Please use this identifier to cite or link to this item: http://hdl.handle.net/10532/3888
Title: ¿Son heterogéneas las preferencias de los ciudadanos sobre las externalidades producidas en el medio rural?. Una modelización a partir de escalas mejor-peor y clases latentes
Other Titles: Are citizens' preferences for rural externalities heterogeneous? a best worst-latent class modelling approach
Authors: Pérez y Pérez, Luis
de-Magistris, Tiziana
Egea Román, María Pilar
Issue Date: 2017
Citation: XI Congreso De La Asociación Española De Economía Agraria “Sistemas alimentarios y cambio global desde el Mediterráneo”, Ohiruela-Elche- Alicantes, 13-15 septiembre de 2017
Abstract: The cultivation of olive groves has been one of the most popular research topics on preferences for rural externalities. The aims of this study are a) to analyze the preferences of citizens for some externalities generated by traditional low-yield olive groves and b), to investigate if citizens are heterogeneous when assessing these externalities. To achieve these purposes a Best-Worst Scaling (BWS) approach with a Latent Class Model (LCM) was applied. Data come from an on-line survey administrated to a total of 549 respondents in Spain. The results showed that Spanish citizens value BIODIVERSITY as the most important externality while GOVERNANCE as the worst one. Moreover, our results confirm the heterogeneity of the citizen’s valuation by obtaining four classes of citizens. Two different approaches have been used to characterize those classes. The first one is based on the parameters estimates of the LCM and the second one on some citizen socio-economic characteristics. The four identified classes have been the “socio-cultural & olive grove lovers”, “environmental & educated lovers”, “sustainability lovers” and “economic lovers”. Our results confirm the heterogeneity of the citizens’ preferences on rural externalities.
URI: http://hdl.handle.net/10532/3888
License: http://creativecommons.org/licenses/by-nc-sa/3.0/es/
Appears in Collections:[DOCIART] Artículos científicos, técnicos y divulgativos

Files in This Item:
File Description SizeFormat 
2017_366.pdfComunicación503,5 kBAdobe PDFView/Open
2017_366(2).pdfPresentación348,94 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons