Please use this identifier to cite or link to this item: http://hdl.handle.net/10532/6901
Title: Mapping and Monitoring of the Invasive Species Dichrostachys cinerea (Marabú) in Central Cuba Using Landsat Imagery and Machine Learning (1994–2022)
Authors: Valero Jorge, Alexey
González De Zayas, Roberto
Matos Pupo, Felipe
Becerra González, Angel Luis
Álvarez Taboada, Flor
Issue Date: 2024
Citation: Valero-Jorge, A., González-De Zayas, R., Matos-Pupo, F., Becerra-González, A. L., & Álvarez-Taboada, F. (2024). Mapping and Monitoring of the Invasive Species Dichrostachys cinerea (Marabú) in Central Cuba Using Landsat Imagery and Machine Learning (1994–2022). Remote Sensing, 16(5), Article 5. https://doi.org/10.3390/rs16050798
Abstract: Invasive plants are a serious problem in island ecosystems and are the main cause of the extinction of endemic species. Cuba is located within one of the hotspots of global biodiversity, which, coupled with high endemism and the impacts caused by various disturbances, makes it a region particularly sensitive to potential damage by invasive plants like Dichrostachys cinerea (L.) Wight & Arn. (marabú). However, there is a lack of timely information for monitoring this species, as well as about the land use and land cover (LULC) classes most significantly impacted by this invasion in the last few decades and their spatial distribution. The main objective of this study, carried out in Central Cuba, was to detect and monitor the spread of marabú over a 28-year period. The land covers for the years 1994 and 2022 were classified using Landsat 5 TM and 8 OLI images with three different classification algorithms: maximum likelihood (ML), support vector machine (SVM), and random forest (RF). The results obtained showed that RF outperformed the other classifiers, achieving AUC values of 0.92 for 1994 and 0.97 for 2022. It was confirmed that the area covered by marabú increased by 29,555 ha, from 61,977.59 ha in 1994 to 91,533.47 ha in 2022 (by around 48%), affecting key land covers like woodlands, mangroves, and rainfed croplands. These changes in the area covered by marabú were associated, principally, with changes in land uses and tenure and not with other factors, such as rainfall or relief in the province. The use of other free multispectral imagery, such as Sentinel 2 data, with higher temporal and spatial resolution, could further refine the model’s accuracy.
URI: http://hdl.handle.net/10532/6901
Related document: https://doi.org/10.3390/rs16050798
ISSN: 20724292
Appears in Collections:[DOCIART] Artículos científicos, técnicos y divulgativos

Files in This Item:
File Description SizeFormat 
100224595,27 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

La información de este repositorio es indexada en: