Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10532/7554
Registro completo de metadatos
Campo DC Valor Idioma
dc.contributor.authorOrtiz Ayuso, Jorgees_ES
dc.contributor.authorSancho Knapik, Domingoes_ES
dc.contributor.authorSaz, Miguel Ángeles_ES
dc.contributor.authorHoffren, Raúles_ES
dc.contributor.authorDomingo, Daríoes_ES
dc.coverage.spatialSAFMAes_ES
dc.date.accessioned2025-03-26T12:34:22Z-
dc.date.available2025-03-26T12:34:22Z-
dc.date.issued2025es_ES
dc.identifier.citationOrtiz-Ayuso, J.; Sancho-Knapik, D.; Saz, M.A.; Hoffren, R.; Domingo, D. Leveraging Multispectral and Lidar Uav to Predict Individual Tree Health: A Case Study of Viscum Album in Scots Pine Forests. SSRN, 2025.-
dc.identifier.urihttp://hdl.handle.net/10532/7554-
dc.description.abstractThe presence of mistletoe in pine stands has expanded in recent decades, currently threating Mediterranean forests. Mistletoe outbreaks can make the host trees more vulnerable to intense droughts, which are expected to increase due to climate change. We use multispectral (MS) and LiDAR UAV-derived data to determine Viscum album ssp. austriacum infestation levels at individual tree level in Scots pine (Pinus sylvestris L.) forests. First, spectral and structural differences between four infestation levels were assessed employing Kruskal-Wallis test and post hoc Dunn’s test for individual tree crowns. Second, machine learning classification algorithms were applied to evaluate infestation levels at the individual tree scale by comparing or combining UAV-derived datasets. Outcomes revealed significant differences between infestation levels in canopy cover and height based on LiDAR derived metrics. Significant changes in vegetation vigor were also found through spectral and textural metrics. Using two vegetation indices (CIRE and NDVI) an overall accuracy of 0.83 was achieved by applying SVM, while combining a spectral metric (NDRE) and a LiDAR metric (D0) resulted in 0.82 accuracy with SVM. Using only LiDAR variables, we obtained an accuracy of 0.64 with SVM and RF. This approach demonstrates their value for detecting and characterizing morphological changes in up to four levels of mistletoe infestation at individual trees in Mediterranean Scots pine forests, lending support to forest management monitoring.en
dc.description.sponsorshipThis research was funded by Gobierno de Aragón-Fondo de Inversiones de Teruel (FITE) and Gobierno de España, grant project FITE‐2021‐DRUIDA and by Gobierno de Aragón research groups S51_23R and S74_23R.es_ES
dc.language.isoenes_ES
dc.relation.urihttps://doi.org/10.2139/ssrn.5170552es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.subject.otherAprendizaje automático-
dc.subject.otherImágenes Multiespectrales-
dc.subject.otherSanidad De Los Bosques-
dc.subject.otherSistema lidar-
dc.subject.otherVehículos Aéreos No Tripulados-
dc.subject.otherViscum album-
dc.titleLeveraging Multispectral and Lidar Uav to Predict Individual Tree Health: A Case Study of Viscum Album in Scots Pine Forestsen
dc.typeJournal Contribution*
dc.date.updated2025-03-25T09:52:00Z-
dc.subject.agrovocVehículos aéreos no tripuladoses
dc.subject.agrovocImágenes multiespectraleses
dc.subject.agrovocSistema lidares
dc.subject.agrovocAprendizaje automáticoes
dc.subject.agrovocSanidad de los bosqueses
dc.subject.agrovocViscum albumes
dc.description.otherUAVen
dc.description.otherMultispectralen
dc.description.otherLiDARen
dc.description.othermachine learningen
dc.description.otherforest healthen
dc.description.othermonitoringen
dc.description.othermistletoeen
dc.description.statusPublishedes_ES
dc.type.refereedRefereedes_ES
dc.type.specifiedArticlees_ES
dc.bibliographicCitation.titleSSRNen
dc.relation.doihttps://doi.org/10.2139/ssrn.5170552es_ES
dc.relation.datahttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=5170552es_ES
Aparece en las colecciones: [DOCIART] Artículos científicos, técnicos y divulgativos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
10143176.pdf2,59 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

La información de este repositorio es indexada en: