Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10532/6930
Registro completo de metadatos
Campo DC Valor Idioma
dc.contributor.authorVahid, Farhades_ES
dc.contributor.authorDessenne, Coraliees_ES
dc.contributor.authorTur, Josep Aes_ES
dc.contributor.authorBouzas, Cristinaes_ES
dc.contributor.authorDevaux, Yvanes_ES
dc.contributor.authorMonserrat Mesquida, Margalidaes_ES
dc.contributor.authorSureda, Antonies_ES
dc.contributor.authorDesai, Mahesh Ses_ES
dc.contributor.authorTurner, Jonathan Des_ES
dc.contributor.authorLamy, Elsaes_ES
dc.contributor.authorPerez-Jimenez, Mariaes_ES
dc.contributor.authorRavn-Haren, Gittees_ES
dc.contributor.authorAndersen, Rikkees_ES
dc.contributor.authorForberger, Sarahes_ES
dc.contributor.authorNagrani, Rajinies_ES
dc.contributor.authorOuzzahra, Yacinees_ES
dc.contributor.authorFontefrancesco, Michele Filippoes_ES
dc.contributor.authorGiovanna Onorati, Mariaes_ES
dc.contributor.authorGabriel Bonetti, Ginoes_ES
dc.contributor.authorDe Magistris, Tizianaes_ES
dc.contributor.authorBohn, Torstenes_ES
dc.date.accessioned2024-03-21T06:38:14Z-
dc.date.available2024-03-21T06:38:14Z-
dc.date.issued2024es_ES
dc.identifier.citationVahid, F., Dessenne, C., Tur, J. A., Bouzas, C., Devaux, Y., Malisoux, L., Monserrat-Mesquida, M., Sureda, A., Desai, M. S., Turner, J. D., Lamy, E., Perez-Jimenez, M., Ravn-Haren, G., Andersen, R., Forberger, S., Nagrani, R., Ouzzahra, Y., Fontefrancesco, M. F., Onorati, M. G., … Bohn, T. (2024). Multicomponent (bio)markers for obesity risk prediction: A scoping review protocol. BMJ Open, 14(3), e083558. https://doi.org/10.1136/bmjopen-2023-083558-
dc.identifier.issn20446055-
dc.identifier.urihttp://hdl.handle.net/10532/6930-
dc.description.abstractIntroduction Despite international efforts, the number of individuals struggling with obesity is still increasing. An important aspect of obesity prevention relates to identifying individuals at risk at early stage, allowing for timely risk stratification and initiation of countermeasures. However, obesity is complex and multifactorial by nature, and one isolated (bio)marker is unlikely to enable an optimal risk stratification and prognosis for the individual; rather, a combined set is required. Such a multicomponent interpretation would integrate biomarkers from various domains, such as classical markers (eg, anthropometrics, blood lipids), multiomics (eg, genetics, proteomics, metabolomics), lifestyle and behavioural attributes (eg, diet, physical activity, sleep patterns), psychological traits (mental health status such as depression) and additional host factors (eg, gut microbiota diversity), also by means of advanced interpretation tools such as machine learning. In this paper, we will present a protocol that will be employed for a scoping review that attempts to summarise and map the state-of-the-art in the area of multicomponent (bio)markers related to obesity, focusing on the usability and effectiveness of such biomarkers. Methods and analysis PubMed, Scopus, CINAHL and Embase databases will be searched using predefined key terms to identify peer-reviewed articles published in English until January 2024. Once downloaded into EndNote for deduplication, CADIMA will be employed to review and select abstracts and full-text articles in a two-step procedure, by two independent reviewers. Data extraction will then be carried out by several independent reviewers. Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews and Peer Review of Electronic Search Strategies guidelines will be followed. Combinations employing at least two biomarkers from different domains will be mapped and discussed.en
dc.description.sponsorshipEsta investigación se está llevando a cabo como parte del proyecto HealthyW8, que recibió financiación del Programa de Investigación e Innovación Horizonte Europa de la Unión Europea en virtud del acuerdo de subvención nº 101080645. JAT, CB, AS y MM-M también están financiados por el CIBEROBN (CB12/03/30038) del Instituto de Salud Carlos III, España. YD ha recibido financiación del proyecto COVIRNA de Horizonte 2020 de la UE (acuerdo de subvención n.º 101016072), del Fondo Nacional de Investigación (subvenciones n.º C14/BM/8225223, C17/BM/11613033 y COVID-19/2020-1/14719577/miRCOVID), de la Asociación COST (acciones n.º CA17129 y CA21153), del Ministerio de Educación Superior e Investigación (sin número específico de subvención) y de la Fundación del Corazón-Daniel Wagner de Luxemburgo (sin número específico de subvención).es_ES
dc.language.isoenes_ES
dc.rightsCreative Commons Attribution Non Commercial (CC BY-NC 4.0) licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/-
dc.subject.otherAlcance-
dc.subject.otherAprendizaje automático-
dc.subject.otherObesidad-
dc.subject.otherPeligro Para La Salud-
dc.titleMulticomponent (bio)markers for obesity risk prediction: a scoping review protocolen
dc.typearticle*
dc.date.updated2024-03-21T06:29:43Z-
dc.bibliographicCitation.volume14es_ES
dc.bibliographicCitation.issue3es_ES
dc.bibliographicCitation.stpagee083558es_ES
dc.subject.agrovocObesidades
dc.subject.agrovocAprendizaje automáticoes
dc.subject.agrovocAlcancees
dc.subject.agrovocPeligro para la saludes
dc.description.statusPublishedes_ES
dc.type.refereedRefereedes_ES
dc.type.specifiedArticlees_ES
dc.bibliographicCitation.titleBMJ Openen
dc.relation.doihttps://doi.org/10.1136/bmjopen-2023-083558es_ES
Aparece en las colecciones: [DOCIART] Artículos científicos, técnicos y divulgativos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
100299241,1 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

La información de este repositorio es indexada en: