Please use this identifier to cite or link to this item: http://hdl.handle.net/10532/4889
Title: Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves
Authors: Fariñas, María Dolores
Jiménez Carretero, Daniel
Sancho Knapik, Domingo
Peguero Pina, José Javier
Gil Pelegrín, Eustaquio
Gómez Álvarez Arenas, Tomás E.
Issue Date: 2019
Citation: Plant Methods, vol. 15, num. 1, (2019)
Abstract: Non-contact resonant ultrasound spectroscopy (NC-RUS) has been proven as a reliable technique for the dynamic determination of leaf water status. It has been already tested in more than 50 plant species. In parallel, relative water content (RWC) is highly used in the ecophysiological field to describe the degree of water saturation in plant leaves. Obtaining RWC implies a cumbersome and destructive process that can introduce artefacts and cannot be determined instantaneously.
URI: http://hdl.handle.net/10532/4889
Related document: https://doi.org/10.1186/s13007-019-0511-z
License: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Appears in Collections:[DOCIART] Artículos científicos, técnicos y divulgativos

Files in This Item:
File Description SizeFormat 
2019_428.pdf2,21 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons

La información de este repositorio es indexada en: