Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10532/6797
Registro completo de metadatos
Campo DC Valor Idioma
dc.contributor.authorRipoll García, Guillermoes_ES
dc.contributor.authorPanea Doblado, Begoñaes_ES
dc.contributor.authorLatorre Górriz, María Angeleses_ES
dc.date.accessioned2023-12-19T11:34:40Z-
dc.date.available2023-12-19T11:34:40Z-
dc.date.issued2023es_ES
dc.identifier.citationRipoll, G., Panea, B., & Latorre, M. Á. (2023). A Machine Learning Approach Investigating Consumers’ Familiarity with and Involvement in the Just Noticeable Color Difference and Cured Color Characterization Scale. Foods, 12(24), Article 24. https://doi.org/10.3390/foods12244426-
dc.identifier.issn2304-8158-
dc.identifier.urihttp://hdl.handle.net/10532/6797-
dc.description.abstractThe aim of this study was to elucidate the relations between the visual color perception and the instrumental color of dry-cured ham, with a specific focus on determining the Just Noticeable Color Difference (JNCD). Additionally, we studied the influence of consumer involvement and familiarity on color-related associations and JNCD. Slices of ham were examined to determine their instrumental color and photos were taken. Consumers were surveyed about color scoring and matching of the pictures; they were also asked about their involvement in food, familiarity with cured ham, and sociodemographic characteristics. Consumers were clustered according to their level of involvement and the JNCD was calculated for the clusters. An interpretable machine learning algorithm was used to relate the visual appraisal to the instrumental color. A JNCD of ∆E * ab = 6.2 was established, although it was lower for younger people. ∆E ab was also influenced by the involvement of consumers. The machine-learning algorithm results were better than those obtained via multiple linear regressions when consumers’ psychographic characteristics were included. The most important color variables of the algorithm were L* and hab. The findings of this research underscore the impact of consumers’ involvement and familiarity with dry-cured ham on their perception of color.en
dc.description.sponsorshipEsta investigación ha sido financiada por la Agencia Estatal de Investigación-AEI-y el Fondo Europeo de Desarrollo Regional-FEDER-(Proyecto AGL2016-78532-R), y el Gobierno de Aragón (Subvención de Fondos Agrupados de Investigación, Grupo A17_20R).es_ES
dc.language.isoenes_ES
dc.relation.urihttps://doi.org/10.3390/foods12244426es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Spaines_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.titleA Machine Learning Approach Investigating Consumers Familiarity with and Involvement in the Just Noticeable Color Difference and Cured Color Characterization Scaleen
dc.typearticle*
dc.date.updated2023-12-19T11:18:05Z-
dc.bibliographicCitation.volume12es_ES
dc.bibliographicCitation.issue24es_ES
dc.bibliographicCitation.stpage4426es_ES
dc.subject.agrovocJamónes
dc.subject.agrovocAprendizaje automáticoes
dc.subject.agrovocConsumidoreses
dc.subject.agrovocPercepción de los coloreses
dc.description.otherJust-noticeablees
dc.description.otherDifferencees
dc.description.otherJNDes
dc.description.otherJNCDes
dc.description.otherDelta Ees
dc.description.otherConsumeres
dc.description.otherMachine learninges
dc.description.statusPublishedes_ES
dc.type.refereedRefereedes_ES
dc.type.specifiedArticlees_ES
dc.bibliographicCitation.titleFoodsen
dc.relation.doihttps://doi.org/10.3390/foods12244426es_ES
Aparece en las colecciones: [DOCIART] Artículos científicos, técnicos y divulgativos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
10001010.pdfArtículo2,26 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

La información de este repositorio es indexada en: