Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10532/6930
Título : | Multicomponent (bio)markers for obesity risk prediction: a scoping review protocol |
Autor : | Vahid, Farhad Dessenne, Coralie Tur, Josep A Bouzas, Cristina Devaux, Yvan Monserrat Mesquida, Margalida Sureda, Antoni Desai, Mahesh S Turner, Jonathan D Lamy, Elsa Perez-Jimenez, Maria Ravn-Haren, Gitte Andersen, Rikke Forberger, Sarah Nagrani, Rajini Ouzzahra, Yacine Fontefrancesco, Michele Filippo Giovanna Onorati, Maria Gabriel Bonetti, Gino De Magistris, Tiziana Bohn, Torsten |
Fecha de publicación : | 2024 |
Citación : | Vahid, F., Dessenne, C., Tur, J. A., Bouzas, C., Devaux, Y., Malisoux, L., Monserrat-Mesquida, M., Sureda, A., Desai, M. S., Turner, J. D., Lamy, E., Perez-Jimenez, M., Ravn-Haren, G., Andersen, R., Forberger, S., Nagrani, R., Ouzzahra, Y., Fontefrancesco, M. F., Onorati, M. G., … Bohn, T. (2024). Multicomponent (bio)markers for obesity risk prediction: A scoping review protocol. BMJ Open, 14(3), e083558. https://doi.org/10.1136/bmjopen-2023-083558 |
Resumen : | Introduction Despite international efforts, the number of individuals struggling with obesity is still increasing. An important aspect of obesity prevention relates to identifying individuals at risk at early stage, allowing for timely risk stratification and initiation of countermeasures. However, obesity is complex and multifactorial by nature, and one isolated (bio)marker is unlikely to enable an optimal risk stratification and prognosis for the individual; rather, a combined set is required. Such a multicomponent interpretation would integrate biomarkers from various domains, such as classical markers (eg, anthropometrics, blood lipids), multiomics (eg, genetics, proteomics, metabolomics), lifestyle and behavioural attributes (eg, diet, physical activity, sleep patterns), psychological traits (mental health status such as depression) and additional host factors (eg, gut microbiota diversity), also by means of advanced interpretation tools such as machine learning. In this paper, we will present a protocol that will be employed for a scoping review that attempts to summarise and map the state-of-the-art in the area of multicomponent (bio)markers related to obesity, focusing on the usability and effectiveness of such biomarkers. Methods and analysis PubMed, Scopus, CINAHL and Embase databases will be searched using predefined key terms to identify peer-reviewed articles published in English until January 2024. Once downloaded into EndNote for deduplication, CADIMA will be employed to review and select abstracts and full-text articles in a two-step procedure, by two independent reviewers. Data extraction will then be carried out by several independent reviewers. Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews and Peer Review of Electronic Search Strategies guidelines will be followed. Combinations employing at least two biomarkers from different domains will be mapped and discussed. |
URI : | http://hdl.handle.net/10532/6930 |
ISSN : | 20446055 |
Licencia: | http://creativecommons.org/licenses/by-nc/4.0/ |
Aparece en las colecciones: | [DOCIART] Artículos científicos, técnicos y divulgativos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
10029924 | 1,1 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons