Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10532/4210
Registro completo de metadatos
Campo DC Valor Idioma
dc.contributor.authorMalik, Wafaes_ES
dc.contributor.authorBoote, Kenneth J.es_ES
dc.contributor.authorHoogenboom, Gerrites_ES
dc.contributor.authorCavero Campo, Josées_ES
dc.contributor.authorDechmi, Faridaes_ES
dc.coverage.spatialSuelos y riegoses_ES
dc.date.accessioned2018-09-24T10:03:30Z-
dc.date.available2018-09-24T10:03:30Z-
dc.date.issued2018es_ES
dc.identifier.citationAgronomy Journal, vol. 110, núm. 5, (2018)-
dc.identifier.urihttp://hdl.handle.net/10532/4210-
dc.description.abstractDespite alfalfa’s global importance, there is a dearth of crop simulation models available for predicting alfalfa growth and yield with its associated composition. The objectives of this research were to adapt the CSM-CROPGRO Perennial Forage Model for simulating alfalfa growth and yield and to describe model adaptation for this species. Data from six experimental plots grown under sprinkler irrigation in the Ebro valley (Northeast Spain) were used for model adaptation. Starting with parameters for Bracharia brizantha, the model adaptation was based on values and relationships reported from the literature for cardinal temperatures and dry matter partitioning. A Bayesian optimizer was used to optimize temperature effects on photosynthesis and daylength effects on partitioning and an inverse modeling technique was employed for nitrogen fixation rate and nodule growth. The calibration of alfalfa tissue composition was initiated from soybean composition analogy but was improved with values from alfalfa literature. There was considerable iteration in optimizing parameters for the processes outlined above where comparisons were made to measured data. After adaptation, the Root Mean Square Error and d-statistic of harvested herbage averaged across 58 harvests (yield range: 990–4617 kg ha–1) were 760 kg ha–1 and 0.75, respectively. In addition, good agreement was observed for Leaf Area Index (LAI) (LAI range: 0.1–6.7) with d-statistic of 0.71. Simulated belowground mass was within the range of literature values. The results of this study showed that CROPGRO-PFM-Alfalfa can be used to simulate alfalfa growth and development. Further testing with more extensive datasets is needed to improve model robustness.en
dc.language.isoenes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleAdapting the CROPGRO Model to Simulate Alfalfa Growth and Yielden
dc.typeJournal Contribution*
dc.bibliographicCitation.volume110(5)es_ES
dc.bibliographicCitation.stpage1777es_ES
dc.bibliographicCitation.endpage1790es_ES
dc.subject.agrovocMedicago sativaes
dc.subject.agrovocCultivoes
dc.subject.agrovocModelos de simulaciónes
dc.description.statusPublishedes_ES
dc.type.refereedRefereedes_ES
dc.type.specifiedArticlees_ES
dc.bibliographicCitation.titleAgronomy Journalen
dc.relation.doi10.2134/agronj2017.12.0680es_ES
Aparece en las colecciones: [DOCIART] Artículos científicos, técnicos y divulgativos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2018_284.pdf533,53 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

La información de este repositorio es indexada en: