Please use this identifier to cite or link to this item:
Title: Ecosystem CO2 release driven by wind occurs in drylands at global scale
Authors: Moya, María Rosario
López Ballesteros, Ana
Sánchez Cañete, Enrique P.
Serrano Ortiz, Penélope
Oyonarte, Cecilio
Domingo, Francisco
Kowalski, Andrew S.
Issue Date: 2022
Citation: Global Change Biology, in press, (2022)
Abstract: Subterranean ventilation is a non-diffusive transport process that provokes the abrupt transfer of CO2-rich air (previously stored) through water-free soil pores and cracks from the vadose zone to the atmosphere, under high-turbulence conditions. In dryland ecosystems, whose biological carbon exchanges are poorly characterized, it can strongly determine eddy-covariance CO2 fluxes that are used to validate remote sensing products and constrain models of gross primary productivity. Although subterranean ventilation episodes (VE) may occur in arid and semi-arid regions, which are unsung players in the global carbon cycle, little research has focused on the role of VE CO2 emissions in land–atmosphere CO2 exchange. This study shows clear empirical evidence of globally occurring VE. To identify VE, we used in situ quality-controlled eddy-covariance open data of carbon fluxes and ancillary variables from 145 sites in different open land covers (grassland, cropland, shrubland, savanna, and barren) across the globe. We selected the analyzed database from the FLUXNET2015, AmeriFlux, OzFlux, and AsiaFlux networks. To standardize the analysis, we designed an algorithm to detect CO2 emissions produced by VE at all sites considered in this study. Its main requirement is the presence of considerable and non-spurious correlation between the friction velocity (i.e., turbulence) and CO2 emissions. Of the sites analyzed, 34% exhibited the occurrence of VE. This vented CO2 emerged mainly from arid ecosystems (84%) and sites with hot and dry periods. Despite some limitations in data availability, this research demonstrates that VE-driven CO2 emissions occur globally. Future research should seek a better understanding of its drivers and the improvement of partitioning models, to reduce uncertainties in estimated biological CO2 exchanges and infer their contribution to the global net ecosystem carbon balance.
Related document:
Appears in Collections:[DOCIART] Artículos científicos, técnicos y divulgativos

Files in This Item:
File Description SizeFormat 
2022_290.pdf5,89 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons

La información de este repositorio es indexada en: