
a
 1.80

a
 1.70

ab
 1.49

abc
 1.37

bc
 1.48

abc
 1.57

abc
 1.31

c
 0.03 0.001 

Asturias           

C16:0  6.51
a
 6.51

a
 6.15

ab
 6.09

ab
 6.28

ab
 5.31

b
 5.93

ab
 6.63

a
 0.08 0.01 

C18:0 3.38 3.38 3.37 3.3 3.24 3.19 3.39 3.46 0.03 0.26 

C18:1 9c  5.54
abc

 5.54
abc

 4.62
bcd

 5.58
ab

 4.49
cd

 2.64
e
 4.35

d
 6.47

a
 0.08 <0.001 

C18:2 n6 12.67
a
 12.67

a
 11.17

ab
 10.52

ab
 12.33

a
 8.51

b
 11.02

ab
 11.82

ab
 0.26 0.01 

C18:3 n-3 1.50
ab

 1.50
ab

 1.91
a
 1.71

ab
 1.52

ab
 1.10

b
 1.38

ab
 1.64

ab
 0.05 0.03 

Within a parameter, means with different letter differ at p<0.05 

 

 

Table 2. Amino acids (AA) of pea cultivars cropped cultivated in Andalusia, Aragon, and Asturias regions. 

AA, mg/kg 

DM 

Avenge

r 

Chican

a 

Foran

a 

Furiou

s 

Jaran

a 

Karacte

r 

Karpat

e 

Tiran

a 

SE

M 

p-value 

Andalusia           

Aspartic acid 31.3
abc

 29.2
bc

 30.6
bc

 29.0
c
 34.7

a
 32.4

ab
 30.4

bc
 32.6

ab
 0.24 <0.001 

Threonine* 10.4
abc

 9.7
c
 9.8

bc
 9.9

bc
 11.0

a
 10.7

ab
 10.1

abc
 10.9

a
 0.07 0.001 

Serine 14.0
ab

 13.1
b
 13.8

ab
 13.2

b
 15.2

a
 14.0

ab
 13.0

b
 14.2

ab
 0.10 0.001 

Glutamic acid 44.4
bc

 42.4
bc

 44.8
bc

 41.5
c
 49.9

a
 46.0

abc
 43.4

bc
 47.0

ab
 0.36 0.001 

Proline 10.5
abc

 10.1
c
 11.0

abc
 10.2

bc
 11.4

ab
 11.4

ab
 11.0

abc
 11.6

a
 0.09 0.003 

Glycine 11.6
ab

 11.0
b
 11.4

ab
 11.1

b
 12.3

a
 12.0

ab
 11.4

ab
 11.9

ab
 0.08 0.01 

Alanine 11.9
ab

 11.3
b
 12.2

ab
 11.7

ab
 12.7

a
 12.3

ab
 11.7

ab
 12.1

ab
 0.09 0.04 

Cystine 0.83
ab

 0.60
b
 0.80

b
 0.93

ab
 1.33

a
 1.00

ab
 0.87

ab
 0.90

ab
 0.04 0.009 

Valine* 12.2
abc

 11.5
bc

 11.9
abc

 11.4
c
 13.0

a
 12.2

abc
 11.7

bc
 12.7

ab
 0.09 0.004 

Methionine* 1.8
ab

 1.3
b
 1.7

ab
 1.8

ab
 2.2

a
 2.0

ab
 1.6

ab
 2.0

ab
 0.06 0.04 

Isoleucine* 10.8
ab

 10.1
bc

 10.1
bc

 9.6
c
 11.2

a
 10.3

abc
 9.6

c
 11.1

ab
 0.08 <0.001 

Leucine* 19.1
abc

 17.9
c
 18.5

bc
 17.3

c
 20.4

a
 18.7

abc
 18.0

c
 19.9

ab
 0.13 <0.001 

Tyrosine 4.2
ab

 2.3
b
 2.6

b
 3.8

ab
 6.3

a
 5.7

a
 3.9

ab
 5.4

a
 0.20 0.001 

Phenylalanine 13.2
abc

 12.6
bc

 12.9
abc

 12.3
c
 14.2

a
 13.3

abc
 13.0

abc
 13.9

ab
 0.10 0.002 

Histidine* 

6.5
bcd

 6.2
d
 6.4

bcd
 6.2

cd
 7.2

a
 6.9

ab
 6.5

abcd
 6.9

ab
 0.05 

0.00

1 

Lysine* 19.8
ab

 18.8
b
 19.7

ab
 19.1

b
 21.2

a
 20.3

ab
 19.5

ab
 20.6

ab
 0.15 0.02 

Arginine 18.4
bc

 14.0
c
 14.2

c
 15.6

c
 25.4

a
 22.6

ab
 17.2

c
 24.5

a
 0.36 <0.001 

Tryptophan* 2.2
ab

 2.0
b
 2.3

ab
 2.3

ab
 2.2

ab
 2.3

ab
 2.1

ab
 2.4

a
 0.03 0.03 

Aragon           

Aspartic acid 30.4 27.0 30.6 28.0 31.8 26.8 29.7 29.1 0.53 0.26 

Threonine * 10.3 9.8 10.5 9.3 9.3 8.0 9.4 9.7 0.21 0.18 

Serine 15.5 14.1 15.8 13.4 11.9 11.6 13.2 13.2 0.36 0.09 
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Glutamic acid 48.9
a
 43.1

ab
 49.8

a
 41.1

ab
 43.0

ab
 37.3

b
 41.6

ab
 41.5

ab
 0.82 0.03 

Proline 10.8 9.8 10.9 10.0 10.5 9.6 10.7 10.2 0.20 0.66 

Glycine 11.5 10.8 11.8 10.8 11.2 9.8 11.2 11.1 0.21 0.44 

Alanine 10.8 9.8 10.9 10.9 11.7 10.5 11.8 11.3 0.22 0.43 

Cystine 1.0 1.2 1.6 1.2 1.1 0.8 0.7 0.8 0.06 0.06 

Valine* 10.8 9.9 11.0 9.7 10.6 8.6 10.1 11.1 0.20 0.08 

Methionine* 1.4 1.7 1.8 1.4 1.5 1.0 1.3 1.7 0.07 0.16 

Isoleucine* 9.1
ab

 8.4
ab

 9.3
ab

 7.7
ab

 8.8
ab

 6.8
b
 8.2

ab
 9.6

a
 0.19 0.04 

Leucine* 17.0 15.1 17.4 15.2 16.7 13.9 16.2 17.3 0.30 0.10 

Tyrosine 2.2 3.6 4.1 2.3 2.6 1.3 1.8 3.9 0.30 0.25 

Phenylalanine 12.5
ab

 11.1
ab

 12.7
a
 10.7

ab
 11.9

ab
 9.6

b
 11.0

ab
 11.9

ab
 0.22 0.049 

Histidine* 6.2 5.7 6.4 5.9 6.3 5.4 6.1 6.1 0.11 0.44 

Lysine* 18.9 17.0 18.9 17.9 19.1 16.6 18.8 18.8 0.34 0.46 

Arginine 14.8 14.1 18.0 11.7 15.6 10.6 12.2 17.2 0.63 0.10 

Tryptophan* 2.2
ab

 2.2
ab

 2.3
ab

 2.0
b
 2.2

ab
 2.4

a
 2.2

ab
 2.0

b
 0.02 0.004 

Asturias           

Aspartic acid 31.4
b
 31.1

ab
 38.3

a
 30.1

b
 34.9

ab
 39.3

a
 36.2

ab
 34.6

ab
 0.57 0.007 

Threonine * 10.2
ab

 10.2
ab

 11.7
ab

 9.5
b
 11.1

ab
 12.8

a
 11.8

ab
 11.7

ab
 0.20 0.01 

Serine 14.1 13.6 15.8 13.0 14.6 17.2 15.9 15.9 0.31 0.06 

Glutamic acid 44.7
ab

 43.3
ab

 50.7
ab

 41.1
b
 48.5

ab
 55.3

a
 51.3

ab
 50.5

ab
 0.84 0.01 

Proline 

10.6
bcd

 9.2
cd

 

10.2
bc

d
 8.3

d
 10.9

bc
 13.3

a
 12.1

ab
 

11.8
ab

c
 0.17 

<0.001 

Glycine 11.6
b
 11.9

ab
 13.2

ab
 11.0

b
 12.4

ab
 14.8

a
 13.6

ab
 13.2

ab
 0.23 0.02 

Alanine 11.9
ab

 11.5
ab

 12.9
ab

 10.8
b
 12.7

ab
 15.1

a
 13.8

ab
 13.5

ab
 0.24 0.01 

Cystine 1.07
b
 1.20

ab
 1.83

ab
 2.00

a
 1.17

ab
 1.60

ab
 1.13

ab
 1.17

ab
 0.07 0.02 

Valine* 11.9
abc

 11.1
bc

 12.7
ab

 9.2
c
 12.6

ab
 14.6

a
 13.4

ab
 13.4

ab
 0.22 <0.001 

Methionine* 2.0 2.1 2.3 1.8 2.1 2.5 2.2 2.2 0.08 0.43 

Isoleucine* 10.3
ab

 8.7
bc

 9.9
ab

 6.8
c
 10.7

ab
 12.3

a
 11.2

ab
 11.6

ab
 0.23 <0.001 

Leucine* 

18.3
abc

 15.7
cd

 18.1
bc

 12.7
d
 

19.7
ab

c
 22.7

a
 20.5

abc
 20.8

ab
 0.33 

<0.001 

Tyrosine 4.23
b
 7.55

ab
 9.27

a
 6.40

ab
 6.43

ab
 6.93

ab
 5.27

ab
 5.33

ab
 0.30 0.03 

Phenylalanine 

12.7
abc

 10.8
cd

 12.2
bc

 8.4
d
 

13.4
ab

c
 15.6

a
 13.9

abc
 14.7

ab
 0.24 

<0.001 

Histidine* 6.6
ab

 6.6
ab

 7.8
ab

 6.5
b
 7.2

ab
 8.5

a
 7.8

ab
 7.5

ab
 0.14 0.02 

Lysine* 19.7
ab

 19.3
ab

 22.9
ab

 19.0
b
 21.4

ab
 25.0

a
 22.6

ab
 22.6

ab
 0.43 0.04 

Arginine 20.5
b
 23.5

ab
 30.7

a
 20.2

b
 27.0

ab
 27.5

ab
 24.1

ab
 23.2

ab
 0.65 0.01 

Tryptophan* 2.9
a
 2.3

ab
 2.3

ab
 2.2

ab
 2.5

ab
 2.6

ab
 2.2

ab
 2.1

b
 0.05 0.04 

* Essential AA.  

Within a parameter, means with different superscript differ at p< 0.05. 
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Highlights 

 There was a clear genotype × environment interaction on pea metabolic profiles. 
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 Untargeted metabolomics revealed 121 significant metabolites, shaping the clustering of 

selected pea cultivars in a specific location. 

 Lipids and lipid-like molecules, phenylpropanoids and polyketides (flavonoids, 

isoflavonoids), carbohydrates and amino acids are the most differential metabolites. 

 Palmitic, stearic, oleic, linoleic, and α-linolenic are the most abundant fatty acids.  

 Glutamic and aspartic acids were the most abundant amino acids. Methionine and cysteine 

demonstrated the lowest concentrations.  

 Overall, varieties grown in Asturias exhibit the highest amino acid content. 


