Please use this identifier to cite or link to this item: http://hdl.handle.net/10532/7307
Full metadata record
DC FieldValueLanguage
dc.contributor.authorValero Jorge, Alexeyes_ES
dc.contributor.authorGonzález-Lozano, Raúles_ES
dc.contributor.authorGonzález-De Zayas, Robertoes_ES
dc.contributor.authorMatos-Pupo, Felipees_ES
dc.contributor.authorSorí, Rogertes_ES
dc.contributor.authorStojanovic, Milicaes_ES
dc.date.accessioned2024-10-16T11:31:45Z-
dc.date.available2024-10-16T11:31:45Z-
dc.date.issued2024es_ES
dc.identifier.citationValero-Jorge, A., González-Lozano, R., González-De Zayas, R., Matos-Pupo, F., Sorí, R., & Stojanovic, M. (2024). An Innovative Tool for Monitoring Mangrove Forest Dynamics in Cuba Using Remote Sensing and WebGIS Technologies: SIGMEM. Remote Sensing, 16(20), Article 20. https://doi.org/10.3390/rs16203802-
dc.identifier.issn20724292-
dc.identifier.urihttp://hdl.handle.net/10532/7307-
dc.description.abstractThe main objective of this work was to develop a viewer with web output, through which the changes experienced by the mangroves of the Gran Humedal del Norte de Ciego de Avila (GHNCA) can be evaluated from remote sensors, contributing to the understanding of the spatiotemporal variability of their vegetative dynamics. The achievement of this objective is supported by the use of open-source technologies such as MapStore, GeoServer and Django, as well as Google Earth Engine, which combine to offer a robust and technologically independent solution to the problem. In this context, it was decided to adopt an action model aimed at automating the workflow steps related to data preprocessing, downloading, and publishing. A visualizer with web output (Geospatial System for Monitoring Mangrove Ecosystems or SIGMEM) is developed for the first time, evaluating changes in an area of central Cuba from different vegetation indices. The evaluation of the machine learning classifiers Random Forest and Naive Bayes for the automated mapping of mangroves highlighted the ability of Random Forest to discriminate between areas occupied by mangroves and other coverages with an Overall Accuracy (OA) of 94.11%, surpassing the 89.85% of Naive Bayes. The estimated net change based on the year 2020 of the areas determined during the classification process showed a decrease of 5138.17 ha in the year 2023 and 2831.76 ha in the year 2022. This tool will be fundamental for researchers, decision makers, and students, contributing to new research proposals and sustainable management of mangroves in Cuba and the Caribbean.en
dc.description.sponsorshipThis work was supported by the territorial project ‘Gestión ambiental integradora con enfoque ecosistémico en el Gran Humedal del Norte de Ciego de Ávila para su adaptación al cambio climático’ of the Cuban government (Code: PT121CA003-003).es_ES
dc.language.isoenes_ES
dc.relation.urihttps://doi.org/10.3390/rs16203802es_ES
dc.rightsDeed - Attribution 4.0 Internationales_ES
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.otherAprendizaje automático-
dc.subject.otherMangles-
dc.subject.otherTeledetección espacial-
dc.titleAn Innovative Tool for Monitoring Mangrove Forest Dynamics in Cuba Using Remote Sensing and WebGIS Technologies: SIGMEMen
dc.typeJournal Contribution*
dc.date.updated2024-10-15T10:15:17Z-
dc.bibliographicCitation.volume16es_ES
dc.bibliographicCitation.issue20es_ES
dc.bibliographicCitation.stpage3802es_ES
dc.description.statusPublishedes_ES
dc.type.refereedRefereedes_ES
dc.type.specifiedArticlees_ES
dc.bibliographicCitation.titleRemote Sensingen
dc.relation.doihttps://doi.org/10.3390/rs16203802es_ES
Appears in Collections:[DOCIART] Artículos científicos, técnicos y divulgativos

Files in This Item:
File Description SizeFormat 
10087171Artículo26,38 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons

La información de este repositorio es indexada en: