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26 Abstract

27 The presence of mistletoe in pine stands has expanded in recent decades, currently 

28 threating Mediterranean forests. Mistletoe outbreaks can make the host trees more 

29 vulnerable to intense droughts, which are expected to increase due to climate change. We 

30 use multispectral (MS) and LiDAR UAV-derived data to determine Viscum album ssp. 

31 austriacum infestation levels at individual tree level in Scots pine (Pinus sylvestris L.) 

32 forests. First, spectral and structural differences between four infestation levels were 

33 assessed employing Kruskal-Wallis test and post hoc Dunn’s test for individual tree 

34 crowns. Second, machine learning classification algorithms were applied to evaluate 

35 infestation levels at the individual tree scale by comparing or combining UAV-derived 

36 datasets. Outcomes revealed significant differences between infestation levels in canopy 

37 cover and height based on LiDAR derived metrics. Significant changes in vegetation 

38 vigor were also found through spectral and textural metrics. Using two vegetation indices 

39 (CIRE and NDVI) an overall accuracy of 0.83 was achieved by applying SVM, while 

40 combining a spectral metric (NDRE) and a LiDAR metric (D0) resulted in 0.82 accuracy 

41 with SVM. Using only LiDAR variables, we obtained an accuracy of 0.64 with SVM and 

42 RF. This approach demonstrates their value for detecting and characterizing 

43 morphological changes in up to four levels of mistletoe infestation at individual trees in 

44 Mediterranean Scots pine forests, lending support to forest management monitoring.

45 Keywords: UAV; multispectral; LiDAR; machine learning; forest health monitoring; 

46 mistletoe. 

47

48

49

50

51

52

53

54

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5170552

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



3

55 1. Introduction

56 Hemiparasitic plants are considered a biotic factor that affects forest ecosystems 

57 worldwide, leading to the decline of forest stands (Sangüesa-Barreda et al., 2013; 

58 Dobbertin, 2005). In combination with abiotic factors such as prolonged droughts, prone 

59 to increase its frequency under current global warming, they are considered as a 

60 contributing stress factor for pine vulnerability (Dobbertin & Rigling, 2006;  Sangüesa-

61 Barreda et al., 2013; Allen et al., 2010; Sabrina et al., 2020). In fact, ongoing temperature 

62 rise and shifts in precipitation patterns make predicting pest dynamics increasingly 

63 challenging (Torres et al., 2021). The monitoring and management of hemiparasitic plants 

64 is of great interest in southern distribution limits (Zuber, 2004).

65 Viscum album L. is an evergreen hemiparasitic plant with persistent haustorium that is 

66 connected to the host tree through one-way water flow, enabling the transfer of 

67 photosynthates and nutrients between the host and the parasite (Glatzel & Geils, 2009; 

68 Hernández-Jiménez, 2020). The ssp. austriacum is the one found on pines such as P. 

69 sylvestris, P. halepensis, P. nigra, and less frequently on P. pinaster and P. uncinata 

70 (Hernández-Alonso et al., 2001; Zuber, 2004). The presence of mistletoe is common and 

71 necessary, as its fruits provide food for birds and its leaves serve as sustenance for insects 

72 (Mathiasen et al., 2008). The distribution area of V. album ranges from 10º W to 80º E, 

73 and from 60º N to 35º S, with the Mediterranean Sea marking the southern boundary and 

74 the Atlantic Ocean the western boundary (Zuber, 2004). It appears in areas below 1000 

75 meters in altitude, but when exposed to sunlight, it can be found at higher elevations 

76 (Zuber, 2004). The presence of mistletoe decreases the vigor and growth of the host and 

77 may also exacerbate its water stress during periods of drought (Sangüesa-Barreda et al., 

78 2018). Under water deficit situations, if prolonged over time, can lead to the depletion of 

79 the tree's resources and begin to show symptoms of decline or complete death (Sancho-

80 Knapik et al., 2017) as seen in Mediterranean Scots pine forests within the Iberian System.

81 The abundance of mistletoe in tree canopies is generally assessed through in situ studies, 

82 which involve high human costs. Though, determining the degree of infestation by 

83 fieldwork is challenging because mistletoe typically grows in the upper canopy. The 

84 integration of remote sensing data, captured at zenith position, offers quantitative insights 

85 to complement in situ surveys enabling spatially detailed monitoring. Remote sensing is 

86 a highly promising data source for monitoring forest health and is continuously evolving 

87 (Tymińska-Czabańska et al., 2024; Senf et al., 2018). This method can offer an automated 
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88 and customized solution for accurately detecting and classifying mistletoe (Sabrina et al., 

89 2020). Mistletoe research has been conducted using data collected from multispectral 

90 imagery from satellite as done by Thapa (2013), unmanned aerial vehicle (UAV) at ~30 

91 m with hyperspectral sensor, as used by Ančić et al. (2014), and hyperspectral bands and 

92 LiDAR data from airborne flights as applied by Barbosa et al. (2016). The combination 

93 of high spatial and temporal resolutions, adaptability, and reduced operational expenses 

94 makes UAVs a viable substitute to traditional remote sensing platforms (Guimarães et al., 

95 2020). 

96 UAVs are rapidly advancing as an innovative technology for monitoring forest ecosystem 

97 health (Torres et al., 2021). Ecke et al. 2022 review their application for this purpose, 

98 while Missarov et al. (2024) focus on the use of both UAVs and manned aircraft in 

99 mistletoe research. Tymińska-Czabańska et al. (2024) aim to assess the probability of 

100 mistletoe presence in Pinus sylvestris L. stands using UAV and ALS. Maes et al. (2018) 

101 analyze interactions between host and mistletoe by UAV-based infrared thermography. 

102 Miraki et al. (2021) used RGB data from UAVs (collected during winter and summer 

103 flights in mixed broadleaved forests) to derive a CHM, subsequently used to segment 

104 individual trees and classify them as infested and non-infested using RGB bands and 

105 Random Forest. León-Bañuelos et al. (2020) use RGB UAV-derived data to identify 

106 phenological stages of Arceuthobium globosum using colorimetric ranges at pixel level 

107 (CRPL) algorithm. Miszczyszyn & Wezyk (2022) investigate the suitability of high-

108 resolution RGB and multispectral data from UAVs, along with derived vegetation 

109 indices, for monitoring mistletoe in pine stands. They outline a method utilizing machine 

110 learning algorithms like SVM and RF, which could significantly advance mistletoe 

111 research. Therefore, multispectral data have been used to mistletoe identification. Mejia-

112 Zuluaga et al. (2022) present a Genetic Programming (GP) method for the automated 

113 design of a model utilizing multispectral UAV images to identify mistletoe. On the other 

114 hand, Missarov et al. (2022) propose a drone LiDAR for mistletoe recognition and 

115 monitoring, a technology also employed by Barbosa et al. (2016). These authors used 

116 LiDAR to determine the average height of infested trees, the relative height of mistletoe 

117 in the tree canopies, combined with fieldwork, and to classify the landscape structure, 

118 which helped identify areas where mistletoe is most prevalent. Thapa (2013) used LiDAR 

119 to derive a CHM, which was employed to determine the center of the plot and map the 

120 individual tree locations within it.
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121 In this study, we determine the Viscum album ssp. austriacum infestation levels at 

122 individual tree scale on Scots pine forests by using multispectral and LiDAR UAV-

123 derived data. Our aims are (i) to identify the existence of spectral and structural 

124 differences between up to four mistletoe infestation levels and (ii) evaluate the potential 

125 of multispectral and LiDAR UAV-derived metrics to classify infestation levels, 

126 comparing and combining LiDAR and multispectral UAV-derived datasets. 

127 2. Material and methods

128 2.1 Study area and field data collection

129 The study area is located in Sierra de Gúdar, within the Iberian Range in Teruel region 

130 province (Aragón, Spain). The area covers 20 hectares, corresponding to UAV flights 

131 equipped with RGB, multispectral and LiDAR sensors within a public-use forest stand. 

132 The stand is dominated by Scots pine (Pinus sylvestris L.), which constitutes the southern 

133 limit of the species' distribution in the western mediterranean and accompanied by 

134 Juniperus ssp. The area ranges in elevation from 1600 to 1800 m a.s.l., and the mean 

135 annual temperature is 9.4ºC and annual rainfall averages 700 mm. The main lithology is 

136 composed of Early Cretaceous marls and marls limestones. 

137 Field data collection was carried out in 55 selected trees (Figure 1). For each tree, a 

138 mistletoe infection level (from 1 to 4) was assigned in the field based on expert 

139 knowledge. The established levels were determined using a three pair wise including 

140 researchers and forest health experts from the Aragon Forest Service.
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141

142 Figure 1. Location of the research area and spatial distribution of the 55 sampled trees within the 

143 30T HUSE grid of the UTM coordinate system. The orthomosaic was obtained from imagery 

144 captured during a DJI Matrice 300 RTK drone flight using an RGB sensor conducted in April 

145 2023.

146

147 The established levels of mistletoe infection in Scots pine were as follows: Level 1, no 

148 presence of mistletoe or only one clump. Level 2, more than one mistletoe clump but 

149 green needle foliage is more abundant than mistletoe. Level 3, green needle foliage is less 

150 abundant than mistletoe. Level 4, a tree with abundant mistletoe without green needle 

151 foliage or one that is dead. These levels were determined according to infestation criteria 

152 established by the Aragón Region Forest Health Monitoring Network (Gobierno de 

153 Aragón et al., 2020). The first field campaign was conducted in July 2023, involving a 

154 minor sampling based on UAV, followed by a second campaign in May 2024 to re-

155 evaluate the infestation levels. The trees analyzed were selected based on the existence 

156 of no changes in mistletoe infestation levels and defoliation between UAV data 

157 acquisition in 2023 respect to the re-evaluation field campaign in 2024.
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158 2.2 UAV multispectral and LiDAR data capture and processing

159 Data collection involved two flight missions using a DJI Matrice 300 platform. The drone 

160 platform was fitted with Global Navigation Satellite System (GNSS) and real-time 

161 Kinematic (RTK) weighting 6.3 kg. The flights were conducted in April 11, 2023. 

162 The first flight utilized the Micasense Altum P camera to acquire multispectral imagery 

163 across RGB and near infrared wavelengths. The camera weighs 577 g and has dimensions 

164 of 11.0 x 8.0 x 6.9 cm. The flight altitude was set at 70 m, with a 20 m swath width, and 

165 a speed of 5 m/s was set. The ground sample distance (GSD) was 3 cm, and a field of 

166 view of 50° HFOV x 38° VFOV. The spectral bands were: blue (475 nm), green (560 

167 nm), red (668 nm), red edge (717 nm), and NIR (842 nm). 

168 The second flight equipped a Phoenix Aerial LiDAR Scout Ultra system with Velodyne 

169 sensors to generate a LiDAR point cloud, in addition to capture an RGB image. LiDAR 

170 sensor weighs 2.2 kg, and has dimensions of 18.5 x 11.6 x 11.6 cm. It includes an inertial 

171 measurement unit for accurate management of flight settings. The scan rate was 600 k 

172 points/s, with up to 2 returns per pulse with an average accuracy of 55 mm RMSE in z 

173 values at a 50 m range. The average survey altitude was set to 85 m and the average 

174 approximate survey flight speed was 8.02 m/s. 

175 The trajectory information was managed using PhoenixLiDAR System’s Navlab to 

176 improve system position and altitude. A precise post-processed trajectory was produced 

177 through the combined integration of GNSS and IMU data captured by the LiDAR system. 

178 The point cloud was derived in ETRS89 / UTM zone 30N (EPSG:25830) coordinate 

179 system and categorized into ground, non-ground, and noise. Subsequently, a digital 

180 elevation model (DEM), a digital surface model (DSM), and a canopy height model 

181 (CHM) were computed. 

182 The CHM was computed from the difference between the DEM and DSM at 3 cm 

183 resolution. The DEM raster was obtained by selecting the ground points to determine the 

184 ground level height above sea level. The DSM raster was created considering both 

185 vegetation and ground points. The DEM and DSM were created using the LAS Dataset 

186 to Raster tool in ArcMap version 10.7.1. The output raster’s cell values were defined 

187 through a binning approach, with an average assignment to each pixel and linear 

188 interpolation for gap filling. 
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189 2.3 Individual tree crown delineation

190 Tree crown delineation was carried out manually. For the digitalization of 55 tree crowns, 

191 the true color RGB and false color (NIR-green-blue) multispectral orthomosaics were 

192 used, supported by the CHM calculated using the LiDAR data. This approach enabled 

193 precise identification of individual tree crowns, facilitating the subsequent analysis of 

194 multispectral and LiDAR metrics to study the presence of mistletoe within the canopy. 

195 This digitalization has been the basis for the computation of multispectral and LiDAR 

196 metrics for each individual tree. The manual delineation was accomplished using ArcMap 

197 software version 10.7.1.

198 2.4. Metrics computation for individual trees

199 The multispectral information was used to derive vegetation indices and textural features. 

200 Concretely, we computed sixteen vegetation indices at 3 cm resolution (see table 1). The 

201 use of this dataset of vegetation indices stems from the need to identify those that are 

202 most useful for the case study. They are key indicators used to assess health of plants 

203 (Thapa, 2013).

204 Table 1. Vegetation index calculated from spectral bands

Vegetation indices Formula
NDVI (Normalized Difference Vegetation Index) NDVI = 𝑁𝐼𝑅 ― 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 
GCI (Green Chlorophyll Index) GCI = 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁  - 1

CIRE (Chlorophyll Index Red Edge) CIRE = 𝑁𝐼𝑅
𝑅𝐸  - 1

NDRE (Normalized Difference Red Edge) NDRE = 𝑁𝐼𝑅 ― 𝑅𝐸
𝑁𝐼𝑅 + 𝑅𝐸  

ETA (η) η = 2 (𝑁𝐼𝑅^2 ― 𝑅𝐸𝐷^2) + 1.5𝑁𝐼𝑅 + 0.5𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5  

GEMI (Global Environmental Monitoring Index) GEMI = 𝜂 (1 ― 0.25𝜂) ―
𝑅𝐸𝐷 ― 0.125

1 ― 𝑅𝐸𝐷  

GNDVI (Green Normalized Difference Vegetation 
Index):

GNDVI = 𝑁𝐼𝑅 ― 𝐺𝑅𝐸𝐸𝑁
𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁 

CVI (Chlorophyll Vegetation Index): CVI =
𝑁𝐼𝑅 × 𝑅𝐸𝐷
𝐺𝑅𝐸𝐸𝑁^2

SAVI (Soil-Adjusted Vegetation Index): SAVI = (1 + 𝐿)(𝑁𝐼𝑅 ― 𝑅𝐸𝐷)
𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿

MCARI (Modified Chlorophyll Absorption Ratio 
Index):

MCARI = (
𝑅𝐸𝐷 ― 𝑅𝐸

𝑅𝐸 ― 𝐺𝑅𝐸𝐸𝑁) ×NIR

MSI (Moisture Stress Index): MSI = 𝑁𝐼𝑅
𝑅𝐸𝐷

RI (Redness Index): RI = 𝑅𝐸𝐷^2
𝑁𝐼𝑅 × 𝐵𝐿𝑈𝐸 

LCI (Leaf Chlorophyll Index): LCI = 𝑁𝐼𝑅 ― 𝑅𝐸
𝑁𝐼𝑅 + 𝑅𝐸𝐷 
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CCCI (Canopy Chlorophyll Content Index): CCCI = (
𝑁𝐼𝑅 ― 𝑅𝐸
𝑁𝐼𝑅 + 𝑅𝐸

 
) / (

𝑁𝐼𝑅 ― 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷

 
)

RDVI (Renormalized Difference Vegetation Index): RDVI =
𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷

SQRT_SR (Square Root of Simple Ratio): SQRT_SR = 𝑁𝐼𝑅
𝑅𝐸𝐷

205 The gray-level co-occurrence matrix (GLCM) was used to calculate textural features for 

206 each multispectral band. Particularly, the contrast, homogeneity, dissimilarity, entropy, 

207 second moment, mean, variance, correlation, and sum of averages features were selected 

208 summing up a total of 45 metrics. Once the vegetation indices and textures were 

209 computed, we derived the average value for each metric within the extent of the selected 

210 tree crowns for subsequent individual analysis. Metric computation and processing were 

211 carried out using the “glcm” and “raster” packages for R environment.

212 The extent of the digitized individual trees was used to clip the LiDAR-generated 3D 

213 data, which was then normalized using LAStools to determine the height above ground 

214 level. A set of structural metrics from the normalize LiDAR point clouds was derived 

215 related to canopy height, height variability, and canopy density as described by Domingo 

216 et al., (2024). A cutoff value of 3 m was applied to filter out ground and understory laser 

217 returns before calculating the LiDAR metrics. The metrics were computed using FUSION 

218 LDV v.4.50(McGaughey, 2023), lidRmetrics (Tompalski et al., 2024) and lasR (Næsset, 

219 2004) in R environment.

220 Overall, a total of 167 variables were computed, which involved 16 spectral indices, 45 

221 textural features, and 106 LiDAR structural metrics. These metrics served as based 

222 information for the subsequent classification of infection levels (see 2.5).

223 2.5. Classification of mistletoe infestation levels

224 Firstly, we assessed the suitability of multispectral and LiDAR derived metrics for 

225 mistletoe infestation levels discrimination. Initial analyses revealed that the data were not 

226 normally distributed . Metrics were transformed to logarithmic and square root scales as 

227 a feasible alternative to data normalization. Though, the Shapiro-Wilk test revealed that 

228 the data distribution remained non-normal (p-value < 0.05). The nonparametric Kruskal-

229 Wallis test was used to identify which derived metrics shows statistically significant 

230 differences between mistletoe infestation levels at the individual tree scale. Then, the non-

231 parametric Dunn’s post hoc test for multiple comparisons was applied to identify which 

232 variables differentiated between pairs of trees with different levels of mistletoe infestation 
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233 and to determine the specific pairs distinguished by each variable (García-Galar et al., 

234 2023; Hoffrén et al., 2023).While similar to the Kruskal-Wallis test, this method can 

235 identify the specific groups that shows statistically significant differences, making it 

236 useful for selecting suitable metrics that will be subsequently used for classification. 

237 The performance of Random Forest (RF) and Support Vector Machine (SVM), two 

238 nonparametric machine learning classification algorithms, were evaluated for classifying 

239 trees according to their level of mistletoe infestation based on selected multispectral and 

240 LiDAR metrics. We tested various combinations of metrics for the models, including only 

241 multispectral data; only LiDAR data; or a combination of both datasets.

242 SVM was executed utilizing a radial kernel and parameterized with a cost of 200 and a 

243 gamma of 0.02. RF was tuned by implementing between 1,000 and 3,000 trees (ntrees) 

244 and between 1 and 2 variables in each node (mtry) according to Rodrigues and De la Riva 

245 (2014) and García-Galar et al. (2023), and the bias correction was applied. Models were 

246 computed in R using “e1071”, “MASS”, and “randomForest” packages. The dataset was 

247 divided into training and testing groups derived from a randomly selected sample of pixels 

248 to conduct the classification. The testing dataset was used to validate the models, executed 

249 by employing a 25% stratified random selection to cover the different mistletoe 

250 infestation levels. Validation was performed over 30 repetitions to obtain more robust 

251 results and mean performance values were calculated. To contrast and establish the best 

252 classification model, confusion matrices, user’s accuracy, producer’s accuracy and 

253 overall accuracy were assessed 

254 3. Results 

255 3.1. Selection of LiDAR and Multispectral metrics for mistletoe infestation levels 

256 classification. 

257 A total of 88 variables were found to be significant. Table 2 shows a selection of 

258 multispectral, LiDAR and textures variables with the highest chi-square values obtained 

259 after executing Kruskal-Wallis test. 

260 Table 2. Results of the Kruskal-Wallis test. 

Type Metrics Chi Square p-value

CIRE 44.70 ***
NDRE 44.47 ***
NDVI 39.61 ***

Spectral indices

NIR mean 16.49 ***
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zsd 21.47 ***
zvar 21.47 ***
D1 18.69 ***
D0 18.06 ***

Elev L2 14.91 **
% all returns 

above 3.00 12.48 **

LiDAR

D9 8.61 *
261 *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.

262 Vegetation indices CIRE, NDRE and NDVI presented the highest significant differences 

263 between mistletoe infestation levels while NIR mean textural metric showed a lower but 

264 significant value. Viscum album ssp. austriacum induces notable modifications in canopy 

265 structure, so LiDAR metrics related to canopy height metrics (moment 2 elevation), 

266 variability of canopy heights metrics (standard deviation and variation of the height), and 

267 canopy density metrics (D0, D1, D9 and percentage of all returns above 3 meters) were 

268 also significant. 

269 After analyzing the metrics utilizing the Kruskal-Wallis test, the Dunn's test was applied. 

270 The results in table 3 shows the number of metrics that can differentiate each infestation 

271 level.

272 Table 3. Dunn’s test results. Number of variables that can differentiate between infestation 

273 levels.

Groups Number of variables
Level 1 – level 2 1
Level 1 – level 3 30
Level 1 – Level 4 69
Level 2 – level 3 0
Level 2 – level 4 17
Level 3 – level 4 20

274

275 Table 4. Dunn’s test results. 

Variables 1-2 1-3 1-4 2-3 2-4 3-4

CIRE
0.8199 
(NS)

0.0050 ** 5.12E-10 *** 0.6725 0.0010 ** 0.3294 
(NS)

NDRE
0.8458 
(NS)

0.0064 ** 5.45E-10 *** 0.7344 0.0010 ** 0.2868 
(NS)

NDVI
1 (NS) 0.0392 6.05E-09 *** 1 (NS) 0.0009 *** 0.1563 

(NS)

zsd
0.2923 
(NS)

0.0044 ** 0.0001 *** 1 (NS) 0.8502 (NS) 1 (NS)

zvar
0.2923 
(NS)

0.0044 ** 0.0001 *** 1 (NS) 0.8502 (NS) 1 (NS)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5170552

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



12

D1 1 (NS) 1 (NS) 0.0004 *** 1 (NS) 0.0650(NS) 0.0158 *
D0 1 (NS) 1 (NS) 0.0007 *** 1 (NS) 0.0394 * 0.0158 *
NIR mean 1 (NS) 1 (NS) 0.0035 * 1 (NS) 0.1819 (NS) 0.0048 *

Elev L2
0.5927 
(NS)

0.0024 ** 0.0287 * 0.6335 
(NS)

1 (NS) 1 (NS)

% all returns 
above 3.00

1 (NS) 1 (NS) 0.0059 ** 1 (NS) 0.1597 (NS) 0.1280 
(NS)

D9
1 (NS) 1 (NS) 0.0373 * 1 (NS) 0.2646 (NS) 0.5458 

(NS)

276 *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; NS: non-significant.

277 Overall, 13 vegetation indices were able to discern between 3 pairs of mistletoe 

278 infestation levels. Additionally, a LiDAR-derived variable, D0, was also able to discern 

279 3 pairs. A total of 26 metrics were able to discern between 2 pairs. These include LiDAR-

280 based variables associated with the variability of canopy heights, the distribution of 

281 canopy heights, and canopy density, such standard deviation of elevation values, variation 

282 of elevation values, 1st percentile representing the value below which 1% of the data is 

283 found, and interquartile distance, respectively. Included in these are metrics derived from 

284 multispectral bands, such as the vegetation indices ETA, GEMI, and CCCI, as well as 

285 those related to textures of the NIR and blue bands.   
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286 Figure 2 presents the selected variables that demonstrate statistically significant 

287 differences in Dunn’s test between mistletoe infestation levels. The greatest differences 

288 were found between infestation Level 1 respect to Level 4 

289 Figure 2. Variables with statistically significant differences in Dunn’s test between mistletoe 

290 infestation levels.

291

292 3.2 Classification of Mistletoe infestation levels classification models.

293 Mistletoe affects spectral response and structure of the canopy. Vegetation indices were 

294 the most important variables for infested trees classification using radial kernel in the 

295 SVM algorithm. Using two vegetation indices (CIRE and NDVI) an overall accuracy of 

296 0.83 was achieved by applying SVM, while combining a spectral metric (NDRE) and a 

297 LiDAR metric (D0) resulted in 0.82 accuracy with SVM. Using only LiDAR variables, 

298 we obtained an accuracy of 0.64 with SVM and RF. Table A1 lists the selected metrics 

299 from various groups and sensors, and table 5 presents the results metrics combinations 

300 and classification methods. 

301
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302

303 Table 5. Support Vector Machine (SVM) and Random Forest (RF) Classification methods.

Types of metrics Metrics Methods Fitting phase Validation

Spectral indices CIRE+NDVI SVM 0.823 0.833

 CIRE+NDVI RF 1 0.733
Spectral indices + 

LiDAR
NDRE + D0 SVM 0.817 0.817

NDVI + Elev.L2 RF 1 0.743

LiDAR zsd + % all ret. above 
3.00+ D9

SVM 0.753 0.643

zsd + D0 + D9 RF 1 0.645

304  

305 The parameters chosen for the SVM were cost = 200, gamma = 0.02 and a radial basis 

306 function kernel. For RF, ntrees = 2000, mtry = 1 with bias correction. Using spectral 

307 metrics results in a 15.28% improvement for SVM compared to RF. LiDAR metrics show 

308 no difference in performance between the two algorithms. Combining both LiDAR and 

309 multispectral metrics, leads to a 9.46% improvement for SVM compared to RF.

310 Overall, the models shown in Tables 6 to 8, which incorporate spectral, LiDAR, and 

311 combined spectral and LiDAR data, exhibited lower accuracy at levels 2 and 3. Errors 

312 between close infection levels were to be expected. The boxplots in Figure 2 show the 

313 metric similarities, especially between infestation levels 1, 2, and 3.

314 Table 6. Confusion matrix of the best SVM model with spectral indices metrics. 

 CIRE+NDVI Level 1 Level 2 Level 3 Level 4 User’s accuracy
Level 1 19 4 0 0 82.61%
Level 2 0 4 2 0 66.67%
Level 3 0 1 7 3 63.64%
Level 4 0 0 0 15 100.00%
Prod.’s accuracy 100.00% 44.44% 77.78% 83.33%  

315

316 Table 7. Confusion matrix of the best SVM model with LiDAR metrics.

 zsd+% all ret. 
above 3.00+ D9

Level 1 Level 2 Level 3 Level 4 User’s accuracy

Level 1 17 3 0 2 77.27%
Level 2 0 5 2 2 55.56%
Level 3 2 0 6 1 66.67%
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Level 4 0 1 1 13 86.67%
Prod.’s accuracy 89.47% 55.56% 66.67% 72.22%

317

318 Table 8. Confusion matrix of the best SVM model with spectral indices + LiDAR metrics 

 NDRE + D0 Level 1 Level 2 Level 3 Level 4 User’s accuracy
Level 1 19 4 0 0 82.61% 
Level 2 0 5 3 0 62.50%
Level 3 0 0 6 2 75.00%
Level 4 0 0 0 16 100.00%
Prod.’s accuracy 100% 55.56% 66.67% 88.89%

319

320 The three classification models (Tables 6 to 8) show greater confusion when classifying 

321 trees with infestation levels 2 and 3. The producer's accuracy for level 2 ranges from 44% 

322 to 55%, while for level 3 it ranges from 66% to 78%. In contrast, level 1 shows an 

323 accuracy of 90% to 100%, and level 4 ranges from 72% to 89%. The user's accuracy 

324 exceeds 80% in all three models at level 1, ranges from 62% to 66% at level 2, from 63% 

325 to 75% at level 3, and from 86% to 100% at level 4. 

326 4. Discussion

327 The effect of mistletoe in pine forests leads to changes in crown vigor and canopy 

328 structure. Mistletoe host experiences a reduction in its water and nutritional supply, 

329 causing a progressive atrophy that develops from the implantation site (Hernández-

330 Alonso et al., 2001). This can lead to crown transparency, dead branches, and needle 

331 discoloration (Dobbertin, 2005), potentially causing changes in the spectral response and 

332 structure of the canopies. Mistletoe infestations lead to reductions in chlorophyll index 

333 red edge (CIRE), with a 57.9% decrease between infestation level 1 and level 4, and a 

334 30.1% decrease between level 1 and level 3. The standard deviation of the LiDAR point 

335 clouds of trees at level 3 is 37.76% higher compared to the standard deviation at level 1. 

336 Traditional control methods for mistletoe have been costly, highlighting the need for more 

337 efficient alternatives for monitoring infestations in Mediterranean pine forests. Standard 

338 field methods have limitations, and it is necessary to call for new approaches to assess 

339 tree health based on remote sensing, concretely related to mistletoe affection (Ančić et 

340 al., 2014). Our study offers a new perspective for forest monitoring by examining 

341 individual trees and differentiating infestation levels at an individual scale. Damage 

342 severity classification is more relevant for decision-making than mere damage detection, 
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343 as damage quantification is required in forest pest management (Rullán-Silva et al., 

344 2015). The utilization of UAV platforms opens new ways for analyzing individual tree 

345 scales with a three-dimensional perspective on canopy changes (Domingo et al., 2024b).

346 Spectral and LiDAR UAV derived data, complemented by field sampling, enable the 

347 discrimination of infestation levels. Statistically significance differences are identified, 

348 and the presence of mistletoe resulted in modifications to canopy morphology and 

349 spectral crown response. NDRE, CIRE and NDVI are the most important and significant 

350 metrics. The spectral response of infested and non-infested trees differs, particularly 

351 across four levels of mistletoe infestation. Spectral signatures reveal insights into the state 

352 and structure of both leaves and canopy (Huete, 2012). Damage to host trees causes 

353 defoliation and reduced growth (Galiano et al., 2010) eventually leading to tree dead 

354 (Reid et al., 1994). Significant reductions in CIRE, NDRE, and NDVI vegetation indices 

355 values are observed in the upper canopy due to mistletoe infestation. These variables 

356 consider the red, red-edge, and NIR bands. RGB and multispectral UAV data were used 

357 by Mejia-Zuluaga et al. (2022), Miszczyszyn & Wezyk (2022), León-Bañuelos et al. 

358 (2020), and Miraki et al. (2021) to detect different mistletoes species using visible and 

359 NIR bands or vegetation indices. Maes et al. (2018) employed UAV based infrared 

360 thermography, showing that the surface temperature of the eucalypt foliage of infested 

361 trees was notably higher. Our study also introduces key metrics derived from UAV 

362 LiDAR, a data source previously employed by researchers such as Barbosa et al. (2016). 

363 However, we leverage LiDAR metrics to distinguish between different levels of 

364 infestation, marking a novel application of this technology. Height variability, height 

365 distribution and canopy cover density have been the metrics used in classification models. 

366 Differences in infestation levels are associated with a more variable and heterogeneous 

367 canopy. 

368 The categorization into four levels of mistletoe infection allows us to see which classes 

369 are difficult to differentiate. Significant differences are observed between level 1 and level 

370 4, and the most notable confusions occur between the intermediate levels, as shown 

371 confusion matrices. This aspect could be explained by the similarity in the structure of 

372 trees with similar levels of infestation. LiDAR information is very useful in this context, 

373 providing a three-dimensional perspective of pine trees infested by mistletoe. Tree-level 

374 metrics, such as canopy heights, variability, and density capture morphological 

375 transformations across different infestation degrees. Multispectral data indicate tree 
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376 health and mistletoe presence in the upper canopy, with spectral responses varying 

377 according to infestation severity. Other forest pests, such as the pine processionary moth, 

378 have been shown to alter canopy cover and to cause reductions in the upper canopy, as 

379 reported by Domingo et al. (2024) using leaf area index (LAI) and mean leaf area density 

380 metrics derived from LiDAR.

381 Miraki et al. (2021) achieve reliable performance using RF to differentiate between two 

382 categories (infested and non-infested trees) with both manual and automatic crown 

383 segmentation of photogrammetry-derived data in leaf-on and leafless conditions. The 

384 overall accuracy is 0.87 for manual segmentation under leaf-off conditions, and 0.76 for 

385 the combined leaf-off and leaf-on situations. Barbosa et al. (2016) demonstrate good 

386 performance using SVM with a radial function kernel, based on consistent spectral. This 

387 approach achieves an accuracy of 86% in classifying two classes: presence and absence 

388 of mistletoe. Barbosa et al., using LiDAR data, found that the landscape structure 

389 influences the presence of mistletoe, with isolated host trees exhibit twice the infestation 

390 load compared to those at the core of forest fragments. In our research we use SVM and 

391 RF algorithms to distinguish four infestation levels. When using spectral metrics with 

392 SVM (OA = 0.83), although the combination of both sensors also demonstrates 

393 significant accuracy (OA = 0.82). RF is not as accurate as SVM in this case, although it 

394 achieves optimal results for classifying infestation levels using spectral metrics (OA = 

395 0.73) and by combining spectral and LiDAR data (OA = 0.74). Using only three LiDAR 

396 metrics, both algorithms achieved the same accuracy (0.64).

397 Our study demonstrates the potential of MS and LiDAR UAV data in delineating 

398 structural and spectral differences in the crowns infested from Viscum album ssp. 

399 austriacum within a Mediterranean forest dominated by Scots pine. Statistical differences 

400 are identified through Kruskal-Wallis and Dunn’s test also identified significant 

401 differences. These variables are susceptible to morphological and spectral changes in the 

402 crowns of host trees according to four infestation levels. His methodology could be 

403 applied in future research to wilder areas by developing statistical models to improve 

404 forest management. Our outcomes provide insights for similar applications by presenting 

405 relevant MS and LiDAR metrics that can be developed into prediction models for other 

406 areas.  According to Maes et al. (2018) thermal imagery could enable the analysis between 

407 infested and non-infested mistletoe trees. Another potential line of research could be to 

408 further develop the work initiated by Barbosa et al. (2016) focusing on the landscape 
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409 characterization in forest stands infested by this hemiparasitic plant, distinguishing 

410 between isolated trees, forest edge and forest interior. Combining remote sensing 

411 technologies, both active and passive, would be a particularly valuable approach. Satellite 

412 imagery could offer the advantage of covering large areas, facilitating the identification 

413 of infestation patterns at a regional scale. By integrating these satellite images with UAV 

414 data, which provides detailed information on canopy structure and spectral response using 

415 multispectral and LiDAR sensors, detection, monitoring, and management strategies for 

416 mistletoe in forest ecosystems are significantly enhanced. This combination of tools 

417 would enable a more comprehensive and accurate understanding of mistletoe infestation, 

418 optimizing its management and control.  

419 5. Conclusion

420 This research evaluated the potential of combining UAV-derived multispectral imagery 

421 and LiDAR point cloud to determine Viscum album ssp. austriacum affection levels. Our 

422 approach demonstrates their value for detecting and characterizing vegetation vigor and 

423 morphological changes in up to four levels of mistletoe infestation in Mediterranean Scots 

424 pine forest. The most accurate mistletoe infestation classification model was developed 

425 using the radial kernel SVM, incorporating two spectral variables: CIRE, and NDVI. The 

426 model classification obtained an overall accuracy of 0.83 after validation. LiDAR point 

427 cloud derived metrics with RF model achieved a global accuracy of 0.64, which included: 

428 standard deviation of elevation values, D0 and D9. Combining both sensor active and 

429 passive, classification model with SVM radial kernel achieved an overall accuracy of 

430 0.82, with NDRE and D0. UAV data supports the monitoring of forest management 

431 regarding a hemiparasitic plant that currently threatens Mediterranean forests in a context 

432 of global change. 
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441 Appendix A

442 Table A1. Final metrics included in the models

Group of variables Variables Description
Height distribution Elev.L2 L moment 2 elevation
Height variability zsd

zvar
Standard deviation of elevation values
Variation of elevation values

Canopy cover density D0, D1, 
D9

% all ret. 
above 
3.00

% of all returns in 10 equally distributed vertical layers 
derived by separating the height between the 95th 
percentile of the height distribution and the 3 m 
threshold
Percentage of all returns above 3.00

Spectral indices NDRE
CIRE
NDVI

Normalized Difference Red Edge 
Index Chlorophyll Index - Red-Edge
Normalized Difference Vegetation Index

Textural features NIR mean Mean of the NIR band

443

444 Table A2. Number of groups that can differentiate each variable

Variables
Number of 

groups
NDVI, GCI, CIRE, NDRE, GNDVI, CVI, SAVI, MCARI, MSI, RI, LCI, 

RDVI, SQRT_SR, D0 3
zvar, zsd, zq1, ziqr, zMADmean, zMADmedian, zpcum1, L2, elev.stddev, 

elev_variance, elev.cv, elev.AAD, elev.MAD.mode, elev.L2, elev.L.CV, Hsd, 
D1, D2, eta, GEMI, CCCI, NIR_mean, NIR_SA, Blue_ASM, Blue_mean, 

Blue_SA 2
zmin, zcv, zq5, pzabove2, zentropy, zpcum2, zpcum3, zpcum4, Lcoefvar, 

lad_max, lad_mean, lad_sum, pz_0.15.2, pz_5.6, pz_8.5.10, Return.2.count, 
Elev.IQ, Elev.MAD.median, Percentage.first.returns.above.3.00, 

Percentage.all.returns.above.3.00, Percentage.all.returns.above.mean, Hcv, D3, 
D4, D5, D6, D7, D8, D9, NIR_homogeneity, NIR_ASM, NIR_entropy, 

NIR_correlation, RE_homogeneity, RE_ASM, RE_entropy, RE_mean, RE_SA, 
Red_ASM, Red_mean, Red_correlation, Red_SA, Blue_correlation 1

445

446

447

448

449

450

451
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Table 1. Vegetation index calculated from spectral bands

Vegetation index Formula
NDVI (Normalized Difference Vegetation Index) NDVI = 𝑁𝐼𝑅 ― 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 
GCI (Green Chlorophyll Index) GCI = 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁  - 1

CIRE (Chlorophyll Index Red Edge) CIRE = 𝑁𝐼𝑅
𝑅𝐸  - 1

NDRE (Normalized Difference Red Edge) NDRE = 𝑁𝐼𝑅 ― 𝑅𝐸
𝑁𝐼𝑅 + 𝑅𝐸  

ETA (η) η = 2 (𝑁𝐼𝑅^2 ― 𝑅𝐸𝐷^2) + 1.5𝑁𝐼𝑅 + 0.5𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5  

GEMI (Global Environmental Monitoring Index) GEMI = 𝜂 (1 ― 0.25𝜂) ―
𝑅𝐸𝐷 ― 0.125

1 ― 𝑅𝐸𝐷  

GNDVI (Green Normalized Difference Vegetation 
Index):

GNDVI = 𝑁𝐼𝑅 ― 𝐺𝑅𝐸𝐸𝑁
𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁 

CVI (Chlorophyll Vegetation Index): CVI =
𝑁𝐼𝑅 × 𝑅𝐸𝐷
𝐺𝑅𝐸𝐸𝑁^2

SAVI (Soil-Adjusted Vegetation Index): SAVI = (1 + 𝐿)(𝑁𝐼𝑅 ― 𝑅𝐸𝐷)
𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿

MCARI (Modified Chlorophyll Absorption Ratio 
Index):

MCARI = (
𝑅𝐸𝐷 ― 𝑅𝐸

𝑅𝐸 ― 𝐺𝑅𝐸𝐸𝑁) ×NIR

MSI (Moisture Stress Index): MSI = 𝑁𝐼𝑅
𝑅𝐸𝐷

RI (Redness Index): RI = 𝑅𝐸𝐷^2
𝑁𝐼𝑅 × 𝐵𝐿𝑈𝐸 

LCI (Leaf Chlorophyll Index): LCI = 𝑁𝐼𝑅 ― 𝑅𝐸
𝑁𝐼𝑅 + 𝑅𝐸𝐷 

CCCI (Canopy Chlorophyll Content Index): CCCI = (
𝑁𝐼𝑅 ― 𝑅𝐸
𝑁𝐼𝑅 + 𝑅𝐸

 
) / (

𝑁𝐼𝑅 ― 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷

 
)

RDVI (Renormalized Difference Vegetation Index): RDVI =
𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷

SQRT_SR (Square Root of Simple Ratio): SQRT_SR = 𝑁𝐼𝑅
𝑅𝐸𝐷

Table 2. Results of the Kruskal-Wallis test. 

Type Metrics Chi Square p-value

CIRE 44.70 ***
NDRE 44.47 ***
NDVI 39.61 ***

Spectral indices

NIR mean 16.49 ***
zsd 21.47 ***
zvar 21.47 ***
D1 18.69 ***
D0 18.06 ***

Elev L2 14.91 **
LiDAR

% all returns 
above 3.00 12.48 **
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D9 8.61 *
*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.

Table 3. Dunn’s test results. Number of variables that can differentiate between infestation 

levels.

Groups Number of variables
Level 1 – level 2 1
Level 1 – level 3 30
Level 1 – Level 4 69
Level 2 – level 3 0
Level 2 – level 4 17
Level 3 – level 4 20

Table 4. Dunn’s test results. 

Variables 1-2 1-3 1-4 2-3 2-4 3-4

CIRE
0.8199 
(NS)

0.0050 ** 5.12E-10 *** 0.6725 0.0010 ** 0.3294 
(NS)

NDRE
0.8458 
(NS)

0.0064 ** 5.45E-10 *** 0.7344 0.0010 ** 0.2868 
(NS)

NDVI
1 (NS) 0.0392 6.05E-09 *** 1 (NS) 0.0009 *** 0.1563 

(NS)

zsd
0.2923 
(NS)

0.0044 ** 0.0001 *** 1 (NS) 0.8502 (NS) 1 (NS)

zvar
0.2923 
(NS)

0.0044 ** 0.0001 *** 1 (NS) 0.8502 (NS) 1 (NS)

D1 1 (NS) 1 (NS) 0.0004 *** 1 (NS) 0.0650(NS) 0.0158 *
D0 1 (NS) 1 (NS) 0.0007 *** 1 (NS) 0.0394 * 0.0158 *
NIR mean 1 (NS) 1 (NS) 0.0035 * 1 (NS) 0.1819 (NS) 0.0048 *

Elev L2
0.5927 
(NS)

0.0024 ** 0.0287 * 0.6335 
(NS)

1 (NS) 1 (NS)

% all returns 
above 3.00

1 (NS) 1 (NS) 0.0059 ** 1 (NS) 0.1597 (NS) 0.1280 
(NS)

D9
1 (NS) 1 (NS) 0.0373 * 1 (NS) 0.2646 (NS) 0.5458 

(NS)

*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; NS: non-significant.

Table 5. Support Vector Machine (Svm) and Random Forest (RF) Classification methods.

Types of metrics Metrics Method Fitting phase Validation

Spectral indices CIRE+NDVI SVM 0.823 0.833

 CIRE+NDVI RF 1 0.733
Spectral indices + 

LiDAR
NDRE + D0 SVM 0.817 0.817

NDVI + Elev.L2 RF 1 0.743
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LiDAR zsd + % all ret. above 
3.00+ D9

SVM 0.753 0.643

zsd + D0 + D9 RF 1 0.645

 

Table 6. Confusion matrix of the best SVM model with spectral indices metrics. 

 CIRE+NDVI Level 1 Level 2 Level 3 Level 4 User’s accuracy
Level 1 19 4 0 0 82.61%
Level 2 0 4 2 0 66.67%
Level 3 0 1 7 3 63.64%
Level 4 0 0 0 15 100.00%
Prod.’s accuracy 100.00% 44.44% 77.78% 83.33%  

Table 7. Confusion matrix of the best SVM model with LiDAR metrics.

 zsd+% all ret. 
above 3.00+ D9

Level 1 Level 2 Level 3 Level 4 User’s accuracy

Level 1 17 3 0 2 77.27%
Level 2 0 5 2 2 55.56%
Level 3 2 0 6 1 66.67%
Level 4 0 1 1 13 86.67%
Prod.’s accuracy 89.47% 55.56% 66.67% 72.22%

Table 8. Confusion matrix of the best SVM model with spectral indices + LiDAR metrics 

 NDRE + D0 Level 1 Level 2 Level 3 Level 4 User’s accuracy
Level 1 19 4 0 0 82.61% 
Level 2 0 5 3 0 62.50%
Level 3 0 0 6 2 75.00%
Level 4 0 0 0 16 100.00%
Prod.’s accuracy 100% 55.56% 66.67% 88.89%
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