Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10532/2132
Título : Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation
Autor : Sánchez Gómez, David
Robson, T. Matthew
Gascó, Antonio
Gil Pelegrín, Eustaquio
Aranda, Ismael
Fecha de publicación : 2013
Citación : David Sánchez-Gómez, T. Matthew Robson, Antonio Gascó, Eustaquio Gil-Pelegrín, Ismael Aranda. “Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation”. Environmental and Experimental Botany (2013), vol. 87, pp. 110-119
Resumen : Patterns of intraspecific variation in functional traits have been widely studied across plant species to find out what general suites of traits provide functional advantage under specific environmental conditions. Much less is known about this variation within tree species and, in particular, about its relationship with performance variables such as photosynthetic rates under water deficit. Nevertheless, this knowledge is fundamental to understand the adaptive potential of drought sensitive tree species to increased aridity as predicted in the context of climate change. Intraspecific variation in photosynthetic performance and other leaf functional traits in response to water availability were examined in a glasshouse experiment using seedlings of six European beech populations. The physiological response of seedlings to a “water stress” treatment was compared to a “control” treatment along an experimental cycle of progressive soil water deficit and recovery. We found evidence of intraspecific variation in beech's photosynthetic performance and other leaf functional traits in response to water availability. We also detected intraspecific variation in leaf-level tolerance of water deficit and phenotypic plasticity to water availability suggesting a pattern shaped by both regional and local scale effects. The Swedish population was particularly sensitive to water deficit, being the only population showing impaired photochemical efficiency under the experimental water deficit. Leaf-level tolerance of water deficit was related to PNUE, but not to other functional traits, such as WUE, SLA or leaf nitrogen content, that have been described to vary across species in adaptation to drought tolerance. Our results support the idea that general trends for variation in functional traits across species do not necessarily reflect a similar pattern when observed at the intraspecific level. The observed functional variation between beech populations reaffirms the importance of local adaptation to water deficit in the context of climate change
URI : http://hdl.handle.net/10532/2132
ISSN : 0098-8472
Licencia: http://creativecommons.org/licenses/by-nc-sa/3.0/es/
Aparece en las colecciones: [DOCIART] Artículos científicos, técnicos y divulgativos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2012_303autor.pdf948,52 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

La información de este repositorio es indexada en: