¿Por qué se ha desarrollado tan lentamente el no-laboreo en las viñas españolas? Teniendo en cuenta que en Francia y en Italia, países viticultores por excelencia, emplean rutinariamente herbicidas para combatir las malas hierbas de las viñas, no es fácil comprender, a primera vista, la resistencia de algunos viticultores españoles a emplear estos productos (cuadro 1).

En 1986 se estimó la superficie tratada en 35-40 000 hectáreas en toda España. Teniendo en cuenta la superficie del viñedo nacional, el porcentaje es muy bajo, aunque destacan las zonas de Jerez, La Rioja, Navarra y Galicia.

Existen algunas razones por las que la reducción del laboreo en la viña no se extiende con facilidad. Entre ellas están la creencia de que las labores conservan mejor el agua en el suelo, el temor a hacer daño a las viñas y obtener rendimientos inferiores, y la idea de que es imprescindible una limpieza absoluta de las hierbas y que ésta sólo se obtiene labrando (cuadro 2).

CUADRO 1

<table>
<thead>
<tr>
<th>PAÍS</th>
<th>SUPERFICIE DEL VIÑEDO (ha)</th>
<th>% TRATADO CON HERBICIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCIA</td>
<td>1 080 000</td>
<td>75</td>
</tr>
<tr>
<td>ITALIA</td>
<td>1 048 000</td>
<td>22</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>350 000</td>
<td>30</td>
</tr>
<tr>
<td>GRÉCIA</td>
<td>175 109</td>
<td>35</td>
</tr>
<tr>
<td>R.F. ALEMANA</td>
<td>93 000</td>
<td>85</td>
</tr>
<tr>
<td>ESPAÑA</td>
<td>1 581 000</td>
<td>3</td>
</tr>
</tbody>
</table>

* Tratamientos totales, localizados o mixtos.
CUADRO 2

DATOS ENCUESTA 1700 VITICULTORES ESPAÑOLES (1980)
(Fuente: Monsanto España, S.A.)

Objetivos de la escarada mecánica:
- Eliminar las malas hierbas (48 %)
- Aireación del suelo (20 %)
- Conservación de la humedidad (16 %)

Inconvenientes del no-laboreo con herbicidas:
- Menor eficacia contra las hierbas (53 %)
- Peor utilización del agua (32 %)
- Obtención de menores rendimientos (17 %)
- Posibles daños por fitotoxicidad.

El mito del ahorro de agua

Una de las creencias más difundidas en España es que las labores permiten romper los capilares de las capas superficiales del suelo impidiendo la evaporación del agua contenida en él. Esto puede ser cierto en determinadas ocasiones, pero no lo es en la mayoría de las situaciones. Se ha demostrado recientemente que el agua se conserva en un suelo intacto tan bien o mejor que en uno labrado, evitando incluso la pérdida por evaporación que sufre éste.

Otra cosa es la infiltración; está demostrado que las labores favorecen la penetración del agua en el interior del suelo, al mullirllo y descompactarlo. Por ello puede ser recomendable labrar superficialmente en momentos determinados, como, por ejemplo, cuando se esperan lluvias frecuentes en primavera. O practicar el laboreo en las entrelíneas tratando con herbicidas en bandas bajo las cepas.

En cuanto al enraizamiento de la vid, si bien es cierto que al eliminarse las labores se observa un aumento de

Los inconvenientes del laboreo

En algunas zonas, la aplicación de herbicidas con pocos ensayos previos ha conducido a experiencias desafortunadas e incluso a costosos accidentes. Lógicamente, ello ha hecho que los viticultores se retrajeran en el empleo de herbicidas. Desgraciadamente, la experimentación ha sido escasa o no ha tenido lugar, y al no obtenerse alternativas al laboreo, las viñas se siguen labrando como hace lustros y, lo que es peor, mucho más intensamente.

Ello conduce a una intensa erosión del suelo con la consiguiente pérdida de las capas fériles, que va empeorando año tras año el suelo vitícola. Y éste sí que es un problema importante en España (figura 1).

Así mismo, hay que considerar el consumo de materia orgánica, de la que tan escasos están nuestros suelos. El
humus va oxidándose poco a poco, desapareciendo con las labores. En la actualidad, después de las numerosas experiencias de mínimo laboreo en los cultivos herbáceos y en el olivo, se comienzan a valorar las ventajas de la reducción de las labores en los distintos suelos.

Cuando se labra en condiciones de poca o excesiva humedad, se produce una grave alteración de la estructura del suelo, impidiendo el estado óptimo que favorece el desarrollo de las raíces. Este estado se obtiene muchas veces, de forma natural, sin laboreos.

Por otra parte, la poda a la que se somete a las raíces en cada labor es perjudicial para las plantas, que se ven limitadas para la exploración de las capas más fértiles del suelo. Además, cuando se alcanzan los troncos de las cepas, se producen heridas que son vías de entrada a enfermedades y parásitos.

Como razones adicionales en favor del no-laboreo hay que considerar la reducción de las heladas de irradiación (ya que la temperatura media de las capas superficiales sin labrar es superior a las labradas) y la reducción de la clorosis.

El uso de herbicidas y su rentabilidad

Para emplear herbicidas de forma racional hay que ser prudente. Además, es importante estar bien asesorado y contar con una máquina pulverizadora en buenas condiciones (vigilar especialmente el buen funcionamiento de las boquillas) lo que, desgraciadamente, es muy poco frecuente.

Por otra parte, el hecho de que existan algunas hierbas que se escapan después de un tratamiento no tiene demasiada importancia. Si al viticultor le parecen excesivas, puede tratar de nuevo, localizadamente, con algún herbicida sistémico o de contacto. Hay que tener en cuenta que se necesita una gran densidad de hierbas para que el rendimiento se vea afectado, que es lo que realmente debe preocupar. El concepto de agricultor «aseado» hay que cambiarlo por el de gestor de explotación y buscar la máxima rentabilidad.

En cuanto a los residuos de herbicidas en el suelo, no se han detectado acumulaciones perjudiciales para la viña si los productos remanentes se utilizan de forma racional, aunque los efectos herbicidas pueden alcanzar a los cultivos posteriores a un tratamiento. Esto hay que tenerlo en cuenta cuando se desea cambiar de cultivo, dejando de tratar unos años antes de hacerlo. Precisamente lo contrario de lo que algunos hacen en viñas viejas. En cuanto a los residuos en las uvas y mostos, la experiencia indica que en ningún caso se han encontrado trazas de los productos aplicados, cuando los tratamientos han respetado las indicaciones de las casas comerciales expresadas en la etiqueta de los envases.

También existe la creencia de que es imposible controlar las malas hierbas de una forma eficaz con herbicidas. Esto revela un grave desconocimiento de las posibilidades de los productos actuales (cuadro 3). Para impedir la proliferación de especies vivaces y resistentes a un herbicida determinado es necesario efectuar una rotación de productos, evitando tratar siempre con el mismo.
Cuadro 3
ALGUNOS HERBICIDAS AUTORIZADOS PARA VID

La aplicación de herbicidas residuales o de sus mezclas con foliares deberá hacerse, en su caso, cuando las plantas tengan más de cuatro años. Asimismo, hay que tener mucha precaución para su utilización en terrenos arenosos: leer atentamente la etiqueta.

<table>
<thead>
<tr>
<th>MATERIA ACTIVA</th>
<th>N. COMERCIAL</th>
<th>DOSIS kg o l/ha</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simazina 50</td>
<td>Varios</td>
<td>2-6</td>
<td>Contra malas hierbas anuales de hoja ancha antes de su nascimento. En suelos ligeros o casciosos, reducir dosis.</td>
</tr>
<tr>
<td>Oxifluoren</td>
<td>Goal Ec</td>
<td>2-4</td>
<td>Pulverización dirigida. Tiene efecto de contacto cuando están en estado de plántula. Puede mezclarse con glifosato.</td>
</tr>
<tr>
<td>Glifosato</td>
<td>Herbolex Roundup</td>
<td>1-6</td>
<td>¡Evitar mojar partes verdes de cultivo! No dejar residuos en el suelo. Controla las perennes. Recomendable en bajo volumen (menos de 100 l/ha).</td>
</tr>
<tr>
<td>Glufosinato</td>
<td>Finale</td>
<td>3-5</td>
<td>Contra anuales. Puede controlar algunas perennes con aplicaciones repetidas a dosis altas. Tratamiento dirigido.</td>
</tr>
<tr>
<td>Butil-fluazifop</td>
<td>Fusilade</td>
<td>1,25-4</td>
<td>Exclusivamente antigraníneas. Contra grama aplicar en pleno desarrollo, antes de la floración y repetir a las 2-3 semanas.</td>
</tr>
<tr>
<td>Diuron + paraquat</td>
<td>Sekol Totacol Extra</td>
<td>5-6</td>
<td>Contra especies anuales. ¡Evitar contacto inhalación! No tratar cultivos con menos de 5 años. No tratar con rocio.</td>
</tr>
<tr>
<td>Diuron + simaz. + aminotriazol + aceite</td>
<td>Clairsol</td>
<td>8-10</td>
<td>Contra malas hierbas anuales. No utilizar entre cuajado y recolección. Recomendable en bajo volumen.</td>
</tr>
<tr>
<td>Glifosato + simazina</td>
<td>Rival</td>
<td>7-10</td>
<td>Contra malas hierbas en post-emergencia. Recomendable en bajo volumen.</td>
</tr>
<tr>
<td>Paraquat + simazina</td>
<td>Terraklene E.</td>
<td>6-12</td>
<td>Contra anuales. Evitar contacto o inhalación. No tratar con rocio.</td>
</tr>
<tr>
<td>Terbutilaz. + terbumetona</td>
<td>Caragard</td>
<td>3-6</td>
<td>Convolvulus, Setaria y Torilis poco sensibles. Dejar de tratar 2 años antes de levantar el cultivo. No recomendable en variedad Airen.</td>
</tr>
<tr>
<td>Terbutilaz. + terbumetona + aminotriazol</td>
<td>Vinagard</td>
<td>7-10</td>
<td>No utilizar entre el cuajado de fruto y la recolección. No recomendable en variedad Airen.</td>
</tr>
</tbody>
</table>
Y por último, hay quien cree que la utilización de herbicidas acarrea un mayor gasto, lo que no es cierto, ya que, si se emplean de forma racional, puede suponer un ahorro importante, según la intensidad de laboreo con la que comparemos. De una forma general se puede considerar que a partir de tres labores anuales, comienzan a ser rentables los tratamientos herbicidas (cuadro 4).

Algunos sistemas de mínimo laboreo llegan a reducir el coste en un 50 % si se comparan con cinco labores anuales.

CUADRO 4

Coste de distintos sistemas de mantenimiento del suelo en la viña en 1988 y % referido al laboreo tradicional con 5 pases de cultivador en un solo sentido.

<table>
<thead>
<tr>
<th></th>
<th>Pts/ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOREO TRADICIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 pases de cultivador)</td>
<td>10800</td>
<td>40</td>
</tr>
<tr>
<td>(3 pases de cultivador)</td>
<td>16200</td>
<td>60</td>
</tr>
<tr>
<td>(4 pases de cultivador)</td>
<td>21600</td>
<td>80</td>
</tr>
<tr>
<td>(5 pases de cultivador)</td>
<td>27000</td>
<td>100</td>
</tr>
<tr>
<td>LABOREO REDUCIDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(modalidad A)</td>
<td>20250</td>
<td>75</td>
</tr>
<tr>
<td>(modalidad B)</td>
<td>17990</td>
<td>67</td>
</tr>
<tr>
<td>(modalidad C)</td>
<td>17320</td>
<td>64</td>
</tr>
<tr>
<td>(modalidad D)</td>
<td>13500</td>
<td>50</td>
</tr>
<tr>
<td>NO-LABOREO TOTAL</td>
<td>11610</td>
<td>43</td>
</tr>
</tbody>
</table>

NOTAS:

A) Consiste en un tratamiento con glifosato (36 %) a 2 l/ha en primavera en bandas bajo las cepas, otro con 6 l/ha en verano (rodal) y 5 pases de cultivador en la entrelínea en un solo sentido.

B) Consiste en un tratamiento con glifosato (12 %) a 2,5 l/ha, en primavera, en bandas bajo las cepas, otro con 12 l/ha en verano (rodal) y 4 pases de cultivador en la entrelínea.

C) Consiste en un tratamiento con terbutilazina 25 % + terbunetona 25 % (3 l/ha) todos los años en primavera, después de una labor en invierno (2 pases de cultivador cruzados).

D) Consiste en un tratamiento con terbutilazina 25 % + terbunetona 25 % (6 l/ha) aplicado en bandas en primavera, una vez cada dos años, y 3 pases de cultivador en la entrelínea.

E) Consiste en un tratamiento con terbutilazina 25 % + terbunetona 25 % (6 l/ha) en primavera, a la totalidad del suelo, sin labor alguna.

La experiencia en Aragón y La Rioja

En 1982 se establecieron cuatro ensayos de sistemas de mantenimiento del suelo en tres viñas de Aragón (situated en Cariñena y en Ainzón, Campo de Borja) y una de La Rioja alavesa (situada en Laserna), se comparó el laboreo tradicional, el no-laboreo a base de tratamientos herbicidas a la totalidad del suelo, el laboreo reducido a las entrelíneas con tratamiento herbicida en franjas de un metro bajo las cepas, y el mínimo laboreo que combinaba una sola labor al año con tratamientos herbicidas.

Desde 1983 hasta 1987 se identificaron, se evaluó su densidad y siguió la evolución de las distintas especies de malas hierbas presentes en otoño-invierno y primavera-verano en cada sistema. Periódicamente, se midió la humedad en el suelo mediante bloques de yeso y sonda de neutrones a diferentes profundidades (30-150 cm) y en distintas posiciones (bajo las cepas o en la entrelínea). Los ensayos se realizaron en condiciones de pluviometría normalmente inferior a la media.

En Cariñena y Campo de Borja se midió la velocidad de infiltración del agua en el suelo en los distintos sistemas a los tres años de establecidos los ensayos. En 1987 se midió la compactación superficial del suelo en tres posiciones (bajo las cepas, en la zona de rodadura y en el centro de la entrelínea) de todos los sistemas. También se realizaron medidas de la temperatura del suelo a 15 centímetros de profundidad en tres ensayos en 1987.

Se compararon las producciones de cada sistema en la vendimia y se tomaron muestras de uva para estimar el peso de los granos, y medir el pH, la acidez y los sólidos solubles del mosto. Así mismo, se pesó la madera de poda en invierno. En el ensayo de Cariñena se vinificaron muestras en los dos últimos años con la colaboración de la Estación de Enología de la DGA.

Del análisis de todos los resultados se pudieron extraer las siguientes conclusiones:

Las malas hierbas

La flora arvense, compuesta normalmente por malas hierbas anuales dicotiledóneas, se controló satisfactoriamente a base de herbicidas. Los tratamientos a bajo volumen (<100 l/ha), con herbicidas residuales y con el sistémico glifosato, dieron muy buen resultado. La elección del herbicida y del momento de tratamiento son factores decisivos para alcanzar un control suficiente en distintas situaciones.

Al cabo de cinco años de tratamientos se observó un aumento en el número de malas hierbas vivaces y una disminución del número inicial de especies. Las vivaces *Cynodon dactylon*, *Chondrilla juncea*, *Muscardi ssp.* y las anuales *Torilis arvensis*, *Erodium cicutarium* y *Senecio gallicus* se mostraron poco sensibles a los herbicidas aplicados y bien adaptadas al no-laboreo. Muchas anuales, sin embargo, proliferaron principalmente en suelos labrados: *Diplotaxis erucoides*, *Amaranthus ssp.* y *Chenopodium album*, entre ellas. Otras especies fueron capaces de adaptarse a cualquier situación: *Convulvulus arvensis*, *Lolium rigidum*, *Salsola kali*.

La humedad en el suelo

La evolución del estado hidrico del suelo fue similar en las viñas sometidas a no-laboreo y en las labradas. Las diferencias en el estado hídrico entre laboreo y no-
laboreo no fueron significativas en la mayoría de los casos, aunque en un ensayo se obtuvieron diferencias importantes a favor de las parcelas labradas, especialmente a más de 45 centímetros de profundidad.

La extracción del agua en el suelo fue más precoz, intensa y rápida en las parcelas de no-laboreo, indicando una mayor transpiración de las vides y más actividad radicular que en los suelos labrados. Ello puede estar relacionado con una temperatura del suelo no labrado significativamente más elevada (0,5-2,3 ºC) que en el suelo sometido a labores.

Las diferencias en el estado hídrico medido bajo las cepas o en el centro de la entrelínea fueron debidas a las particularidades de la topografía superficial del suelo. Todo lo que facilita la retención del agua en la superficie mejora la infiltración. En parcelas con pendiente ligeramente inclinada y con un sistema de drenaje adecuado, es decisivo para aumentar la recarga del perfil.

El suelo no labrado tiene una mayor compactación superficial que el sometido a labores, especialmente en la zona de rodajas del tractor. Ello puede explicar que la velocidad de la infiltración del agua sea más lenta en las parcelas de no-laboreo.

La producción y la calidad de la uva

Las producciones de uva en no-laboreo fueron iguales o superiores que en las parcelas labradas. Hay que destacar que en dos ensayos se obtuvo un 15 y un 17% más de peso de uva en las cepas mantenidas en no-laboreo que en las labradas de forma habitual. En mínimo laboreo se obtuvo un 22% más que en laboreo, en uno de los ensayos. En los otros dos casos las diferencias no fueron significativas (figura 2). Los pesos de la madera de poda confirmaron estos resultados. Todo ello indica que la peor infiltración se compensa por una mejor eficacia radicular en no-laboreo.

Los distintos sistemas de mantenimiento del suelo influyen en las características de uvas y mostos de forma limitada y variable según lugares y años. En el conjunto de los años sólo se observaron diferencias en el peso del grano de uva en un ensayo (en la viña «Carreteras») de Añana, precisamente en contra del no-laboreo, donde se había detectado menos agua en el perfil y, en el último año, síntomas de fitotoxicidad del herbicida. El efecto de los diferentes sistemas sobre el pH del mosto no fue evidente. Sin embargo, se pudo apreciar en tres ensayos que las parcelas labradas produjeron mostos con menor acidez total y mayor contenido en sólidos solubles que en no-laboreo. No se detectaron diferencias químicas ni organolépticas en las muestras vinificadas de Carriena.

CONCLUSIONES GENERALES

La reducción de las labores en las viñas de las zonas estudiadas es técnicamente factible y recomendable, especialmente, en los viñedos más fértiles y productivos. En los sectores áridos, sería conveniente aplicar una técnica mixta que mejore la estrategia de captación del agua de lluvia del suelo. Ello implica una labor superficial, pre-via a las precipitaciones de otoño o primavera, y un tratamiento herbicida posterior. En los suelos muy pedregosos, sin pendiente, puede ser muy positivo el no-laboreo total, y los métodos mixtos de mínimo laboreo en los suelos con pendiente, de forma perpendicular a ésta, para reducir la esorrentia y la erosión. Es necesario emplear con cuidado los herbicidas para evitar daños a la viña y mantener la flora arvense continuamente bajo control.

Figura 2. PRODUCCIÓN MEDIA DE LOS ENSAYOS EN VIÑA

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Producción (kg/cepa = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriena (1,65)</td>
<td>90 a b ab</td>
</tr>
<tr>
<td>Romelos (1,37)</td>
<td>95 a</td>
</tr>
<tr>
<td>Carreteras (1,24)</td>
<td>97 a</td>
</tr>
<tr>
<td>Laserrina (1,03)</td>
<td>99 a</td>
</tr>
</tbody>
</table>

Con letras distintas diferen significativamente (p<0,05)